1780 lines
92 KiB
Python
1780 lines
92 KiB
Python
import os
|
|
import json
|
|
import logging
|
|
import torch
|
|
import cv2
|
|
import zipfile
|
|
import shutil
|
|
import traceback
|
|
import redis
|
|
import time
|
|
import uuid
|
|
import concurrent.futures
|
|
from ultralytics import YOLO
|
|
from urllib.parse import urlparse
|
|
from .database import DatabaseManager
|
|
from datetime import datetime
|
|
|
|
# Create a logger specifically for this module
|
|
logger = logging.getLogger("detector_worker.pympta")
|
|
|
|
# Global camera-aware stability tracking
|
|
# Structure: {camera_id: {model_id: {"track_stability_counters": {track_id: count}, "stable_tracks": set(), "session_state": {...}}}}
|
|
_camera_stability_tracking = {}
|
|
|
|
# Session timeout configuration (waiting for backend sessionId)
|
|
_session_timeout_seconds = 15
|
|
|
|
def validate_redis_config(redis_config: dict) -> bool:
|
|
"""Validate Redis configuration parameters."""
|
|
required_fields = ["host", "port"]
|
|
for field in required_fields:
|
|
if field not in redis_config:
|
|
logger.error(f"Missing required Redis config field: {field}")
|
|
return False
|
|
|
|
if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
|
|
logger.error(f"Invalid Redis port: {redis_config['port']}")
|
|
return False
|
|
|
|
return True
|
|
|
|
def validate_postgresql_config(pg_config: dict) -> bool:
|
|
"""Validate PostgreSQL configuration parameters."""
|
|
required_fields = ["host", "port", "database", "username", "password"]
|
|
for field in required_fields:
|
|
if field not in pg_config:
|
|
logger.error(f"Missing required PostgreSQL config field: {field}")
|
|
return False
|
|
|
|
if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
|
|
logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
|
|
return False
|
|
|
|
return True
|
|
|
|
def crop_region_by_class(frame, regions_dict, class_name):
|
|
"""Crop a specific region from frame based on detected class."""
|
|
if class_name not in regions_dict:
|
|
logger.warning(f"Class '{class_name}' not found in detected regions")
|
|
return None
|
|
|
|
bbox = regions_dict[class_name]['bbox']
|
|
x1, y1, x2, y2 = bbox
|
|
|
|
# Diagnostic logging for crop issues
|
|
frame_h, frame_w = frame.shape[:2]
|
|
logger.debug(f"CROP DEBUG: Frame dimensions: {frame_w}x{frame_h}")
|
|
logger.debug(f"CROP DEBUG: Original bbox: {bbox}")
|
|
logger.debug(f"CROP DEBUG: Bbox dimensions: {x2-x1}x{y2-y1}")
|
|
|
|
# Check if bbox is within frame bounds
|
|
if x1 < 0 or y1 < 0 or x2 > frame_w or y2 > frame_h:
|
|
logger.warning(f"CROP DEBUG: Bbox extends beyond frame! Clipping...")
|
|
x1, y1 = max(0, x1), max(0, y1)
|
|
x2, y2 = min(frame_w, x2), min(frame_h, y2)
|
|
logger.debug(f"CROP DEBUG: Clipped bbox: ({x1}, {y1}, {x2}, {y2})")
|
|
|
|
cropped = frame[y1:y2, x1:x2]
|
|
|
|
if cropped.size == 0:
|
|
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
|
|
return None
|
|
|
|
logger.debug(f"CROP DEBUG: Successful crop shape: {cropped.shape}")
|
|
return cropped
|
|
|
|
def format_action_context(base_context, additional_context=None):
|
|
"""Format action context with dynamic values."""
|
|
context = {**base_context}
|
|
if additional_context:
|
|
context.update(additional_context)
|
|
return context
|
|
|
|
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
|
|
# Recursively load a model node from configuration.
|
|
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
|
if not os.path.exists(model_path):
|
|
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
|
|
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
|
|
raise FileNotFoundError(f"Model file {model_path} not found.")
|
|
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
|
model = YOLO(model_path)
|
|
if torch.cuda.is_available():
|
|
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU VRAM")
|
|
model.to("cuda")
|
|
else:
|
|
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
|
|
|
|
# Prepare trigger class indices for optimization
|
|
trigger_classes = node_config.get("triggerClasses", [])
|
|
trigger_class_indices = None
|
|
if trigger_classes and hasattr(model, "names"):
|
|
# Convert class names to indices for the model
|
|
trigger_class_indices = [i for i, name in model.names.items()
|
|
if name in trigger_classes]
|
|
logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
|
|
|
|
# Extract stability threshold from main pipeline config (not tracking config)
|
|
tracking_config = node_config.get("tracking", {"enabled": True, "reidConfigPath": "botsort.yaml"})
|
|
stability_threshold = node_config.get("stabilityThreshold", 4) # Read from main config, default to 4
|
|
|
|
node = {
|
|
"modelId": node_config["modelId"],
|
|
"modelFile": node_config["modelFile"],
|
|
"triggerClasses": trigger_classes,
|
|
"triggerClassIndices": trigger_class_indices,
|
|
"classMapping": node_config.get("classMapping", {}),
|
|
"crop": node_config.get("crop", False),
|
|
"cropClass": node_config.get("cropClass"),
|
|
"minConfidence": node_config.get("minConfidence", None),
|
|
"frontalMinConfidence": node_config.get("frontalMinConfidence", None),
|
|
"minBboxAreaRatio": node_config.get("minBboxAreaRatio", 0.0),
|
|
"multiClass": node_config.get("multiClass", False),
|
|
"expectedClasses": node_config.get("expectedClasses", []),
|
|
"parallel": node_config.get("parallel", False),
|
|
"actions": node_config.get("actions", []),
|
|
"parallelActions": node_config.get("parallelActions", []),
|
|
"tracking": tracking_config,
|
|
"stabilityThreshold": stability_threshold,
|
|
"model": model,
|
|
"branches": [],
|
|
"redis_client": redis_client,
|
|
"db_manager": db_manager
|
|
}
|
|
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
|
for child in node_config.get("branches", []):
|
|
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
|
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
|
|
return node
|
|
|
|
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
|
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
|
|
os.makedirs(target_dir, exist_ok=True)
|
|
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
|
|
|
# Parse the source; only local files are supported here.
|
|
parsed = urlparse(zip_source)
|
|
if parsed.scheme in ("", "file"):
|
|
local_path = parsed.path if parsed.scheme == "file" else zip_source
|
|
logger.debug(f"Checking if local file exists: {local_path}")
|
|
if os.path.exists(local_path):
|
|
try:
|
|
shutil.copy(local_path, zip_path)
|
|
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
|
|
return None
|
|
else:
|
|
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
|
|
# List all subdirectories of models directory to help debugging
|
|
if os.path.exists("models"):
|
|
logger.error(f"Content of models directory: {os.listdir('models')}")
|
|
for root, dirs, files in os.walk("models"):
|
|
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
|
|
else:
|
|
logger.error("The models directory doesn't exist")
|
|
return None
|
|
else:
|
|
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
|
|
return None
|
|
|
|
try:
|
|
if not os.path.exists(zip_path):
|
|
logger.error(f"Zip file not found at expected location: {zip_path}")
|
|
return None
|
|
|
|
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
|
|
# Extract contents and track the directories created
|
|
extracted_dirs = []
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
file_list = zip_ref.namelist()
|
|
logger.debug(f"Files in .mpta archive: {file_list}")
|
|
|
|
# Extract and track the top-level directories
|
|
for file_path in file_list:
|
|
parts = file_path.split('/')
|
|
if len(parts) > 1:
|
|
top_dir = parts[0]
|
|
if top_dir and top_dir not in extracted_dirs:
|
|
extracted_dirs.append(top_dir)
|
|
|
|
# Now extract the files
|
|
zip_ref.extractall(target_dir)
|
|
|
|
logger.info(f"Successfully extracted .mpta file to {target_dir}")
|
|
logger.debug(f"Extracted directories: {extracted_dirs}")
|
|
|
|
# Check what was actually created after extraction
|
|
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
|
|
logger.debug(f"Actual directories created: {actual_dirs}")
|
|
except zipfile.BadZipFile as e:
|
|
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
|
|
return None
|
|
finally:
|
|
if os.path.exists(zip_path):
|
|
os.remove(zip_path)
|
|
logger.debug(f"Removed temporary zip file: {zip_path}")
|
|
|
|
# Use the first extracted directory if it exists, otherwise use the expected name
|
|
pipeline_name = os.path.basename(zip_source)
|
|
pipeline_name = os.path.splitext(pipeline_name)[0]
|
|
|
|
# Find the directory with pipeline.json
|
|
mpta_dir = None
|
|
# First try the expected directory name
|
|
expected_dir = os.path.join(target_dir, pipeline_name)
|
|
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
|
|
mpta_dir = expected_dir
|
|
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
|
|
else:
|
|
# Look through all subdirectories for pipeline.json
|
|
for subdir in actual_dirs:
|
|
potential_dir = os.path.join(target_dir, subdir)
|
|
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
|
|
mpta_dir = potential_dir
|
|
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
|
|
break
|
|
|
|
if not mpta_dir:
|
|
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
|
|
return None
|
|
|
|
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
|
|
if not os.path.exists(pipeline_json_path):
|
|
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
|
|
return None
|
|
|
|
try:
|
|
with open(pipeline_json_path, "r") as f:
|
|
pipeline_config = json.load(f)
|
|
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
|
|
