380 lines
16 KiB
Python
380 lines
16 KiB
Python
from fastapi import FastAPI, WebSocket
|
|
from fastapi.websockets import WebSocketDisconnect
|
|
from websockets.exceptions import ConnectionClosedError
|
|
from ultralytics import YOLO
|
|
import torch
|
|
import cv2
|
|
import base64
|
|
import numpy as np
|
|
import json
|
|
import logging
|
|
import threading
|
|
import queue
|
|
import os
|
|
import requests
|
|
from urllib.parse import urlparse
|
|
import asyncio
|
|
import psutil
|
|
|
|
app = FastAPI()
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
if torch.cuda.is_available():
|
|
model.to('cuda')
|
|
|
|
# Retrieve class names from the model
|
|
class_names = model.names
|
|
|
|
with open("config.json", "r") as f:
|
|
config = json.load(f)
|
|
|
|
poll_interval = config.get("poll_interval_ms", 100)
|
|
reconnect_interval = config.get("reconnect_interval_sec", 5) # New setting
|
|
TARGET_FPS = config.get("target_fps", 10) # Add TARGET_FPS
|
|
poll_interval = 1000 / TARGET_FPS # Adjust poll_interval based on TARGET_FPS
|
|
logging.info(f"Poll interval: {poll_interval}ms")
|
|
max_streams = config.get("max_streams", 5)
|
|
max_retries = config.get("max_retries", 3)
|
|
|
|
# Configure logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="%(asctime)s [%(levelname)s] %(message)s",
|
|
handlers=[
|
|
logging.FileHandler("app.log"),
|
|
logging.StreamHandler()
|
|
]
|
|
)
|
|
|
|
# Ensure the models directory exists
|
|
os.makedirs("models", exist_ok=True)
|
|
|
|
# Add constants for heartbeat
|
|
HEARTBEAT_INTERVAL = 2 # seconds
|
|
WORKER_TIMEOUT_MS = 10000
|
|
|
|
@app.websocket("/")
|
|
async def detect(websocket: WebSocket):
|
|
import asyncio
|
|
import time
|
|
|
|
logging.info("WebSocket connection accepted")
|
|
|
|
streams = {}
|
|
|
|
def frame_reader(camera_id, cap, buffer, stop_event):
|
|
import time
|
|
retries = 0
|
|
while not stop_event.is_set():
|
|
try:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
|
cap.release()
|
|
time.sleep(reconnect_interval)
|
|
retries += 1
|
|
if retries > max_retries:
|
|
logging.error(f"Max retries reached for camera: {camera_id}")
|
|
break
|
|
# Re-open the VideoCapture
|
|
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
|
continue
|
|
continue
|
|
retries = 0 # Reset on success
|
|
if not buffer.empty():
|
|
try:
|
|
buffer.get_nowait() # Discard the old frame
|
|
except queue.Empty:
|
|
pass
|
|
buffer.put(frame)
|
|
except cv2.error as e:
|
|
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
|
cap.release()
|
|
time.sleep(reconnect_interval)
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
|
|
break
|
|
# Re-open the VideoCapture
|
|
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
|
continue
|
|
except Exception as e:
|
|
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
|
cap.release()
|
|
break
|
|
|
|
async def process_streams():
|
|
global model, class_names # Added line
|
|
logging.info("Started processing streams")
|
|
try:
|
|
while True:
|
|
start_time = time.time()
|
|
# Round-robin processing
|
|
for camera_id, stream in list(streams.items()):
|
|
buffer = stream['buffer']
|
|
if not buffer.empty():
|
|
frame = buffer.get()
|
|
results = model(frame, stream=False)
|
|
boxes = []
|
|
for r in results:
|
|
for box in r.boxes:
|
|
boxes.append({
|
|
"class": class_names[int(box.cls[0])],
|
|
"confidence": float(box.conf[0]),
|
|
})
|
|
# Broadcast to all subscribers of this URL
|
|
detection_data = {
|
|
"type": "imageDetection",
|
|
"cameraIdentifier": camera_id,
|
|
"timestamp": time.time(),
|
|
"data": {
|
|
"detections": boxes,
|
|
"modelId": stream['modelId'],
|
|
"modelName": stream['modelName']
|
|
}
|
|
}
|
|
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
|
await websocket.send_json(detection_data)
|
|
