python-detector-worker/tests/unit/detection/test_stability_validator.py
2025-09-12 18:55:23 +07:00

701 lines
No EOL
25 KiB
Python

"""
Unit tests for track stability validation.
"""
import pytest
import time
from unittest.mock import Mock, patch
from collections import defaultdict
from detector_worker.detection.stability_validator import (
StabilityValidator,
StabilityConfig,
ValidationResult,
TrackStabilityMetrics
)
from detector_worker.detection.detection_result import DetectionResult, BoundingBox, TrackValidationResult
from detector_worker.core.exceptions import ValidationError
class TestStabilityConfig:
"""Test stability configuration data structure."""
def test_default_config(self):
"""Test default stability configuration."""
config = StabilityConfig()
assert config.min_detection_frames == 10
assert config.max_absence_frames == 30
assert config.confidence_threshold == 0.5
assert config.stability_window == 60.0
assert config.iou_threshold == 0.3
assert config.movement_threshold == 50.0
def test_custom_config(self):
"""Test custom stability configuration."""
config = StabilityConfig(
min_detection_frames=5,
max_absence_frames=15,
confidence_threshold=0.8,
stability_window=30.0,
iou_threshold=0.5,
movement_threshold=25.0
)
assert config.min_detection_frames == 5
assert config.max_absence_frames == 15
assert config.confidence_threshold == 0.8
assert config.stability_window == 30.0
assert config.iou_threshold == 0.5
assert config.movement_threshold == 25.0
def test_from_dict(self):
"""Test creating config from dictionary."""
config_dict = {
"min_detection_frames": 8,
"max_absence_frames": 25,
"confidence_threshold": 0.75,
"unknown_field": "ignored"
}
config = StabilityConfig.from_dict(config_dict)
assert config.min_detection_frames == 8
assert config.max_absence_frames == 25
assert config.confidence_threshold == 0.75
# Unknown fields should use defaults
assert config.stability_window == 60.0
class TestTrackStabilityMetrics:
"""Test track stability metrics."""
def test_initialization(self):
"""Test metrics initialization."""
metrics = TrackStabilityMetrics(track_id=1001)
assert metrics.track_id == 1001
assert metrics.detection_count == 0
assert metrics.absence_count == 0
assert metrics.total_confidence == 0.0
assert metrics.first_detection_time is None
assert metrics.last_detection_time is None
assert metrics.bounding_boxes == []
assert metrics.confidence_scores == []
def test_add_detection(self):
"""Test adding detection to metrics."""
metrics = TrackStabilityMetrics(track_id=1001)
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection = DetectionResult(
class_name="car",
confidence=0.85,
bbox=bbox,
track_id=1001,
timestamp=1640995200000
)
metrics.add_detection(detection, current_time=1640995200.0)
assert metrics.detection_count == 1
assert metrics.absence_count == 0
assert metrics.total_confidence == 0.85
assert metrics.first_detection_time == 1640995200.0
assert metrics.last_detection_time == 1640995200.0
assert len(metrics.bounding_boxes) == 1
assert len(metrics.confidence_scores) == 1
def test_increment_absence(self):
"""Test incrementing absence count."""
metrics = TrackStabilityMetrics(track_id=1001)
metrics.increment_absence()
assert metrics.absence_count == 1
metrics.increment_absence()
assert metrics.absence_count == 2
def test_reset_absence(self):
"""Test resetting absence count."""
metrics = TrackStabilityMetrics(track_id=1001)
metrics.increment_absence()
metrics.increment_absence()
assert metrics.absence_count == 2
metrics.reset_absence()
assert metrics.absence_count == 0
def test_average_confidence(self):
"""Test average confidence calculation."""
metrics = TrackStabilityMetrics(track_id=1001)
# No detections
assert metrics.average_confidence() == 0.0
# Add detections
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection1 = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=1001,
timestamp=1640995200000
)
detection2 = DetectionResult(
class_name="car",
confidence=0.9,
bbox=bbox,
track_id=1001,
timestamp=1640995300000
)
metrics.add_detection(detection1, current_time=1640995200.0)
metrics.add_detection(detection2, current_time=1640995300.0)
assert metrics.average_confidence() == 0.85 # (0.8 + 0.9) / 2
def test_tracking_duration(self):
"""Test tracking duration calculation."""