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
|
|
|
|
# Establish Redis connection if configured
|
|
redis_client = None
|
|
if "redis" in pipeline_config:
|
|
redis_config = pipeline_config["redis"]
|
|
if not validate_redis_config(redis_config):
|
|
logger.error("Invalid Redis configuration, skipping Redis connection")
|
|
else:
|
|
try:
|
|
redis_client = redis.Redis(
|
|
host=redis_config["host"],
|
|
port=redis_config["port"],
|
|
password=redis_config.get("password"),
|
|
db=redis_config.get("db", 0),
|
|
decode_responses=True
|
|
)
|
|
redis_client.ping()
|
|
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
|
|
except redis.exceptions.ConnectionError as e:
|
|
logger.error(f"Failed to connect to Redis: {e}")
|
|
redis_client = None
|
|
|
|
# Establish PostgreSQL connection if configured
|
|
db_manager = None
|
|
if "postgresql" in pipeline_config:
|
|
pg_config = pipeline_config["postgresql"]
|
|
if not validate_postgresql_config(pg_config):
|
|
logger.error("Invalid PostgreSQL configuration, skipping database connection")
|
|
else:
|
|
try:
|
|
db_manager = DatabaseManager(pg_config)
|
|
if db_manager.connect():
|
|
logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
|
|
else:
|
|
logger.error("Failed to connect to PostgreSQL")
|
|
db_manager = None
|
|
except Exception as e:
|
|
logger.error(f"Error initializing PostgreSQL connection: {e}")
|
|
db_manager = None
|
|
|
|
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
|
return None
|
|
except KeyError as e:
|
|
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
|
return None
|
|
|
|
def execute_actions(node, frame, detection_result, regions_dict=None):
|
|
if not node["redis_client"] or not node["actions"]:
|
|
return
|
|
|
|
# Create a dynamic context for this detection event
|
|
from datetime import datetime
|
|
action_context = {
|
|
**detection_result,
|
|
"timestamp_ms": int(time.time() * 1000),
|
|
"uuid": str(uuid.uuid4()),
|
|
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
|
|
"filename": f"{uuid.uuid4()}.jpg"
|
|
}
|
|
|
|
for action in node["actions"]:
|
|
try:
|
|
if action["type"] == "redis_save_image":
|
|
key = action["key"].format(**action_context)
|
|
|
|
# Check if we need to crop a specific region
|
|
region_name = action.get("region")
|
|
image_to_save = frame
|
|
|
|
if region_name and regions_dict:
|
|
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
|
|
if cropped_image is not None:
|
|
image_to_save = cropped_image
|
|
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
|
|
else:
|
|
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
|
|
|
|
# Encode image with specified format and quality (default to JPEG)
|
|
img_format = action.get("format", "jpeg").lower()
|
|
quality = action.get("quality", 90)
|
|
|
|
if img_format == "jpeg":
|
|
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
|
|
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
|
|
elif img_format == "png":
|
|
success, buffer = cv2.imencode('.png', image_to_save)
|
|
else:
|
|
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
|
|
|
|
if not success:
|
|
logger.error(f"Failed to encode image for redis_save_image")
|
|
continue
|
|
|
|
expire_seconds = action.get("expire_seconds")
|
|
if expire_seconds:
|
|
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
|
logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
|
|
else:
|
|
node["redis_client"].set(key, buffer.tobytes())
|
|
logger.info(f"Saved image to Redis with key: {key}")
|
|
action_context["image_key"] = key
|
|
elif action["type"] == "redis_publish":
|
|
channel = action["channel"]
|
|
try:
|
|
# Handle JSON message format by creating it programmatically
|
|
message_template = action["message"]
|
|
|
|
# Check if the message is JSON-like (starts and ends with braces)
|
|
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
|
|
# Create JSON data programmatically to avoid formatting issues
|
|
json_data = {}
|
|
|
|
# Add common fields
|
|
json_data["event"] = "frontal_detected"
|
|
json_data["display_id"] = action_context.get("display_id", "unknown")
|
|
json_data["session_id"] = action_context.get("session_id")
|
|
json_data["timestamp"] = action_context.get("timestamp", "")
|
|
json_data["image_key"] = action_context.get("image_key", "")
|
|
|
|
# Convert to JSON string
|
|
message = json.dumps(json_data)
|
|
else:
|
|
# Use regular string formatting for non-JSON messages
|
|
message = message_template.format(**action_context)
|
|
|
|
# Publish to Redis
|
|
if not node["redis_client"]:
|
|
logger.error("Redis client is None, cannot publish message")
|
|
continue
|
|
|
|
# Test Redis connection
|
|
try:
|
|
node["redis_client"].ping()
|
|
logger.debug("Redis connection is active")
|
|
except Exception as ping_error:
|
|
logger.error(f"Redis connection test failed: {ping_error}")
|
|
continue
|
|
|
|
result = node["redis_client"].publish(channel, message)
|
|
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
|
logger.info(f"Redis publish result (subscribers count): {result}")
|
|
|
|
# Additional debug info
|
|
if result == 0:
|
|
logger.warning(f"No subscribers listening to channel '{channel}'")
|
|
else:
|
|
logger.info(f"Message delivered to {result} subscriber(s)")
|
|
|
|
except KeyError as e:
|
|
logger.error(f"Missing key in redis_publish message template: {e}")
|
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
|
except Exception as e:
|
|
logger.error(f"Error in redis_publish action: {e}")
|
|
logger.debug(f"Message template: {action['message']}")
|
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
|
import traceback
|
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
|
except Exception as e:
|
|
logger.error(f"Error executing action {action['type']}: {e}")
|
|
|
|
def execute_parallel_actions(node, frame, detection_result, regions_dict):
|
|
"""Execute parallel actions after all required branches have completed."""
|
|
if not node.get("parallelActions"):
|
|
return
|
|
|
|
logger.debug("Executing parallel actions...")
|
|
branch_results = detection_result.get("branch_results", {})
|
|
|
|
for action in node["parallelActions"]:
|
|
try:
|
|
action_type = action.get("type")
|
|
logger.debug(f"Processing parallel action: {action_type}")
|
|
|
|
if action_type == "postgresql_update_combined":
|
|
# Check if all required branches have completed
|
|
wait_for_branches = action.get("waitForBranches", [])
|
|
missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
|
|
|
|
if missing_branches:
|
|
logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
|
|
continue
|
|
|
|
logger.info(f"All required branches completed: {wait_for_branches}")
|
|
|
|
# Execute the database update
|
|
execute_postgresql_update_combined(node, action, detection_result, branch_results)
|
|
else:
|
|
logger.warning(f"Unknown parallel action type: {action_type}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
|
|
import traceback
|
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
|
|
|
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
|
|
"""Execute a PostgreSQL update with combined branch results."""
|
|
if not node.get("db_manager"):
|
|
logger.error("No database manager available for postgresql_update_combined action")
|
|
return
|
|
|
|
try:
|
|
table = action["table"]
|
|
key_field = action["key_field"]
|
|
key_value_template = action["key_value"]
|
|
fields = action["fields"]
|
|
|
|
# Create context for key value formatting
|
|
action_context = {**detection_result}
|
|
key_value = key_value_template.format(**action_context)
|
|
|
|
logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
|
|
logger.debug(f"Available branch results: {list(branch_results.keys())}")
|
|
|
|
# Process field mappings
|
|
mapped_fields = {}
|
|
for db_field, value_template in fields.items():
|
|
try:
|
|
mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
|
|
if mapped_value is not None:
|
|
mapped_fields[db_field] = mapped_value
|
|
logger.info(f"Mapped field: {db_field} = {mapped_value}")
|
|
else:
|
|
logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
|
|
logger.debug(f"Available branch results: {branch_results}")
|
|
except Exception as e:
|
|
logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
|
|
import traceback
|
|
logger.debug(f"Field mapping error traceback: {traceback.format_exc()}")
|
|
|
|
if not mapped_fields:
|
|
logger.warning("No fields mapped successfully, skipping database update")
|
|
logger.debug(f"Branch results available: {branch_results}")
|
|
logger.debug(f"Field templates: {fields}")
|
|
return
|
|
|
|
# Add updated_at field automatically
|
|
mapped_fields["updated_at"] = "NOW()"
|
|
|
|
# Execute the database update
|
|
logger.info(f"Attempting database update with fields: {mapped_fields}")
|
|
success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
|
|
|
|
if success:
|
|
logger.info(f"✅ Successfully updated database: {table} with {len(mapped_fields)} fields")
|
|
logger.info(f"Updated fields: {mapped_fields}")
|
|
else:
|
|
logger.error(f"❌ Failed to update database: {table}")
|
|
logger.error(f"Attempted update with: {key_field}={key_value}, fields={mapped_fields}")
|
|
|
|
except KeyError as e:
|
|
logger.error(f"Missing required field in postgresql_update_combined action: {e}")
|
|
logger.debug(f"Action config: {action}")
|
|
except Exception as e:
|
|
logger.error(f"Error in postgresql_update_combined action: {e}")
|
|
import traceback
|
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
|
|
|
def resolve_field_mapping(value_template, branch_results, action_context):
|
|
"""Resolve field mapping templates like {car_brand_cls_v1.brand}."""