elapsed_time = (time.time() - start_time) * 1000 # in ms
|
|
sleep_time = max(poll_interval - elapsed_time, 0)
|
|
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
|
await asyncio.sleep(sleep_time / 1000.0)
|
|
except asyncio.CancelledError:
|
|
logging.info("Stream processing task cancelled")
|
|
except Exception as e:
|
|
logging.error(f"Error in process_streams: {e}")
|
|
|
|
async def send_heartbeat():
|
|
while True:
|
|
try:
|
|
cpu_usage = psutil.cpu_percent()
|
|
memory_usage = psutil.virtual_memory().percent
|
|
if torch.cuda.is_available():
|
|
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
|
else:
|
|
gpu_usage = None
|
|
gpu_memory_usage = None
|
|
|
|
camera_connections = [
|
|
{
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": stream['modelId'],
|
|
"modelName": stream['modelName'],
|
|
"online": True
|
|
}
|
|
for camera_id, stream in streams.items()
|
|
]
|
|
|
|
state_report = {
|
|
"type": "stateReport",
|
|
"cpuUsage": cpu_usage,
|
|
"memoryUsage": memory_usage,
|
|
"gpuUsage": gpu_usage,
|
|
"gpuMemoryUsage": gpu_memory_usage,
|
|
"cameraConnections": camera_connections
|
|
}
|
|
await websocket.send_text(json.dumps(state_report))
|
|
logging.debug("Sent stateReport as heartbeat")
|
|
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
|
except Exception as e:
|
|
logging.error(f"Error sending stateReport heartbeat: {e}")
|
|
break
|
|
|
|
async def on_message():
|
|
global model, class_names # Changed from nonlocal to global
|
|
while True:
|
|
msg = await websocket.receive_text()
|
|
logging.debug(f"Received message: {msg}")
|
|
data = json.loads(msg)
|
|
msg_type = data.get("type")
|
|
|
|
if msg_type == "subscribe":
|
|
payload = data.get("payload", {})
|
|
camera_id = payload.get("cameraIdentifier")
|
|
rtsp_url = payload.get("rtspUrl")
|
|
model_url = payload.get("modelUrl")
|
|
modelId = payload.get("modelId")
|
|
modelName = payload.get("modelName")
|
|
|
|
if model_url:
|
|
print(f"Downloading model from {model_url}")
|
|
parsed_url = urlparse(model_url)
|
|
filename = os.path.basename(parsed_url.path)
|
|
model_filename = os.path.join("models", filename)
|
|
# Download the model
|
|
response = requests.get(model_url, stream=True)
|
|
if response.status_code == 200:
|
|
with open(model_filename, 'wb') as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
logging.info(f"Downloaded model from {model_url} to {model_filename}")
|
|
model = YOLO(model_filename)
|
|
if torch.cuda.is_available():
|
|
model.to('cuda')
|
|
class_names = model.names
|
|
else:
|
|
logging.error(f"Failed to download model from {model_url}")
|
|
continue
|
|
if camera_id and rtsp_url:
|
|
if camera_id not in streams and len(streams) < max_streams:
|
|
cap = cv2.VideoCapture(rtsp_url)
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
|
continue
|
|
buffer = queue.Queue(maxsize=1)
|
|
stop_event = threading.Event()
|
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
|
thread.daemon = True
|
|
thread.start()
|
|
streams[camera_id] = {
|
|
'cap': cap,
|
|
'buffer': buffer,
|
|
'thread': thread,
|
|
'rtsp_url': rtsp_url,
|
|
'stop_event': stop_event,
|
|
'modelId': modelId,
|
|
'modelName': modelName
|
|
}
|
|
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
|
|
elif camera_id and camera_id in streams:
|
|
stream = streams.pop(camera_id)
|
|
stream['cap'].release()
|
|
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
elif msg_type == "unsubscribe":
|
|
payload = data.get("payload", {})
|
|
camera_id = payload.get("cameraIdentifier")
|
|
if camera_id and camera_id in streams:
|
|
stream = streams.pop(camera_id)
|
|
stream['cap'].release()
|
|
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
elif msg_type == "requestState":
|
|
# Handle state request
|
|
cpu_usage = psutil.cpu_percent()
|
|
memory_usage = psutil.virtual_memory().percent