metrics = TrackStabilityMetrics(track_id=1001)
# No detections
assert metrics.tracking_duration() == 0.0
# Add detections
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection1 = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=1001,
timestamp=1640995200000
)
detection2 = DetectionResult(
class_name="car",
confidence=0.9,
bbox=bbox,
track_id=1001,
timestamp=1640995300000
)
metrics.add_detection(detection1, current_time=1640995200.0)
metrics.add_detection(detection2, current_time=1640995300.0)
assert metrics.tracking_duration() == 100.0 # 1640995300 - 1640995200
def test_movement_distance(self):
"""Test movement distance calculation."""
metrics = TrackStabilityMetrics(track_id=1001)
# No movement with single detection
bbox1 = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection1 = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox1,
track_id=1001,
timestamp=1640995200000
)
metrics.add_detection(detection1, current_time=1640995200.0)
assert metrics.total_movement_distance() == 0.0
# Add second detection with movement
bbox2 = BoundingBox(x1=110, y1=210, x2=310, y2=410)
detection2 = DetectionResult(
class_name="car",
confidence=0.9,
bbox=bbox2,
track_id=1001,
timestamp=1640995300000
)
metrics.add_detection(detection2, current_time=1640995300.0)
# Distance between centers: (200,300) to (210,310) = sqrt(100+100) ≈ 14.14
movement = metrics.total_movement_distance()
assert movement == pytest.approx(14.14, rel=1e-2)
class TestValidationResult:
"""Test validation result data structure."""
def test_initialization(self):
"""Test validation result initialization."""
result = ValidationResult(
track_id=1001,
is_stable=True,
detection_count=15,
absence_count=2,
average_confidence=0.85,
tracking_duration=120.0
)
assert result.track_id == 1001
assert result.is_stable is True
assert result.detection_count == 15
assert result.absence_count == 2
assert result.average_confidence == 0.85
assert result.tracking_duration == 120.0
assert result.reasons == []
def test_with_reasons(self):
"""Test validation result with failure reasons."""
result = ValidationResult(
track_id=1001,
is_stable=False,
detection_count=5,
absence_count=35,
average_confidence=0.4,
tracking_duration=30.0,
reasons=["Insufficient detection frames", "Too many absences", "Low confidence"]
)
assert result.is_stable is False
assert len(result.reasons) == 3
assert "Insufficient detection frames" in result.reasons
class TestStabilityValidator:
"""Test stability validation functionality."""
def test_initialization_default(self):
"""Test validator initialization with default config."""
validator = StabilityValidator()
assert isinstance(validator.config, StabilityConfig)
assert validator.config.min_detection_frames == 10
assert len(validator.track_metrics) == 0
def test_initialization_custom_config(self):
"""Test validator initialization with custom config."""
config = StabilityConfig(min_detection_frames=5, confidence_threshold=0.8)
validator = StabilityValidator(config)
assert validator.config.min_detection_frames == 5
assert validator.config.confidence_threshold == 0.8
def test_update_detections_new_track(self):
"""Test updating with new track."""
validator = StabilityValidator()
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection = DetectionResult(
class_name="car",
confidence=0.85,
bbox=bbox,
track_id=1001,
timestamp=1640995200000
)
validator.update_detections([detection], current_time=1640995200.0)
assert 1001 in validator.track_metrics
metrics = validator.track_metrics[1001]
assert metrics.detection_count == 1
assert metrics.absence_count == 0
def test_update_detections_existing_track(self):
"""Test updating existing track."""
validator = StabilityValidator()
# First detection
bbox1 = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection1 = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox1,
track_id=1001,
timestamp=1640995200000
)
validator.update_detections([detection1], current_time=1640995200.0)
# Second detection
bbox2 = BoundingBox(x1=110, y1=210, x2=310, y2=410)
detection2 = DetectionResult(
class_name="car",
confidence=0.9,
bbox=bbox2,
track_id=1001,
timestamp=1640995300000
)
validator.update_detections([detection2], current_time=1640995300.0)
metrics = validator.track_metrics[1001]
assert metrics.detection_count == 2
assert metrics.absence_count == 0
assert metrics.average_confidence() == 0.85
def test_update_detections_missing_track(self):
"""Test updating when track is missing (increment absence)."""