|
|
try:
|
|
logger.debug(f"Resolving field mapping: '{value_template}'")
|
|
logger.debug(f"Available branch results: {list(branch_results.keys())}")
|
|
|
|
# Handle simple context variables first (non-branch references)
|
|
if not '.' in value_template:
|
|
result = value_template.format(**action_context)
|
|
logger.debug(f"Simple template resolved: '{value_template}' -> '{result}'")
|
|
return result
|
|
|
|
# Handle branch result references like {model_id.field}
|
|
import re
|
|
branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
|
|
logger.debug(f"Found branch references: {branch_refs}")
|
|
|
|
resolved_template = value_template
|
|
for ref in branch_refs:
|
|
try:
|
|
model_id, field_name = ref.split('.', 1)
|
|
logger.debug(f"Processing branch reference: model_id='{model_id}', field_name='{field_name}'")
|
|
|
|
if model_id in branch_results:
|
|
branch_data = branch_results[model_id]
|
|
logger.debug(f"Branch '{model_id}' data: {branch_data}")
|
|
|
|
if field_name in branch_data:
|
|
field_value = branch_data[field_name]
|
|
resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
|
|
logger.info(f"✅ Resolved {ref} to '{field_value}'")
|
|
else:
|
|
logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results.")
|
|
logger.debug(f"Available fields in '{model_id}': {list(branch_data.keys())}")
|
|
|
|
# Try alternative field names based on the class result and model type
|
|
if isinstance(branch_data, dict):
|
|
fallback_value = None
|
|
|
|
# First, try the exact field name
|
|
if field_name in branch_data:
|
|
fallback_value = branch_data[field_name]
|
|
# Then try 'class' field as fallback
|
|
elif 'class' in branch_data:
|
|
fallback_value = branch_data['class']
|
|
logger.info(f"Using 'class' field as fallback for '{field_name}': '{fallback_value}'")
|
|
# For brand models, also check if the class name exists as a key
|
|
elif field_name == 'brand' and branch_data.get('class') in branch_data:
|
|
fallback_value = branch_data[branch_data['class']]
|
|
logger.info(f"Found brand value using class name as key: '{fallback_value}'")
|
|
# For body_type models, also check if the class name exists as a key
|
|
elif field_name == 'body_type' and branch_data.get('class') in branch_data:
|
|
fallback_value = branch_data[branch_data['class']]
|
|
logger.info(f"Found body_type value using class name as key: '{fallback_value}'")
|
|
|
|
if fallback_value is not None:
|
|
resolved_template = resolved_template.replace(f'{{{ref}}}', str(fallback_value))
|
|
logger.info(f"✅ Resolved {ref} to '{fallback_value}' (using fallback)")
|
|
else:
|
|
logger.error(f"No suitable field found for '{field_name}' in branch '{model_id}'")
|
|
logger.debug(f"Branch data structure: {branch_data}")
|
|
return None
|
|
else:
|
|
logger.error(f"Branch data for '{model_id}' is not a dictionary: {type(branch_data)}")
|
|
return None
|
|
else:
|
|
logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
|
|
return None
|
|
except ValueError as e:
|
|
logger.error(f"Invalid branch reference format: {ref}")
|
|
return None
|
|
|
|
# Format any remaining simple variables
|
|
try:
|
|
final_value = resolved_template.format(**action_context)
|
|
logger.debug(f"Final resolved value: '{final_value}'")
|
|
return final_value
|
|
except KeyError as e:
|
|
logger.warning(f"Could not resolve context variable in template: {e}")
|
|
return resolved_template
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error resolving field mapping '{value_template}': {e}")
|
|
import traceback
|
|
logger.debug(f"Field mapping error traceback: {traceback.format_exc()}")
|
|
return None
|
|
|
|
def run_detection_with_tracking(frame, node, context=None):
|
|
"""
|
|
Structured function for running YOLO detection with BoT-SORT tracking.
|
|
Now includes track ID-based validation requiring N consecutive frames of the same track ID.
|
|
|
|
Args:
|
|
frame: Input frame/image
|
|
node: Pipeline node configuration with model and settings
|
|
context: Optional context information (camera info, session data, etc.)
|
|
|
|
Returns:
|
|
tuple: (all_detections, regions_dict, track_validation_result) where:
|
|
- all_detections: List of all detection objects
|
|
- regions_dict: Dict mapping class names to highest confidence detections
|
|
- track_validation_result: Dict with validation status and stable tracks
|
|
|
|
Configuration options in node:
|
|
- model: YOLO model instance
|
|
- triggerClassIndices: List of class indices to detect (None for all classes)
|
|
- minConfidence: Minimum confidence threshold
|
|
- multiClass: Whether to enable multi-class detection mode
|
|
- expectedClasses: List of expected class names for multi-class validation
|
|
- tracking: Dict with tracking configuration
|
|
- enabled: Boolean to enable/disable tracking
|
|
- method: Tracking method ("botsort")
|
|
- reidConfig: Path to ReID config file
|
|
- stabilityThreshold: Number of consecutive frames required for validation
|
|
"""
|
|
try:
|
|
# Extract tracking configuration
|
|
tracking_config = node.get("tracking", {})
|
|
tracking_enabled = tracking_config.get("enabled", True)
|
|
reid_config_path = tracking_config.get("reidConfig", tracking_config.get("reidConfigPath", "botsort.yaml"))
|
|
stability_threshold = tracking_config.get("stabilityThreshold", node.get("stabilityThreshold", 4))
|
|
|
|
# Check if we need to reset tracker after cooldown
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
if session_state.get("reset_tracker_on_resume", False):
|
|
# Reset YOLO tracker to get fresh track IDs
|
|
if hasattr(node["model"], 'trackers') and node["model"].trackers:
|
|
node["model"].trackers.clear() # Clear tracker state
|
|
logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs")
|
|
session_state["reset_tracker_on_resume"] = False # Clear the flag
|
|
|
|
# Tracking zones removed - process all detections
|
|
|
|
# Prepare class filtering
|
|
trigger_class_indices = node.get("triggerClassIndices")
|
|
class_filter = {"classes": trigger_class_indices} if trigger_class_indices else {}
|
|
|
|
logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, stability_threshold: {stability_threshold}, classes: {node.get('triggerClasses', 'all')}")
|
|
|
|
# Use predict for detection-only models (frontal detection), track for main detection models
|
|
model_id = node.get("modelId", "")
|
|
use_tracking = tracking_enabled and not ("frontal" in model_id.lower() or "detection" in model_id.lower())
|
|
|
|
if use_tracking:
|
|
# Use tracking for main detection models (yolo11m, etc.)
|
|
logger.debug(f"Using tracking for {model_id}")
|
|
res = node["model"].track(
|
|
frame,
|
|
stream=False,
|
|
persist=True,
|
|
**class_filter
|
|
)[0]
|
|
else:
|
|
# Use detection only for frontal detection and other detection-only models
|
|
logger.debug(f"Using prediction only for {model_id}")
|
|
res = node["model"].predict(
|
|
frame,
|
|
stream=False,
|
|
**class_filter
|
|
)[0]
|
|
|
|
# Process detection results
|
|
candidate_detections = []
|
|
# Use frontalMinConfidence for frontal detection models, otherwise use minConfidence
|
|
model_id = node.get("modelId", "")
|
|
if "frontal" in model_id.lower() and "frontalMinConfidence" in node:
|
|
min_confidence = node.get("frontalMinConfidence", 0.0)
|
|
logger.debug(f"Using frontalMinConfidence={min_confidence} for {model_id}")
|
|
else:
|
|
min_confidence = node.get("minConfidence", 0.0)
|
|
|
|
if res.boxes is None or len(res.boxes) == 0:
|
|
logger.debug(f"🚫 Camera {camera_id}: YOLO returned no detections")
|
|
|
|
# Update stability tracking even when no detection (to reset counters)
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
track_validation_result = update_single_track_stability(node, None, camera_id, frame.shape, stability_threshold, context)
|
|
|
|
# Store validation state in context for pipeline decisions
|
|
if context is not None:
|
|
context["track_validation_result"] = track_validation_result
|
|
|
|
return [], {}, track_validation_result
|
|
|
|
logger.debug(f"🔍 Camera {camera_id}: YOLO detected {len(res.boxes)} raw objects - processing with tracking...")