|
|
if torch.cuda.is_available():
|
|
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
|
else:
|
|
gpu_usage = None
|
|
gpu_memory_usage = None
|
|
|
|
camera_connections = [
|
|
{
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": stream['modelId'],
|
|
"modelName": stream['modelName'],
|
|
"online": True
|
|
}
|
|
for camera_id, stream in streams.items()
|
|
]
|
|
|
|
state_report = {
|
|
"type": "stateReport",
|
|
"cpuUsage": cpu_usage,
|
|
"memoryUsage": memory_usage,
|
|
"gpuUsage": gpu_usage,
|
|
"gpuMemoryUsage": gpu_memory_usage,
|
|
"cameraConnections": camera_connections
|
|
}
|
|
await websocket.send_text(json.dumps(state_report))
|
|
else:
|
|
logging.error(f"Unknown message type: {msg_type}")
|
|
|
|
await websocket.accept()
|
|
task = asyncio.create_task(process_streams())
|
|
heartbeat_task = asyncio.create_task(send_heartbeat())
|
|
message_task = asyncio.create_task(on_message())
|
|
|
|
await asyncio.gather(heartbeat_task, message_task)
|
|
|
|
model = None
|
|
model_path = None
|
|
|
|
try:
|
|
while True:
|
|
try:
|
|
msg = await websocket.receive_text()
|
|
logging.debug(f"Received message: {msg}")
|
|
data = json.loads(msg)
|
|
camera_id = data.get("cameraIdentifier")
|
|
rtsp_url = data.get("rtspUrl")
|
|
model_url = data.get("modelUrl")
|
|
modelId = data.get("modelId")
|
|
modelName = data.get("modelName")
|
|
|
|
if model_url:
|
|
print(f"Downloading model from {model_url}")
|
|
parsed_url = urlparse(model_url)
|
|
filename = os.path.basename(parsed_url.path)
|
|
model_filename = os.path.join("models", filename)
|
|
# Download the model
|
|
response = requests.get(model_url, stream=True)
|
|
if response.status_code == 200:
|
|
with open(model_filename, 'wb') as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
logging.info(f"Downloaded model from {model_url} to {model_filename}")
|
|
model = YOLO(model_filename)
|
|
if torch.cuda.is_available():
|
|
model.to('cuda')
|
|
class_names = model.names
|
|
else:
|
|
logging.error(f"Failed to download model from {model_url}")
|
|
continue
|
|
if camera_id and rtsp_url:
|
|
if camera_id not in streams and len(streams) < max_streams:
|
|
cap = cv2.VideoCapture(rtsp_url)
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
|
continue
|
|
buffer = queue.Queue(maxsize=1)
|
|
stop_event = threading.Event()
|
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
|
thread.daemon = True
|
|
thread.start()
|
|
streams[camera_id] = {
|
|
'cap': cap,
|
|
'buffer': buffer,
|
|
'thread': thread,
|
|
'rtsp_url': rtsp_url,
|
|
'stop_event': stop_event,
|
|
'modelId': modelId,
|
|
'modelName': modelName
|
|
}
|
|
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
|
|
elif camera_id and camera_id in streams:
|
|
stream = streams.pop(camera_id)
|
|
stream['cap'].release()
|
|
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
elif data.get("command") == "stop":
|
|
logging.info("Received stop command")
|
|
break
|
|
except json.JSONDecodeError:
|
|
logging.error("Received invalid JSON message")
|
|
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
|
logging.warning(f"WebSocket disconnected: {e}")
|
|
break
|
|
except Exception as e:
|
|
logging.error(f"Error handling message: {e}")
|
|
break
|
|
except Exception as e:
|
|
logging.error(f"Unexpected error in WebSocket connection: {e}")
|
|
finally:
|
|
task.cancel()
|
|
await task
|
|
for camera_id, stream in streams.items():
|
|
stream['stop_event'].set()
|
|
stream['thread'].join()
|
|
stream['cap'].release()
|
|
stream['buffer'].queue.clear()
|
|
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
|
streams.clear()
|
|
if model_path and os.path.exists(model_path):
|
|
os.remove(model_path)
|
|
logging.info(f"Deleted model file {model_path}")
|
|
logging.info("WebSocket connection closed")
|