validator = StabilityValidator()
# Add track
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection = DetectionResult(
class_name="car",
confidence=0.85,
bbox=bbox,
track_id=1001,
timestamp=1640995200000
)
validator.update_detections([detection], current_time=1640995200.0)
# Update with empty detections
validator.update_detections([], current_time=1640995300.0)
metrics = validator.track_metrics[1001]
assert metrics.detection_count == 1
assert metrics.absence_count == 1
def test_validate_track_stable(self):
"""Test validating a stable track."""
config = StabilityConfig(min_detection_frames=3, max_absence_frames=5)
validator = StabilityValidator(config)
# Create track with sufficient detections
track_id = 1001
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
# Add sufficient detections
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(5):
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
result = validator.validate_track(track_id)
assert result.is_stable is True
assert result.detection_count == 5
assert result.absence_count == 0
assert len(result.reasons) == 0
def test_validate_track_insufficient_detections(self):
"""Test validating track with insufficient detections."""
config = StabilityConfig(min_detection_frames=10, max_absence_frames=5)
validator = StabilityValidator(config)
# Create track with insufficient detections
track_id = 1001
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
# Add only few detections
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(3):
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
result = validator.validate_track(track_id)
assert result.is_stable is False
assert "Insufficient detection frames" in result.reasons
def test_validate_track_too_many_absences(self):
"""Test validating track with too many absences."""
config = StabilityConfig(min_detection_frames=3, max_absence_frames=2)
validator = StabilityValidator(config)
# Create track with too many absences
track_id = 1001
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
# Add detections and absences
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(5):
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
# Add too many absences
for _ in range(5):
metrics.increment_absence()
result = validator.validate_track(track_id)
assert result.is_stable is False
assert "Too many absence frames" in result.reasons
def test_validate_track_low_confidence(self):
"""Test validating track with low confidence."""
config = StabilityConfig(
min_detection_frames=3,
max_absence_frames=5,
confidence_threshold=0.8
)
validator = StabilityValidator(config)
# Create track with low confidence
track_id = 1001
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
# Add detections with low confidence
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(5):
detection = DetectionResult(
class_name="car",
confidence=0.5, # Below threshold
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
result = validator.validate_track(track_id)
assert result.is_stable is False
assert "Low average confidence" in result.reasons
def test_validate_all_tracks(self):
"""Test validating all tracks."""
config = StabilityConfig(min_detection_frames=3)
validator = StabilityValidator(config)
# Add multiple tracks
for track_id in [1001, 1002, 1003]:
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
# Make some tracks stable, others not
detection_count = 5 if track_id == 1001 else 2
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(detection_count):
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
results = validator.validate_all_tracks()
assert len(results) == 3
assert results[1001].is_stable is True # 5 detections
assert results[1002].is_stable is False # 2 detections
assert results[1003].is_stable is False # 2 detections
def test_get_stable_tracks(self):
"""Test getting stable track IDs."""
config = StabilityConfig(min_detection_frames=3)
validator = StabilityValidator(config)
# Add tracks with different stability
for track_id, detection_count in [(1001, 5), (1002, 2), (1003, 4)]:
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(detection_count):
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
stable_tracks = validator.get_stable_tracks()
assert stable_tracks == [1001, 1003] # 5 and 4 detections respectively
def test_cleanup_expired_tracks(self):
"""Test cleanup of expired tracks."""
config = StabilityConfig(stability_window=10.0)
validator = StabilityValidator(config)
# Add tracks with different last detection times
current_time = 1640995300.0
for track_id, last_detection_time in [(1001, current_time - 5), (1002, current_time - 15)]:
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=int(last_detection_time * 1000)
)
metrics.add_detection(detection, current_time=last_detection_time)
removed_count = validator.cleanup_expired_tracks(current_time)
assert removed_count == 1 # 1002 should be removed (15 > 10 seconds)
assert 1001 in validator.track_metrics
assert 1002 not in validator.track_metrics
def test_clear_all_tracks(self):
"""Test clearing all track metrics."""