|
|
|
|
# First pass: collect all valid detections
|
|
logger.debug(f"🔍 Camera {camera_id}: === DETECTION ANALYSIS ===")
|
|
for i, box in enumerate(res.boxes):
|
|
# Extract detection data
|
|
conf = float(box.cpu().conf[0])
|
|
cls_id = int(box.cpu().cls[0])
|
|
class_name = node["model"].names[cls_id]
|
|
|
|
# Extract bounding box
|
|
xy = box.cpu().xyxy[0]
|
|
x1, y1, x2, y2 = map(int, xy)
|
|
bbox = (x1, y1, x2, y2)
|
|
|
|
# Extract tracking ID if available
|
|
track_id = None
|
|
if hasattr(box, "id") and box.id is not None:
|
|
track_id = int(box.id.item())
|
|
|
|
logger.debug(f"🔍 Camera {camera_id}: Detection {i+1}: class='{class_name}' conf={conf:.3f} track_id={track_id} bbox={bbox}")
|
|
|
|
# Apply confidence filtering
|
|
if conf < min_confidence:
|
|
logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - confidence {conf:.3f} < {min_confidence}")
|
|
continue
|
|
|
|
# Tracking zone validation removed - process all detections
|
|
|
|
# Create detection object
|
|
detection = {
|
|
"class": class_name,
|
|
"confidence": conf,
|
|
"id": track_id,
|
|
"bbox": bbox,
|
|
"class_id": cls_id
|
|
}
|
|
|
|
candidate_detections.append(detection)
|
|
logger.debug(f"✅ Camera {camera_id}: Detection {i+1} ACCEPTED as candidate: {class_name} (conf={conf:.3f}, track_id={track_id})")
|
|
|
|
# Second pass: select only the highest confidence detection overall
|
|
if not candidate_detections:
|
|
logger.debug(f"🚫 Camera {camera_id}: No valid candidates after filtering - no car will be tracked")
|
|
|
|
# Update stability tracking even when no detection (to reset counters)
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
track_validation_result = update_single_track_stability(node, None, camera_id, frame.shape, stability_threshold, context)
|
|
|
|
# Store validation state in context for pipeline decisions
|
|
if context is not None:
|
|
context["track_validation_result"] = track_validation_result
|
|
|
|
return [], {}, track_validation_result
|
|
|
|
logger.debug(f"🏆 Camera {camera_id}: === SELECTING HIGHEST CONFIDENCE CAR ===")
|
|
for i, detection in enumerate(candidate_detections):
|
|
logger.debug(f"🏆 Camera {camera_id}: Candidate {i+1}: {detection['class']} conf={detection['confidence']:.3f} track_id={detection['id']}")
|
|
|
|
# Show all candidate detections before selection
|
|
logger.debug(f"Found {len(candidate_detections)} candidate detections:")
|
|
for i, det in enumerate(candidate_detections):
|
|
logger.debug(f"Candidate {i+1}: {det['class']} conf={det['confidence']:.3f} bbox={det['bbox']}")
|
|
|
|
# Find the single highest confidence detection across all detected classes
|
|
best_detection = max(candidate_detections, key=lambda x: x["confidence"])
|
|
original_class = best_detection["class"]
|
|
track_id = best_detection["id"]
|
|
|
|
logger.info(f"🎯 Camera {camera_id}: SELECTED WINNER: {original_class} (conf={best_detection['confidence']:.3f}, track_id={track_id}, bbox={best_detection['bbox']})")
|
|
|
|
# Show which cars were NOT selected
|
|
for detection in candidate_detections:
|
|
if detection != best_detection:
|
|
logger.debug(f"🚫 Camera {camera_id}: NOT SELECTED: {detection['class']} (conf={detection['confidence']:.3f}, track_id={detection['id']}) - lower confidence")
|
|
|
|
# Apply class mapping if configured
|
|
mapped_class = original_class
|
|
class_mapping = node.get("classMapping", {})
|
|
if original_class in class_mapping:
|
|
mapped_class = class_mapping[original_class]
|
|
logger.info(f"Class mapping applied: {original_class} → {mapped_class}")
|
|
# Update the detection object with mapped class
|
|
best_detection["class"] = mapped_class
|
|
best_detection["original_class"] = original_class # Keep original for reference
|
|
|
|
# Keep only the single best detection with mapped class
|
|
all_detections = [best_detection]
|
|
regions_dict = {
|
|
mapped_class: {
|
|
"bbox": best_detection["bbox"],
|
|
"confidence": best_detection["confidence"],
|
|
"detection": best_detection,
|
|
"track_id": track_id
|
|
}
|
|
}
|
|
|
|
# Multi-class validation
|
|
if node.get("multiClass", False) and node.get("expectedClasses"):
|
|
expected_classes = node["expectedClasses"]
|
|
detected_classes = list(regions_dict.keys())
|
|
|
|
logger.debug(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
|
|
|
|
# Check for required classes (flexible - at least one must match)
|
|
matching_classes = [cls for cls in expected_classes if cls in detected_classes]
|
|
if not matching_classes:
|
|
logger.warning(f"Multi-class validation failed: no expected classes detected")
|
|
return [], {}
|
|
|
|
logger.info(f"Multi-class validation passed: {matching_classes} detected")
|
|
|
|
logger.info(f"✅ Camera {camera_id}: DETECTION COMPLETE - tracking single car: track_id={track_id}, conf={best_detection['confidence']:.3f}")
|
|
logger.debug(f"📊 Camera {camera_id}: Detection summary: {len(res.boxes)} raw → {len(candidate_detections)} candidates → 1 selected")
|
|
|
|
# Debug: Save vehicle crop for debugging (disabled for production)
|
|
# if node.get("modelId") in ["yolo11n", "yolo11m"] and regions_dict:
|
|
# try:
|
|
# import datetime
|
|
# os.makedirs("temp_debug", exist_ok=True)
|
|
# timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3]
|
|
#
|
|
# for class_name, region_data in regions_dict.items():
|
|
# bbox = region_data['bbox']
|
|
# x1, y1, x2, y2 = bbox
|
|
# cropped = frame[y1:y2, x1:x2]
|
|
# if cropped.size > 0:
|
|
# model_name = node.get("modelId", "yolo")
|
|
# debug_path = f"temp_debug/{model_name}_{class_name}_crop_{timestamp}.jpg"
|
|
# cv2.imwrite(debug_path, cropped)
|
|
# logger.debug(f"Saved {model_name} {class_name} crop to {debug_path}")
|
|
# except Exception as e:
|
|
# logger.error(f"Failed to save {node.get('modelId', 'yolo')} crop: {e}")
|
|
|
|
# Update track-based stability tracking for the single selected car
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
# Update stability tracking for the single best detection
|
|
track_validation_result = update_single_track_stability(node, best_detection, camera_id, frame.shape, stability_threshold, context)
|
|
|
|
# Store validation state in context for pipeline decisions
|
|
if context is not None:
|
|
context["track_validation_result"] = track_validation_result
|
|
|
|
return all_detections, regions_dict, track_validation_result
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in detection_with_tracking for {node.get('modelId', 'unknown')}: {e}")
|
|
logger.debug(f"Detection error traceback: {traceback.format_exc()}")
|
|
return [], {}, {"validation_complete": False, "stable_tracks": [], "current_tracks": []}
|
|
|
|
|
|
def get_camera_stability_data(camera_id, model_id):
|
|
"""Get or create stability tracking data for a specific camera and model."""
|
|
global _camera_stability_tracking
|
|
|
|
if camera_id not in _camera_stability_tracking:
|
|
_camera_stability_tracking[camera_id] = {}
|
|
|
|
if model_id not in _camera_stability_tracking[camera_id]:
|
|
logger.warning(f"🔄 Camera {camera_id}: Creating NEW stability data for {model_id} - this will reset any cooldown!")
|
|
_camera_stability_tracking[camera_id][model_id] = {
|
|
"track_stability_counters": {}, # Track ID -> consecutive frame count
|
|
"stable_tracks": set(), # Set of track IDs that have reached stability threshold
|
|
"session_state": {
|
|
"active": True,
|
|
"waiting_for_backend_session": False,
|
|
"wait_start_time": 0.0,
|
|
"reset_tracker_on_resume": False
|
|
}
|
|
# Removed obsolete occupancy_state - app.py handles all mode transitions now
|
|
}
|
|
|
|
return _camera_stability_tracking[camera_id][model_id]
|
|
|
|
def reset_camera_stability_tracking(camera_id, model_id):
|
|
"""Reset all stability tracking data for a specific camera and model."""
|
|
if camera_id in _camera_stability_tracking and model_id in _camera_stability_tracking[camera_id]:
|
|
stability_data = _camera_stability_tracking[camera_id][model_id]
|
|
|
|
# Clear all tracking data
|
|
track_counters = stability_data["track_stability_counters"]
|
|
stable_tracks = stability_data["stable_tracks"]
|
|
session_state = stability_data["session_state"]
|
|
|
|
old_counters = dict(track_counters)
|
|
old_stable = list(stable_tracks)
|
|
|
|
track_counters.clear()
|
|
stable_tracks.clear()
|
|
|
|
# IMPORTANT: Set flag to reset YOLO tracker on next detection run
|
|
# This will ensure track IDs start fresh (1, 2, 3...) instead of continuing from old IDs
|
|
session_state["reset_tracker_on_resume"] = True
|
|
|
|
logger.info(f"🧹 Camera {camera_id}: CLEARED stability tracking - old_counters={old_counters}, old_stable={old_stable}")
|
|
logger.info(f"🔄 Camera {camera_id}: YOLO tracker will be reset on next detection - fresh track IDs will start from 1")
|
|
else:
|
|
logger.debug(f"🧹 Camera {camera_id}: No stability tracking data to clear for model {model_id}")
|
|
|
|
def update_single_track_stability(node, detection, camera_id, frame_shape=None, stability_threshold=4, context=None):
|
|
"""Update track stability validation for a single highest confidence car."""
