348 lines
12 KiB
Python
348 lines
12 KiB
Python
import numpy as np
|
|
|
|
from ultralytics.yolo.utils.ops import xywh2xyxy, xyxy2xywh
|
|
|
|
|
|
from trackers.bytetrack.kalman_filter import KalmanFilter
|
|
from trackers.bytetrack import matching
|
|
from trackers.bytetrack.basetrack import BaseTrack, TrackState
|
|
|
|
class STrack(BaseTrack):
|
|
shared_kalman = KalmanFilter()
|
|
def __init__(self, tlwh, score, cls):
|
|
|
|
# wait activate
|
|
self._tlwh = np.asarray(tlwh, dtype=np.float32)
|
|
self.kalman_filter = None
|
|
self.mean, self.covariance = None, None
|
|
self.is_activated = False
|
|
|
|
self.score = score
|
|
self.tracklet_len = 0
|
|
self.cls = cls
|
|
|
|
def predict(self):
|
|
mean_state = self.mean.copy()
|
|
if self.state != TrackState.Tracked:
|
|
mean_state[7] = 0
|
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
|
|
|
|
@staticmethod
|
|
def multi_predict(stracks):
|
|
if len(stracks) > 0:
|
|
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
|
multi_covariance = np.asarray([st.covariance for st in stracks])
|
|
for i, st in enumerate(stracks):
|
|
if st.state != TrackState.Tracked:
|
|
multi_mean[i][7] = 0
|
|
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
|
|
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
|
stracks[i].mean = mean
|
|
stracks[i].covariance = cov
|
|
|
|
def activate(self, kalman_filter, frame_id):
|
|
"""Start a new tracklet"""
|
|
self.kalman_filter = kalman_filter
|
|
self.track_id = self.next_id()
|
|
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
|
|
|
|
self.tracklet_len = 0
|
|
self.state = TrackState.Tracked
|
|
if frame_id == 1:
|
|
self.is_activated = True
|
|
# self.is_activated = True
|
|
self.frame_id = frame_id
|
|
self.start_frame = frame_id
|
|
|
|
def re_activate(self, new_track, frame_id, new_id=False):
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
|
|
)
|
|
self.tracklet_len = 0
|
|
self.state = TrackState.Tracked
|
|
self.is_activated = True
|
|
self.frame_id = frame_id
|
|
if new_id:
|
|
self.track_id = self.next_id()
|
|
self.score = new_track.score
|
|
self.cls = new_track.cls
|
|
|
|
def update(self, new_track, frame_id):
|
|
"""
|
|
Update a matched track
|
|
:type new_track: STrack
|
|
:type frame_id: int
|
|
:type update_feature: bool
|
|
:return:
|
|
"""
|
|
self.frame_id = frame_id
|
|
self.tracklet_len += 1
|
|
# self.cls = cls
|
|
|
|
new_tlwh = new_track.tlwh
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
|
|
self.state = TrackState.Tracked
|
|
self.is_activated = True
|
|
|
|
self.score = new_track.score
|
|
|
|
@property
|
|
# @jit(nopython=True)
|
|
def tlwh(self):
|
|
"""Get current position in bounding box format `(top left x, top left y,
|
|
width, height)`.
|
|
"""
|
|
if self.mean is None:
|
|
return self._tlwh.copy()
|
|
ret = self.mean[:4].copy()
|
|
ret[2] *= ret[3]
|
|
ret[:2] -= ret[2:] / 2
|
|
return ret
|
|
|
|
@property
|
|
# @jit(nopython=True)
|
|
def tlbr(self):
|
|
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
|
`(top left, bottom right)`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
@staticmethod
|
|
# @jit(nopython=True)
|
|
def tlwh_to_xyah(tlwh):
|
|
"""Convert bounding box to format `(center x, center y, aspect ratio,
|
|
height)`, where the aspect ratio is `width / height`.