validator = StabilityValidator()
# Add some tracks
for track_id in [1001, 1002]:
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
assert len(validator.track_metrics) == 2
validator.clear_all_tracks()
assert len(validator.track_metrics) == 0
def test_get_validation_summary(self):
"""Test getting validation summary statistics."""
config = StabilityConfig(min_detection_frames=3)
validator = StabilityValidator(config)
# Add tracks with different characteristics
track_data = [
(1001, 5, True), # Stable
(1002, 2, False), # Unstable
(1003, 4, True), # Stable
(1004, 1, False) # Unstable
]
for track_id, detection_count, _ in track_data:
validator.track_metrics[track_id] = TrackStabilityMetrics(track_id)
metrics = validator.track_metrics[track_id]
bbox = BoundingBox(x1=100, y1=200, x2=300, y2=400)
for i in range(detection_count):
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
metrics.add_detection(detection, current_time=1640995200.0 + i)
summary = validator.get_validation_summary()
assert summary["total_tracks"] == 4
assert summary["stable_tracks"] == 2
assert summary["unstable_tracks"] == 2
assert summary["stability_rate"] == 0.5
class TestStabilityValidatorIntegration:
"""Integration tests for stability validator."""
def test_full_tracking_lifecycle(self):
"""Test complete tracking lifecycle with stability validation."""
config = StabilityConfig(
min_detection_frames=3,
max_absence_frames=2,
confidence_threshold=0.7
)
validator = StabilityValidator(config)
track_id = 1001
# Phase 1: Initial detections (building up)
for i in range(5):
bbox = BoundingBox(x1=100+i*2, y1=200+i*2, x2=300+i*2, y2=400+i*2)
detection = DetectionResult(
class_name="car",
confidence=0.8,
bbox=bbox,
track_id=track_id,
timestamp=1640995200000 + i * 1000
)
validator.update_detections([detection], current_time=1640995200.0 + i)
# Should be stable now
result = validator.validate_track(track_id)
assert result.is_stable is True
# Phase 2: Some absences
for i in range(2):
validator.update_detections([], current_time=1640995205.0 + i)
# Still stable (within absence threshold)
result = validator.validate_track(track_id)
assert result.is_stable is True
# Phase 3: Track reappears
bbox = BoundingBox(x1=120, y1=220, x2=320, y2=420)
detection = DetectionResult(
class_name="car",
confidence=0.85,
bbox=bbox,
track_id=track_id,
timestamp=1640995207000
)
validator.update_detections([detection], current_time=1640995207.0)
# Should reset absence count and remain stable
result = validator.validate_track(track_id)
assert result.is_stable is True
assert validator.track_metrics[track_id].absence_count == 0
def test_multi_track_validation(self):
"""Test validation with multiple tracks."""
validator = StabilityValidator()
# Simulate multi-track scenario
frame_detections = [
# Frame 1
[
DetectionResult("car", 0.9, BoundingBox(100, 200, 300, 400), 1001, 1640995200000),
DetectionResult("truck", 0.8, BoundingBox(400, 200, 600, 400), 1002, 1640995200000)
],
# Frame 2
[
DetectionResult("car", 0.85, BoundingBox(105, 205, 305, 405), 1001, 1640995201000),
DetectionResult("truck", 0.82, BoundingBox(405, 205, 605, 405), 1002, 1640995201000),
DetectionResult("car", 0.75, BoundingBox(200, 300, 400, 500), 1003, 1640995201000)
],
# Frame 3 - track 1002 disappears
[
DetectionResult("car", 0.88, BoundingBox(110, 210, 310, 410), 1001, 1640995202000),
DetectionResult("car", 0.78, BoundingBox(205, 305, 405, 505), 1003, 1640995202000)
]
]
# Process frames
for i, detections in enumerate(frame_detections):
validator.update_detections(detections, current_time=1640995200.0 + i)
# Get validation results
validation_results = validator.validate_all_tracks()
assert len(validation_results) == 3
# All tracks should be unstable (insufficient frames)
for result in validation_results.values():
assert result.is_stable is False
assert "Insufficient detection frames" in result.reasons