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
# Branch nodes should not do validation - only main pipeline should
|
|
is_branch_node = node.get("cropClass") is not None or node.get("parallel") is True
|
|
if is_branch_node:
|
|
logger.debug(f"⏭️ Camera {camera_id}: Skipping validation for branch node {model_id} - validation only done at main pipeline level")
|
|
return {"validation_complete": False, "branch_node": True, "stable_tracks": [], "current_tracks": []}
|
|
|
|
# Check current mode - VALIDATION COUNTERS should increment in both validation_detecting and full_pipeline modes
|
|
current_mode = context.get("current_mode", "unknown") if context else "unknown"
|
|
is_validation_mode = (current_mode in ["validation_detecting", "full_pipeline"])
|
|
|
|
# Get camera-specific stability data
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
track_counters = stability_data["track_stability_counters"]
|
|
stable_tracks = stability_data["stable_tracks"]
|
|
|
|
current_track_id = detection.get("id") if detection else None
|
|
|
|
# ═══ MODE-AWARE TRACK VALIDATION ═══
|
|
logger.debug(f"📋 Camera {camera_id}: === TRACK VALIDATION ANALYSIS ===")
|
|
logger.debug(f"📋 Camera {camera_id}: Current mode: {current_mode} (validation_mode={is_validation_mode})")
|
|
logger.debug(f"📋 Camera {camera_id}: Current track_id: {current_track_id} (assigned by YOLO tracking - not sequential)")
|
|
logger.debug(f"📋 Camera {camera_id}: Existing counters: {dict(track_counters)}")
|
|
logger.debug(f"📋 Camera {camera_id}: Stable tracks: {list(stable_tracks)}")
|
|
|
|
# IMPORTANT: Only modify validation counters during validation_detecting mode
|
|
if not is_validation_mode:
|
|
logger.debug(f"🚫 Camera {camera_id}: NOT in validation mode - skipping counter modifications")
|
|
return {
|
|
"validation_complete": False,
|
|
"stable_tracks": list(stable_tracks),
|
|
"current_tracks": [current_track_id] if current_track_id is not None else []
|
|
}
|
|
|
|
if current_track_id is not None:
|
|
# Check if this is a different track than we were tracking
|
|
previous_track_ids = list(track_counters.keys())
|
|
|
|
# VALIDATION MODE: Reset counter if different track OR if track was previously stable
|
|
should_reset = (
|
|
len(previous_track_ids) == 0 or # No previous tracking
|
|
current_track_id not in previous_track_ids or # Different track ID
|
|
current_track_id in stable_tracks # Track was stable - start fresh validation
|
|
)
|
|
|
|
logger.debug(f"📋 Camera {camera_id}: Previous track_ids: {previous_track_ids}")
|
|
logger.debug(f"📋 Camera {camera_id}: Track {current_track_id} was stable: {current_track_id in stable_tracks}")
|
|
logger.debug(f"📋 Camera {camera_id}: Should reset counters: {should_reset}")
|
|
|
|
if should_reset:
|
|
# Clear all previous tracking - fresh validation needed
|
|
if previous_track_ids:
|
|
for old_track_id in previous_track_ids:
|
|
old_count = track_counters.pop(old_track_id, 0)
|
|
stable_tracks.discard(old_track_id)
|
|
logger.info(f"🔄 Camera {camera_id}: VALIDATION RESET - track {old_track_id} counter from {old_count} to 0 (reason: {'stable_track_restart' if current_track_id == old_track_id else 'different_track'})")
|
|
|
|
# Start fresh validation for this track
|
|
old_count = track_counters.get(current_track_id, 0) # Store old count for logging
|
|
track_counters[current_track_id] = 1
|
|
current_count = 1
|
|
logger.info(f"🆕 Camera {camera_id}: FRESH VALIDATION - Track {current_track_id} starting at 1/{stability_threshold}")
|
|
else:
|
|
# Continue validation for same track
|
|
old_count = track_counters.get(current_track_id, 0)
|
|
track_counters[current_track_id] = old_count + 1
|
|
current_count = track_counters[current_track_id]
|
|
|
|
logger.debug(f"🔢 Camera {camera_id}: Track {current_track_id} counter: {old_count} → {current_count}")
|
|
logger.info(f"🔍 Camera {camera_id}: Track ID {current_track_id} validation {current_count}/{stability_threshold}")
|
|
|
|
# Check if track has reached stability threshold
|
|
logger.debug(f"📊 Camera {camera_id}: Checking stability: {current_count} >= {stability_threshold}? {current_count >= stability_threshold}")
|
|
logger.debug(f"📊 Camera {camera_id}: Already stable: {current_track_id in stable_tracks}")
|
|
|
|
if current_count >= stability_threshold and current_track_id not in stable_tracks:
|
|
stable_tracks.add(current_track_id)
|
|
logger.info(f"✅ Camera {camera_id}: Track ID {current_track_id} STABLE after {current_count} consecutive frames")
|
|
logger.info(f"🎯 Camera {camera_id}: TRACK VALIDATION COMPLETE")
|
|
logger.debug(f"🎯 Camera {camera_id}: Stable tracks now: {list(stable_tracks)}")
|
|
return {
|
|
"validation_complete": True,
|
|
"send_none_detection": True,
|
|
"stable_tracks": [current_track_id],
|
|
"newly_stable_tracks": [current_track_id],
|
|
"current_tracks": [current_track_id]
|
|
}
|
|
elif current_count >= stability_threshold:
|
|
logger.debug(f"📊 Camera {camera_id}: Track {current_track_id} already stable - not re-adding")
|
|
else:
|
|
# No car detected - ALWAYS clear all tracking and reset counters
|
|
logger.debug(f"🚫 Camera {camera_id}: NO CAR DETECTED - clearing all tracking")
|
|
if track_counters or stable_tracks:
|
|
logger.debug(f"🚫 Camera {camera_id}: Existing state before reset: counters={dict(track_counters)}, stable={list(stable_tracks)}")
|
|
for track_id in list(track_counters.keys()):
|
|
old_count = track_counters.pop(track_id, 0)
|
|
logger.info(f"🔄 Camera {camera_id}: No car detected - RESET track {track_id} counter from {old_count} to 0")
|
|
track_counters.clear() # Ensure complete reset
|
|
stable_tracks.clear() # Clear all stable tracks
|
|
logger.info(f"✅ Camera {camera_id}: RESET TO VALIDATION PHASE - All counters and stable tracks cleared")
|
|
else:
|
|
logger.debug(f"🚫 Camera {camera_id}: No existing counters to clear")
|
|
logger.debug(f"Camera {camera_id}: VALIDATION - no car detected (all counters reset)")
|
|
|
|
# Final return - validation not complete
|
|
result = {
|
|
"validation_complete": False,
|
|
"stable_tracks": list(stable_tracks),
|
|
"current_tracks": [current_track_id] if current_track_id is not None else []
|
|
}
|
|
|
|
logger.debug(f"📋 Camera {camera_id}: Track stability result: {result}")
|
|
logger.debug(f"📋 Camera {camera_id}: Final counters: {dict(track_counters)}")
|
|
logger.debug(f"📋 Camera {camera_id}: Final stable tracks: {list(stable_tracks)}")
|
|
|
|
return result
|
|
|
|
# Keep the old function for backward compatibility but mark as deprecated
|
|
def update_track_stability_validation(node, detections, camera_id, frame_shape=None, stability_threshold=4):
|
|
"""DEPRECATED: Use update_single_track_stability instead."""
|
|
logger.warning(f"update_track_stability_validation called for camera {camera_id} - this function is deprecated, use update_single_track_stability instead")
|
|
if detections:
|
|
best_detection = max(detections, key=lambda x: x.get("confidence", 0))
|
|
return update_single_track_stability(node, best_detection, camera_id, frame_shape, stability_threshold, None)
|
|
else:
|
|
return update_single_track_stability(node, None, camera_id, frame_shape, stability_threshold, None)
|
|
|
|
def update_detection_stability(node, detections, camera_id, frame_shape=None):
|
|
"""Legacy detection-based stability counter - DEPRECATED."""
|
|
# This function is deprecated in favor of track-based validation only
|
|
logger.warning(f"update_detection_stability called for camera {camera_id} - this function is deprecated, use track-based validation instead")
|
|
return {"validation_complete": False, "valid_detections": 0, "deprecated": True}
|
|
|
|
def update_track_stability(node, detections, camera_id, frame_shape=None):
|
|
"""DEPRECATED: This function is obsolete and should not be used."""
|
|
logger.warning(f"update_track_stability called for camera {camera_id} - this function is deprecated and obsolete")
|
|
return {"phase": "validation", "absence_counter": 0, "deprecated": True}
|
|
|
|
def check_stable_tracks(camera_id, model_id, regions_dict):
|
|
"""Check if any stable tracks match the detected classes for a specific camera."""
|
|
# Get camera-specific stability data
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
stable_tracks = stability_data["stable_tracks"]
|
|
|
|
if not stable_tracks:
|
|
return False, []
|
|
|
|
# Check for track-based stability
|
|
stable_detections = []
|
|
|
|
for class_name, region_data in regions_dict.items():
|
|
detection = region_data.get("detection", {})
|
|
track_id = detection.get("id")
|
|
|
|
if track_id is not None and track_id in stable_tracks:
|
|
stable_detections.append((class_name, track_id))
|
|
logger.debug(f"Camera {camera_id}: Found stable detection: {class_name} with stable track ID {track_id}")
|
|
|
|
has_stable_tracks = len(stable_detections) > 0
|
|
return has_stable_tracks, stable_detections
|
|
|
|
def reset_tracking_state(camera_id, model_id, reason="session ended"):
|
|
"""Reset tracking state after session completion or timeout."""
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
# Clear all tracking data for fresh start
|
|
stability_data["track_stability_counters"].clear()
|
|
stability_data["stable_tracks"].clear()
|
|
session_state["active"] = True
|
|
session_state["waiting_for_backend_session"] = False
|
|
session_state["wait_start_time"] = 0.0
|
|
session_state["reset_tracker_on_resume"] = True
|
|
|
|
logger.info(f"Camera {camera_id}: 🔄 Reset tracking state - {reason}")
|
|
logger.info(f"Camera {camera_id}: 🧹 Cleared stability counters and stable tracks for fresh session")
|
|
|
|
def is_camera_active(camera_id, model_id):
|
|
"""Check if camera should be processing detections."""