|
|
"""
|
|
ret = np.asarray(tlwh).copy()
|
|
ret[:2] += ret[2:] / 2
|
|
ret[2] /= ret[3]
|
|
return ret
|
|
|
|
def to_xyah(self):
|
|
return self.tlwh_to_xyah(self.tlwh)
|
|
|
|
@staticmethod
|
|
# @jit(nopython=True)
|
|
def tlbr_to_tlwh(tlbr):
|
|
ret = np.asarray(tlbr).copy()
|
|
ret[2:] -= ret[:2]
|
|
return ret
|
|
|
|
@staticmethod
|
|
# @jit(nopython=True)
|
|
def tlwh_to_tlbr(tlwh):
|
|
ret = np.asarray(tlwh).copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
def __repr__(self):
|
|
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
|
|
|
|
|
|
class BYTETracker(object):
|
|
def __init__(self, track_thresh=0.45, match_thresh=0.8, track_buffer=25, frame_rate=30):
|
|
self.tracked_stracks = [] # type: list[STrack]
|
|
self.lost_stracks = [] # type: list[STrack]
|
|
self.removed_stracks = [] # type: list[STrack]
|
|
|
|
self.frame_id = 0
|
|
self.track_buffer=track_buffer
|
|
|
|
self.track_thresh = track_thresh
|
|
self.match_thresh = match_thresh
|
|
self.det_thresh = track_thresh + 0.1
|
|
self.buffer_size = int(frame_rate / 30.0 * track_buffer)
|
|
self.max_time_lost = self.buffer_size
|
|
self.kalman_filter = KalmanFilter()
|
|
|
|
def update(self, dets, _):
|
|
self.frame_id += 1
|
|
activated_starcks = []
|
|
refind_stracks = []
|
|
lost_stracks = []
|
|
removed_stracks = []
|
|
|
|
xyxys = dets[:, 0:4]
|
|
xywh = xyxy2xywh(xyxys.numpy())
|
|
confs = dets[:, 4]
|
|
clss = dets[:, 5]
|
|
|
|
classes = clss.numpy()
|
|
xyxys = xyxys.numpy()
|
|
confs = confs.numpy()
|
|
|
|
remain_inds = confs > self.track_thresh
|
|
inds_low = confs > 0.1
|
|
inds_high = confs < self.track_thresh
|
|
|
|
inds_second = np.logical_and(inds_low, inds_high)
|
|
|
|
dets_second = xywh[inds_second]
|
|
dets = xywh[remain_inds]
|
|
|
|
scores_keep = confs[remain_inds]
|
|
scores_second = confs[inds_second]
|
|
|
|
clss_keep = classes[remain_inds]
|
|
clss_second = classes[inds_second]
|
|
|
|
|
|
if len(dets) > 0:
|
|
'''Detections'''
|
|
detections = [STrack(xyxy, s, c) for
|
|
(xyxy, s, c) in zip(dets, scores_keep, clss_keep)]
|
|
else:
|
|
detections = []
|
|
|
|
''' Add newly detected tracklets to tracked_stracks'''
|
|
unconfirmed = []
|
|
tracked_stracks = [] # type: list[STrack]
|
|
for track in self.tracked_stracks:
|
|
if not track.is_activated:
|
|
unconfirmed.append(track)
|
|
else:
|
|
tracked_stracks.append(track)
|
|
|
|
''' Step 2: First association, with high score detection boxes'''
|
|
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
|
|
# Predict the current location with KF
|
|
STrack.multi_predict(strack_pool)
|
|
dists = matching.iou_distance(strack_pool, detections)
|
|
#if not self.args.mot20:
|
|
dists = matching.fuse_score(dists, detections)
|
|
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.match_thresh)
|
|
|
|
for itracked, idet in matches:
|
|
track = strack_pool[itracked]
|
|
det = detections[idet]
|
|
if track.state == TrackState.Tracked:
|
|
track.update(detections[idet], self.frame_id)
|
|
activated_starcks.append(track)
|
|
else:
|
|
track.re_activate(det, self.frame_id, new_id=False)
|
|
refind_stracks.append(track)
|
|
|
|
''' Step 3: Second association, with low score detection boxes'''
|
|
# association the untrack to the low score detections
|
|
if len(dets_second) > 0:
|
|
'''Detections'''
|
|
detections_second = [STrack(xywh, s, c) for (xywh, s, c) in zip(dets_second, scores_second, clss_second)]
|
|
else:
|
|
detections_second = []
|
|
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
|
|
dists = matching.iou_distance(r_tracked_stracks, detections_second)