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
# Check if waiting for backend sessionId has timed out
|
|
if session_state.get("waiting_for_backend_session", False):
|
|
current_time = time.time()
|
|
wait_start_time = session_state.get("wait_start_time", 0)
|
|
elapsed_time = current_time - wait_start_time
|
|
|
|
if elapsed_time >= _session_timeout_seconds:
|
|
logger.warning(f"Camera {camera_id}: Backend sessionId timeout ({_session_timeout_seconds}s) - resetting tracking")
|
|
reset_tracking_state(camera_id, model_id, "backend sessionId timeout")
|
|
return True
|
|
else:
|
|
remaining_time = _session_timeout_seconds - elapsed_time
|
|
logger.debug(f"Camera {camera_id}: Still waiting for backend sessionId - {remaining_time:.1f}s remaining")
|
|
return False
|
|
|
|
return session_state.get("active", True)
|
|
|
|
def cleanup_camera_stability(camera_id):
|
|
"""Clean up stability tracking data when a camera is disconnected."""
|
|
global _camera_stability_tracking
|
|
if camera_id in _camera_stability_tracking:
|
|
del _camera_stability_tracking[camera_id]
|
|
logger.info(f"Cleaned up stability tracking data for camera {camera_id}")
|
|
|
|
def occupancy_detector(camera_id, model_id, enable=True):
|
|
"""
|
|
Temporary function to stop model inference after pipeline completion.
|
|
|
|
Args:
|
|
camera_id (str): Camera identifier
|
|
model_id (str): Model identifier
|
|
enable (bool): True to enable occupancy mode (stop model after pipeline), False to disable
|
|
|
|
When enabled:
|
|
- Model stops inference after completing full pipeline
|
|
- Backend sessionId handling continues in background
|
|
|
|
Note: This is a temporary function that will be changed in the future.
|
|
"""
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
if enable:
|
|
session_state["occupancy_mode"] = True
|
|
session_state["occupancy_enabled_at"] = time.time()
|
|
# Occupancy mode logging removed - not used in enhanced lightweight mode
|
|
else:
|
|
session_state["occupancy_mode"] = False
|
|
session_state.pop("occupancy_enabled_at", None)
|
|
# Occupancy mode logging removed - not used in enhanced lightweight mode
|
|
|
|
return session_state.get("occupancy_mode", False)
|
|
|
|
def validate_pipeline_execution(node, regions_dict):
|
|
"""
|
|
Pre-validate that all required branches will execute successfully before
|
|
committing to Redis actions and database records.
|
|
|
|
Returns:
|
|
- (True, []) if pipeline can execute completely
|
|
- (False, missing_branches) if some required branches won't execute
|
|
"""
|
|
# Get all branches that parallel actions are waiting for
|
|
required_branches = set()
|
|
|
|
for action in node.get("parallelActions", []):
|
|
if action.get("type") == "postgresql_update_combined":
|
|
wait_for_branches = action.get("waitForBranches", [])
|
|
required_branches.update(wait_for_branches)
|
|
|
|
if not required_branches:
|
|
# No parallel actions requiring specific branches
|
|
logger.debug("No parallel actions with waitForBranches - validation passes")
|
|
return True, []
|
|
|
|
logger.debug(f"Pre-validation: checking if required branches {list(required_branches)} will execute")
|
|
|
|
# Check each required branch
|
|
missing_branches = []
|
|
|
|
for branch in node.get("branches", []):
|
|
branch_id = branch["modelId"]
|
|
|
|
if branch_id not in required_branches:
|
|
continue # This branch is not required by parallel actions
|
|
|
|
# Check if this branch would be triggered
|
|
trigger_classes = branch.get("triggerClasses", [])
|
|
min_conf = branch.get("minConfidence", 0)
|
|
|
|
branch_triggered = False
|
|
for det_class in regions_dict:
|
|
det_confidence = regions_dict[det_class]["confidence"]
|
|
|
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
|
branch_triggered = True
|
|
logger.debug(f"Pre-validation: branch {branch_id} WILL be triggered by {det_class} (conf={det_confidence:.3f} >= {min_conf})")
|
|
break
|
|
|
|
if not branch_triggered:
|
|
missing_branches.append(branch_id)
|
|
logger.warning(f"Pre-validation: branch {branch_id} will NOT be triggered - no matching classes or insufficient confidence")
|
|
logger.debug(f" Required: {trigger_classes} with min_conf={min_conf}")
|
|
logger.debug(f" Available: {[(cls, regions_dict[cls]['confidence']) for cls in regions_dict]}")
|
|
|
|
if missing_branches:
|
|
logger.error(f"Pipeline pre-validation FAILED: required branches {missing_branches} will not execute")
|
|
return False, missing_branches
|
|
else:
|
|
logger.info(f"Pipeline pre-validation PASSED: all required branches {list(required_branches)} will execute")
|
|
return True, []
|
|
|
|
def run_lightweight_detection_with_validation(frame, node: dict, min_confidence=0.7, min_bbox_area_ratio=0.3):
|
|
"""
|
|
Run lightweight detection with validation rules for session ID triggering.
|
|
Returns detection info only if it passes validation thresholds.
|
|
"""
|
|
logger.debug(f"Running lightweight detection with validation: {node['modelId']} (conf>={min_confidence}, bbox_area>={min_bbox_area_ratio})")
|
|
|
|
try:
|
|
# Run basic detection only - no branches, no actions
|
|
model = node["model"]
|
|
trigger_classes = node.get("triggerClasses", [])
|
|
trigger_class_indices = node.get("triggerClassIndices")
|
|
|
|
# Run YOLO inference
|
|
res = model(frame, verbose=False)
|
|
|
|
best_detection = None
|
|
frame_height, frame_width = frame.shape[:2]
|
|
frame_area = frame_height * frame_width
|
|
|
|
for r in res:
|
|
boxes = r.boxes
|
|
if boxes is None or len(boxes) == 0:
|
|
continue
|
|
|
|
for box in boxes:
|
|
# Extract detection info
|
|
xyxy = box.xyxy[0].cpu().numpy()
|
|
conf = box.conf[0].cpu().numpy()
|
|
cls_id = int(box.cls[0].cpu().numpy())
|
|
class_name = model.names[cls_id]
|
|
|
|
# Apply confidence threshold
|
|
if conf < min_confidence:
|
|
continue
|
|
|
|
# Apply trigger class filtering if specified
|
|
if trigger_class_indices and cls_id not in trigger_class_indices:
|
|
continue
|
|
if trigger_classes and class_name not in trigger_classes:
|
|
continue
|
|
|
|
# Calculate bbox area ratio
|
|
x1, y1, x2, y2 = xyxy
|
|
bbox_area = (x2 - x1) * (y2 - y1)
|
|
bbox_area_ratio = bbox_area / frame_area if frame_area > 0 else 0
|
|
|
|
# Apply bbox area threshold
|
|
if bbox_area_ratio < min_bbox_area_ratio:
|
|
logger.debug(f"Detection filtered out: bbox_area_ratio={bbox_area_ratio:.3f} < {min_bbox_area_ratio}")
|
|
continue
|
|
|
|
# Validation passed
|
|
if not best_detection or conf > best_detection["confidence"]:
|
|
best_detection = {
|
|
"class": class_name,
|
|
"confidence": float(conf),
|
|
"bbox": [int(x) for x in xyxy],
|
|
"bbox_area_ratio": float(bbox_area_ratio),
|
|
"validation_passed": True
|
|
}
|
|
|
|
if best_detection:
|
|
logger.debug(f"Validation PASSED: {best_detection['class']} (conf: {best_detection['confidence']:.3f}, area: {best_detection['bbox_area_ratio']:.3f})")
|
|
return best_detection
|
|
else:
|
|
logger.debug(f"Validation FAILED: No detection meets criteria (conf>={min_confidence}, area>={min_bbox_area_ratio})")
|
|
return {"validation_passed": False}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in lightweight detection with validation: {str(e)}", exc_info=True)
|
|
return {"validation_passed": False}
|
|
|
|
def run_lightweight_detection(frame, node: dict):
|
|
"""
|
|
Run lightweight detection for car presence validation only.
|
|
Returns basic detection info without running branches or external actions.
|
|
"""
|
|
logger.debug(f"Running lightweight detection: {node['modelId']}")
|
|
|
|
try:
|
|
# Run basic detection only - no branches, no actions
|
|
model = node["model"]
|
|
min_confidence = node.get("minConfidence", 0.5)
|
|
trigger_classes = node.get("triggerClasses", [])
|
|
trigger_class_indices = node.get("triggerClassIndices")
|
|
|
|
# Run YOLO inference
|
|
res = model(frame, verbose=False)
|
|
|
|
car_detected = False
|
|
best_detection = None
|
|
|
|
for r in res:
|
|
boxes = r.boxes
|
|
if boxes is None or len(boxes) == 0:
|
|
continue
|
|
|
|
for box in boxes:
|
|
# Extract detection info
|
|
xyxy = box.xyxy[0].cpu().numpy()
|
|
conf = box.conf[0].cpu().numpy()
|
|
cls_id = int(box.cls[0].cpu().numpy())
|
|
class_name = model.names[cls_id]
|
|
|
|
# Apply confidence threshold
|
|
if conf < min_confidence:
|
|
continue
|
|
|
|
# Apply trigger class filtering if specified
|
|
if trigger_class_indices and cls_id not in trigger_class_indices:
|
|
continue
|
|
if trigger_classes and class_name not in trigger_classes:
|
|
continue
|
|
|
|
# Car detected
|
|
car_detected = True
|
|
if not best_detection or conf > best_detection["confidence"]:
|
|
best_detection = {
|
|
"class": class_name,
|
|
"confidence": float(conf),
|
|
"bbox": [int(x) for x in xyxy]
|
|
}
|
|
|
|
logger.debug(f"Lightweight detection result: car_detected={car_detected}")
|
|
if best_detection:
|
|
logger.debug(f"Best detection: {best_detection['class']} (conf: {best_detection['confidence']:.3f})")
|
|
|
|
return {
|
|
"car_detected": car_detected,
|
|
"best_detection": best_detection
|
|
}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in lightweight detection: {str(e)}", exc_info=True)
|
|
return {"car_detected": False, "best_detection": None}
|
|
|
|
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None, validated_detection=None):
|
|
"""
|
|
Enhanced pipeline that supports:
|
|
- Multi-class detection (detecting multiple classes simultaneously)
|
|
- Parallel branch processing
|
|
- Region-based actions and cropping
|
|
- Context passing for session/camera information
|
|
"""
|
|
try:
|
|
# Extract backend sessionId from context at the start of function
|
|
backend_session_id = context.get("backend_session_id") if context else None
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
if backend_session_id:
|
|
logger.info(f"🔑 PIPELINE USING BACKEND SESSION_ID: {backend_session_id} for camera {camera_id}")
|
|
|
|
task = getattr(node["model"], "task", None)
|
|
|
|
# ─── Classification stage ───────────────────────────────────
|
|
if task == "classify":
|
|
results = node["model"].predict(frame, stream=False)
|
|
if not results:
|
|
return (None, None) if return_bbox else None
|
|
|
|
r = results[0]
|
|
probs = r.probs
|
|
if probs is None:
|
|
return (None, None) if return_bbox else None
|
|
|
|
top1_idx = int(probs.top1)
|
|
top1_conf = float(probs.top1conf)
|
|
class_name = node["model"].names[top1_idx]
|
|
|
|
det = {
|
|
"class": class_name,
|
|
"confidence": top1_conf,
|
|
"id": None,
|
|
class_name: class_name # Add class name as key for backward compatibility
|
|
}
|
|
|
|
# Add specific field mappings for database operations based on model type
|
|
model_id = node.get("modelId", "").lower()
|
|
if "brand" in model_id or "brand_cls" in model_id:
|
|
det["brand"] = class_name
|
|
elif "bodytype" in model_id or "body" in model_id:
|
|
det["body_type"] = class_name
|
|
elif "color" in model_id:
|
|
det["color"] = class_name
|
|
|
|
execute_actions(node, frame, det, context.get("regions_dict") if context else None)
|
|
return (det, None) if return_bbox else det
|
|
|
|
# ─── Occupancy mode check (stop future frames after pipeline completion) ───────────────────────────────────────
|
|
# Old occupancy mode logic removed - now using two-phase detection system
|
|
|
|
# ─── Session management check ───────────────────────────────────────
|
|
if not is_camera_active(camera_id, model_id):
|
|
logger.debug(f"⏰ Camera {camera_id}: Waiting for backend sessionId, sending 'none' detection")
|
|
none_detection = {
|
|
"class": "none",
|
|
"confidence": 1.0,
|
|
"bbox": [0, 0, 0, 0],
|
|
"branch_results": {}
|
|
}
|
|
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
|
|
|
|
# ─── Detection stage - Use validated detection if provided (full_pipeline mode) ───
|
|
if validated_detection:
|
|
track_id = validated_detection.get('track_id')
|
|
logger.info(f"🔄 PIPELINE: Using validated detection from validation phase - track_id={track_id}")
|
|
# Convert validated detection back to all_detections format for branch processing
|
|
all_detections = [validated_detection]
|
|
# Create regions_dict based on validated detection class with proper structure
|
|
class_name = validated_detection.get("class", "car")
|
|
regions_dict = {
|
|
class_name: {
|
|
"confidence": validated_detection.get("confidence"),
|
|
"bbox": validated_detection.get("bbox", [0, 0, 0, 0]),
|
|
"detection": validated_detection
|
|
}
|
|
}
|
|
# Bypass track validation completely - force pipeline execution
|
|
track_validation_result = {
|
|
"validation_complete": True,
|
|
"stable_tracks": ["cached"], # Use dummy stable track to force pipeline execution
|
|
"current_tracks": ["cached"],
|
|
"bypass_validation": True
|
|
}
|
|
else:
|
|
# Normal detection stage - Using structured detection function
|
|
all_detections, regions_dict, track_validation_result = run_detection_with_tracking(frame, node, context)
|
|
|
|
# Debug: Save crops for debugging (disabled for production)
|
|
# if regions_dict:
|
|
# try:
|
|
# import datetime
|
|
# os.makedirs("temp_debug", exist_ok=True)
|
|
# timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
# model_id = node.get("modelId", "unknown")
|
|
#
|
|
# # Save vehicle crop from yolo model (any vehicle: car, truck, bus, motorcycle)
|
|
# if model_id in ["yolo11n", "yolo11m"]:
|
|
# # Look for any vehicle class in regions_dict
|
|
# vehicle_classes = ["car", "truck", "bus", "motorcycle"]
|
|
# found_vehicle = None
|
|
# for vehicle_class in vehicle_classes:
|
|
# if vehicle_class in regions_dict:
|
|
# found_vehicle = vehicle_class
|
|
# break
|
|
#
|
|
# if found_vehicle:
|
|
# bbox = regions_dict[found_vehicle]['bbox']
|
|
# x1, y1, x2, y2 = bbox
|
|
# cropped = frame[y1:y2, x1:x2]
|
|
# if cropped.size > 0:
|
|
# debug_path = f"temp_debug/{found_vehicle}_crop_{timestamp}.jpg"
|
|
# cv2.imwrite(debug_path, cropped)
|
|
# logger.debug(f"Saved {found_vehicle} crop to {debug_path}")
|
|
#
|
|
# # Save frontal crop from frontal_detection_v1
|
|
# elif model_id == "frontal_detection_v1" and "frontal" in regions_dict:
|
|
# bbox = regions_dict["frontal"]['bbox']
|
|
# x1, y1, x2, y2 = bbox
|
|
# cropped = frame[y1:y2, x1:x2]
|
|
# if cropped.size > 0:
|
|
# debug_path = f"temp_debug/frontal_crop_{timestamp}.jpg"
|
|
# cv2.imwrite(debug_path, cropped)
|
|
# logger.debug(f"Saved frontal crop to {debug_path}")
|
|
#
|
|
# except Exception as e:
|
|
# logger.error(f"Failed to save crops: {e}")
|
|
|
|
if not all_detections:
|
|
logger.debug("No detections from structured detection function - sending 'none' detection")
|
|
none_detection = {
|
|
"class": "none",
|
|
"confidence": 1.0,
|
|
"bbox": [0, 0, 0, 0],
|
|
"branch_results": {}
|
|
}
|
|
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
|
|
|
|
# Extract bounding boxes for compatibility
|
|
all_boxes = [det["bbox"] for det in all_detections]
|
|
|
|
# ─── Track-Based Validation System: Using Track ID Stability ────────────────────────
|
|
tracking_config = node.get("tracking", {})
|
|
stability_threshold = tracking_config.get("stabilityThreshold", node.get("stabilityThreshold", 1))
|
|
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
|
|
if stability_threshold > 1 and tracking_config.get("enabled", True):
|
|
# Note: Old occupancy state system removed - app.py handles all mode transitions now
|
|
# Track validation is handled by update_single_track_stability function
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
# Simplified: just check if we have stable tracks from track validation
|
|
current_phase = "validation" # Always validation phase in simplified system
|
|
absence_counter = 0
|
|
max_absence_frames = 3
|
|
|
|
if current_phase == "validation":
|
|
# ═══ TRACK VALIDATION PHASE ═══
|
|
# Check if this is a branch node - branches should execute regardless of main validation state
|
|
is_branch_node = node.get("cropClass") is not None or node.get("parallel") is True
|
|
|
|
if is_branch_node:
|
|
# This is a branch node - allow normal execution regardless of main pipeline validation
|
|
logger.debug(f"🔍 Camera {camera_id}: Branch node {model_id} executing during track validation phase")
|
|
else:
|
|
# Main pipeline node during track validation - check for stable tracks
|
|
stable_tracks = track_validation_result.get("stable_tracks", [])
|
|
|
|
if not stable_tracks:
|
|
# No stable tracks yet - return detection without branches until track validation completes
|
|
if all_detections:
|
|
# Return the best detection but skip branches during validation
|
|
primary_detection = max(all_detections, key=lambda x: x["confidence"])
|
|
logger.debug(f"🔍 Camera {camera_id}: TRACK VALIDATION PHASE - returning detection without branches (stable_tracks: {len(stable_tracks)}, sessionId: {backend_session_id or 'none'})")
|
|
else:
|
|
# No detection - return none
|
|
primary_detection = {"class": "none", "confidence": 0.0, "bbox": [0, 0, 0, 0]}
|
|
logger.debug(f"🔍 Camera {camera_id}: TRACK VALIDATION PHASE - no detection found (sessionId: {backend_session_id or 'none'})")
|
|
|
|
primary_bbox = primary_detection.get("bbox", [0, 0, 0, 0])
|
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
|
else:
|
|
# We have stable tracks - validation is complete, proceed with pipeline
|
|
logger.info(f"🎯 Camera {camera_id}: STABLE TRACKS DETECTED - proceeding with full pipeline (tracks: {stable_tracks})")
|
|
|
|
# Note: Old waiting_for_session and occupancy phases removed
|
|
# app.py lightweight mode handles all state transitions now
|
|
|
|
# ─── Pre-validate pipeline execution (only proceed if we have stable tracks for main pipeline) ────────────────────────
|
|
is_branch_node = node.get("cropClass") is not None or node.get("parallel") is True
|
|
|
|
if not is_branch_node and stability_threshold > 1 and tracking_config.get("enabled", True):
|
|
# Main pipeline node with tracking - check for stable tracks before proceeding
|
|
stable_tracks = track_validation_result.get("stable_tracks", [])
|
|
if not stable_tracks:
|
|
logger.debug(f"🔒 Camera {camera_id}: Main pipeline requires stable tracks - none found, skipping pipeline execution")
|
|
none_detection = {"class": "none", "confidence": 1.0, "bbox": [0, 0, 0, 0], "awaiting_stable_tracks": True}
|
|
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
|
|
|
|
pipeline_valid, missing_branches = validate_pipeline_execution(node, regions_dict)
|
|
|
|
if not pipeline_valid:
|
|
logger.error(f"Pipeline execution validation FAILED - required branches {missing_branches} cannot execute")
|
|
logger.error("Aborting pipeline: no Redis actions or database records will be created")
|
|
return (None, None) if return_bbox else None
|
|
|
|
# ─── Execute actions with region information ────────────────
|
|
detection_result = {
|
|
"detections": all_detections,
|
|
"regions": regions_dict,
|
|
**(context or {})
|
|
}
|
|
|
|
# ─── Database operations will be handled when backend sessionId is received ────
|
|
|
|
if node.get("db_manager") and regions_dict:
|
|
detected_classes = list(regions_dict.keys())
|
|
logger.debug(f"Valid detections found: {detected_classes}")
|
|
|
|
if backend_session_id:
|
|
# Backend sessionId is available, proceed with database operations
|
|
from datetime import datetime
|
|
display_id = detection_result.get("display_id", "unknown")
|
|
timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
|
|
|
inserted_session_id = node["db_manager"].insert_initial_detection(
|
|
display_id=display_id,
|
|
captured_timestamp=timestamp,
|
|
session_id=backend_session_id
|
|
)
|
|
|
|
if inserted_session_id:
|
|
detection_result["session_id"] = inserted_session_id
|
|
detection_result["timestamp"] = timestamp
|
|
logger.info(f"💾 DATABASE RECORD CREATED with backend session_id: {inserted_session_id}")
|
|
logger.debug(f"Database record: display_id={display_id}, timestamp={timestamp}")
|
|
else:
|
|
logger.error(f"Failed to create database record with backend session_id: {backend_session_id}")
|
|
else:
|
|
logger.info(f"📡 Camera {camera_id}: Full pipeline completed, detection data will be sent to backend. Database operations will occur when sessionId is received.")