|
|
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
|
|
for itracked, idet in matches:
|
|
track = r_tracked_stracks[itracked]
|
|
det = detections_second[idet]
|
|
if track.state == TrackState.Tracked:
|
|
track.update(det, self.frame_id)
|
|
activated_starcks.append(track)
|
|
else:
|
|
track.re_activate(det, self.frame_id, new_id=False)
|
|
refind_stracks.append(track)
|
|
|
|
for it in u_track:
|
|
track = r_tracked_stracks[it]
|
|
if not track.state == TrackState.Lost:
|
|
track.mark_lost()
|
|
lost_stracks.append(track)
|
|
|
|
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
|
|
detections = [detections[i] for i in u_detection]
|
|
dists = matching.iou_distance(unconfirmed, detections)
|
|
#if not self.args.mot20:
|
|
dists = matching.fuse_score(dists, detections)
|
|
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
|
|
for itracked, idet in matches:
|
|
unconfirmed[itracked].update(detections[idet], self.frame_id)
|
|
activated_starcks.append(unconfirmed[itracked])
|
|
for it in u_unconfirmed:
|
|
track = unconfirmed[it]
|
|
track.mark_removed()
|
|
removed_stracks.append(track)
|
|
|
|
""" Step 4: Init new stracks"""
|
|
for inew in u_detection:
|
|
track = detections[inew]
|
|
if track.score < self.det_thresh:
|
|
continue
|
|
track.activate(self.kalman_filter, self.frame_id)
|
|
activated_starcks.append(track)
|
|
""" Step 5: Update state"""
|
|
for track in self.lost_stracks:
|
|
if self.frame_id - track.end_frame > self.max_time_lost:
|
|
track.mark_removed()
|
|
removed_stracks.append(track)
|
|
|
|
# print('Ramained match {} s'.format(t4-t3))
|
|
|
|
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
|
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
|
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
|
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
|
|
self.lost_stracks.extend(lost_stracks)
|
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
|
|
self.removed_stracks.extend(removed_stracks)
|
|
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
|
|
# get scores of lost tracks
|
|
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
|
|
outputs = []
|
|
for t in output_stracks:
|
|
output= []
|
|
tlwh = t.tlwh
|
|
tid = t.track_id
|
|
tlwh = np.expand_dims(tlwh, axis=0)
|
|
xyxy = xywh2xyxy(tlwh)
|
|
xyxy = np.squeeze(xyxy, axis=0)
|
|
output.extend(xyxy)
|
|
output.append(tid)
|
|
output.append(t.cls)
|
|
output.append(t.score)
|
|
outputs.append(output)
|
|
|
|
return outputs
|
|
#track_id, class_id, conf
|
|
|
|
def joint_stracks(tlista, tlistb):
|
|
exists = {}
|
|
res = []
|
|
for t in tlista:
|
|
exists[t.track_id] = 1
|
|
res.append(t)
|
|
for t in tlistb:
|
|
tid = t.track_id
|
|
if not exists.get(tid, 0):
|
|
exists[tid] = 1
|
|
res.append(t)
|
|
return res
|
|
|
|
|
|
def sub_stracks(tlista, tlistb):
|
|
stracks = {}
|
|
for t in tlista:
|
|
stracks[t.track_id] = t
|
|
for t in tlistb:
|
|
tid = t.track_id
|
|
if stracks.get(tid, 0):
|
|
del stracks[tid]
|
|
return list(stracks.values())
|
|
|
|
|
|
def remove_duplicate_stracks(stracksa, stracksb):
|
|
pdist = matching.iou_distance(stracksa, stracksb)
|
|
pairs = np.where(pdist < 0.15)
|
|
dupa, dupb = list(), list()
|
|
for p, q in zip(*pairs):
|
|
timep = stracksa[p].frame_id - stracksa[p].start_frame
|
|
timeq = stracksb[q].frame_id - stracksb[q].start_frame
|
|
if timep > timeq:
|
|
dupb.append(q)
|
|
else:
|
|
dupa.append(p)
|
|
resa = [t for i, t in enumerate(stracksa) if not i in dupa]
|
|
resb = [t for i, t in enumerate(stracksb) if not i in dupb]
|
|
return resa, resb
|