|
|
# Store detection info for later database operations when sessionId arrives
|
|
detection_result["awaiting_session_id"] = True
|
|
from datetime import datetime
|
|
detection_result["timestamp"] = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
|
|
|
# Execute actions for root node only if it doesn't have branches
|
|
# Branch nodes with actions will execute them after branch processing
|
|
if not node.get("branches") or node.get("modelId") == "yolo11n":
|
|
execute_actions(node, frame, detection_result, regions_dict)
|
|
|
|
# ─── Branch processing (no stability check here) ─────────────────────────────
|
|
if node["branches"]:
|
|
branch_results = {}
|
|
|
|
# Extract camera_id for logging
|
|
camera_id = detection_result.get("camera_id", context.get("camera_id", "unknown") if context else "unknown")
|
|
|
|
|
|
# Filter branches that should be triggered
|
|
active_branches = []
|
|
for br in node["branches"]:
|
|
trigger_classes = br.get("triggerClasses", [])
|
|
min_conf = br.get("minConfidence", 0)
|
|
|
|
logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
|
|
|
|
# Check if any detected class matches branch trigger
|
|
branch_triggered = False
|
|
for det_class in regions_dict:
|
|
det_confidence = regions_dict[det_class]["confidence"]
|
|
logger.debug(f" Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
|
|
|
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
|
active_branches.append(br)
|
|
branch_triggered = True
|
|
logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
|
|
break
|
|
|
|
if not branch_triggered:
|
|
logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
|
|
|
|
if active_branches:
|
|
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
|
|
# Run branches in parallel
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
|
|
futures = {}
|
|
|
|
for br in active_branches:
|
|
sub_frame = frame
|
|
crop_class = br.get("cropClass")
|
|
|
|
logger.info(f"Starting parallel branch: {br['modelId']}, cropClass: {crop_class}")
|
|
|
|
if br.get("crop", False) and crop_class:
|
|
if crop_class in regions_dict:
|
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
|
if cropped is not None:
|
|
sub_frame = cropped # Use cropped image without manual resizing
|
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']} - model will handle resizing")
|
|
else:
|
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
|
continue
|
|
else:
|
|
logger.warning(f"Crop class {crop_class} not found in detected regions for {br['modelId']}, skipping branch")
|
|
continue
|
|
|
|
# Add regions_dict and session_id to context for child branches
|
|
branch_context = dict(context) if context else {}
|
|
branch_context["regions_dict"] = regions_dict
|
|
|
|
# Pass session_id from detection_result to branch context for Redis actions
|
|
if "session_id" in detection_result:
|
|
branch_context["session_id"] = detection_result["session_id"]
|
|
logger.debug(f"Added session_id to branch context: {detection_result['session_id']}")
|
|
elif backend_session_id:
|
|
branch_context["session_id"] = backend_session_id
|
|
logger.debug(f"Added backend_session_id to branch context: {backend_session_id}")
|
|
|
|
future = executor.submit(run_pipeline, sub_frame, br, True, branch_context)
|
|
futures[future] = br
|
|
|
|
# Collect results
|
|
for future in concurrent.futures.as_completed(futures):
|
|
br = futures[future]
|
|
try:
|
|
result, _ = future.result()
|
|
if result:
|
|
branch_results[br["modelId"]] = result
|
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
|
|
|
# Collect nested branch results if they exist
|
|
if "branch_results" in result:
|
|
for nested_id, nested_result in result["branch_results"].items():
|
|
branch_results[nested_id] = nested_result
|
|
logger.info(f"Collected nested branch result: {nested_id} = {nested_result}")
|
|
except Exception as e:
|
|
logger.error(f"Branch {br['modelId']} failed: {e}")
|
|
else:
|
|
# Run branches sequentially
|
|
for br in active_branches:
|
|
sub_frame = frame
|
|
crop_class = br.get("cropClass")
|
|
|
|
logger.info(f"Starting sequential branch: {br['modelId']}, cropClass: {crop_class}")
|
|
|
|
if br.get("crop", False) and crop_class:
|
|
if crop_class in regions_dict:
|
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
|
if cropped is not None:
|
|
sub_frame = cropped # Use cropped image without manual resizing
|
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']} - model will handle resizing")
|
|
else:
|
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
|
continue
|
|
else:
|
|
logger.warning(f"Crop class {crop_class} not found in detected regions for {br['modelId']}, skipping branch")
|
|
continue
|
|
|
|
try:
|
|
# Add regions_dict and session_id to context for child branches
|
|
branch_context = dict(context) if context else {}
|
|
branch_context["regions_dict"] = regions_dict
|
|
|
|
# Pass session_id from detection_result to branch context for Redis actions
|
|
if "session_id" in detection_result:
|
|
branch_context["session_id"] = detection_result["session_id"]
|
|
logger.debug(f"Added session_id to sequential branch context: {detection_result['session_id']}")
|
|
elif backend_session_id:
|
|
branch_context["session_id"] = backend_session_id
|
|
logger.debug(f"Added backend_session_id to sequential branch context: {backend_session_id}")
|
|
|
|
result, _ = run_pipeline(sub_frame, br, True, branch_context)
|
|
if result:
|
|
branch_results[br["modelId"]] = result
|
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
|
|
|
# Collect nested branch results if they exist
|
|
if "branch_results" in result:
|
|
for nested_id, nested_result in result["branch_results"].items():
|
|
branch_results[nested_id] = nested_result
|
|
logger.info(f"Collected nested branch result: {nested_id} = {nested_result}")
|
|
else:
|
|
logger.warning(f"Branch {br['modelId']} returned no result")
|
|
except Exception as e:
|
|
logger.error(f"Error in sequential branch {br['modelId']}: {e}")
|
|
import traceback
|
|
logger.debug(f"Branch error traceback: {traceback.format_exc()}")
|
|
|
|
# Store branch results in detection_result for parallel actions
|
|
detection_result["branch_results"] = branch_results
|
|
|
|
# ─── Execute Parallel Actions ───────────────────────────────
|
|
if node.get("parallelActions") and "branch_results" in detection_result:
|
|
execute_parallel_actions(node, frame, detection_result, regions_dict)
|
|
|
|
# ─── Auto-enable occupancy mode after successful pipeline completion ─────────────────
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
# Enable occupancy detector automatically after first successful pipeline
|
|
# Auto-enabling occupancy logging removed - not used in enhanced lightweight mode
|
|
occupancy_detector(camera_id, model_id, enable=True)
|
|
|
|
logger.info(f"✅ Camera {camera_id}: Pipeline completed, detection data will be sent to backend")
|
|
logger.info(f"🛑 Camera {camera_id}: Model will stop inference for future frames")
|
|
logger.info(f"📡 Backend sessionId will be handled when received via WebSocket")
|
|
|
|
# ─── Execute actions after successful detection AND branch processing ──────────
|
|
# This ensures detection nodes (like frontal_detection_v1) execute their actions
|
|
# after completing both detection and branch processing
|
|
if node.get("actions") and regions_dict and node.get("modelId") != "yolo11n":
|
|
# Execute actions for branch detection nodes, skip root to avoid duplication
|
|
logger.debug(f"Executing post-detection actions for branch node {node.get('modelId')}")
|
|
execute_actions(node, frame, detection_result, regions_dict)
|
|
|
|
# ─── Return detection result ────────────────────────────────
|
|
primary_detection = max(all_detections, key=lambda x: x["confidence"])
|
|
primary_bbox = primary_detection["bbox"]
|
|
|
|
# Add branch results and session_id to primary detection for compatibility
|
|
if "branch_results" in detection_result:
|
|
primary_detection["branch_results"] = detection_result["branch_results"]
|
|
if "session_id" in detection_result:
|
|
primary_detection["session_id"] = detection_result["session_id"]
|
|
|
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in node {node.get('modelId')}: {e}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
return (None, None) if return_bbox else None
|