python-detector-worker/siwatsystem/pympta.py
Pongsatorn 39394caa8e Finish
2025-08-29 00:57:32 +07:00

1881 lines
97 KiB
Python

import os
import json
import logging
import torch
import cv2
import zipfile
import shutil
import traceback
import redis
import time
import uuid
import concurrent.futures
from ultralytics import YOLO
from urllib.parse import urlparse
from .database import DatabaseManager
from datetime import datetime
# Create a logger specifically for this module
logger = logging.getLogger("detector_worker.pympta")
# Global camera-aware stability tracking
# Structure: {camera_id: {model_id: {"track_stability_counters": {track_id: count}, "stable_tracks": set(), "session_state": {...}}}}
_camera_stability_tracking = {}
# Session timeout configuration (waiting for backend sessionId)
_session_timeout_seconds = 15
def validate_redis_config(redis_config: dict) -> bool:
"""Validate Redis configuration parameters."""
required_fields = ["host", "port"]
for field in required_fields:
if field not in redis_config:
logger.error(f"Missing required Redis config field: {field}")
return False
if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
logger.error(f"Invalid Redis port: {redis_config['port']}")
return False
return True
def validate_postgresql_config(pg_config: dict) -> bool:
"""Validate PostgreSQL configuration parameters."""
required_fields = ["host", "port", "database", "username", "password"]
for field in required_fields:
if field not in pg_config:
logger.error(f"Missing required PostgreSQL config field: {field}")
return False
if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
return False
return True
def crop_region_by_class(frame, regions_dict, class_name):
"""Crop a specific region from frame based on detected class."""
if class_name not in regions_dict:
logger.warning(f"Class '{class_name}' not found in detected regions")
return None
bbox = regions_dict[class_name]['bbox']
x1, y1, x2, y2 = bbox
cropped = frame[y1:y2, x1:x2]
if cropped.size == 0:
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
return None
return cropped
def format_action_context(base_context, additional_context=None):
"""Format action context with dynamic values."""
context = {**base_context}
if additional_context:
context.update(additional_context)
return context
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
# Recursively load a model node from configuration.
model_path = os.path.join(mpta_dir, node_config["modelFile"])
if not os.path.exists(model_path):
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
raise FileNotFoundError(f"Model file {model_path} not found.")
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
model = YOLO(model_path)
if torch.cuda.is_available():
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU VRAM")
model.to("cuda")
else:
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
# Prepare trigger class indices for optimization
trigger_classes = node_config.get("triggerClasses", [])
trigger_class_indices = None
if trigger_classes and hasattr(model, "names"):
# Convert class names to indices for the model
trigger_class_indices = [i for i, name in model.names.items()
if name in trigger_classes]
logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
# Extract stability threshold from main pipeline config (not tracking config)
tracking_config = node_config.get("tracking", {"enabled": True, "reidConfigPath": "botsort.yaml"})
stability_threshold = node_config.get("stabilityThreshold", 4) # Read from main config, default to 4
node = {
"modelId": node_config["modelId"],
"modelFile": node_config["modelFile"],
"triggerClasses": trigger_classes,
"triggerClassIndices": trigger_class_indices,
"classMapping": node_config.get("classMapping", {}),
"crop": node_config.get("crop", False),
"cropClass": node_config.get("cropClass"),
"minConfidence": node_config.get("minConfidence", None),
"minBboxAreaRatio": node_config.get("minBboxAreaRatio", 0.0),
"multiClass": node_config.get("multiClass", False),
"expectedClasses": node_config.get("expectedClasses", []),
"parallel": node_config.get("parallel", False),
"actions": node_config.get("actions", []),
"parallelActions": node_config.get("parallelActions", []),
"tracking": tracking_config,
"stabilityThreshold": stability_threshold,
"model": model,
"branches": [],
"redis_client": redis_client,
"db_manager": db_manager
}
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
for child in node_config.get("branches", []):
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
return node
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
os.makedirs(target_dir, exist_ok=True)
zip_path = os.path.join(target_dir, "pipeline.mpta")
# Parse the source; only local files are supported here.
parsed = urlparse(zip_source)
if parsed.scheme in ("", "file"):
local_path = parsed.path if parsed.scheme == "file" else zip_source
logger.debug(f"Checking if local file exists: {local_path}")
if os.path.exists(local_path):
try:
shutil.copy(local_path, zip_path)
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
except Exception as e:
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
return None
else:
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
# List all subdirectories of models directory to help debugging
if os.path.exists("models"):
logger.error(f"Content of models directory: {os.listdir('models')}")
for root, dirs, files in os.walk("models"):
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
else:
logger.error("The models directory doesn't exist")
return None
else:
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
return None
try:
if not os.path.exists(zip_path):
logger.error(f"Zip file not found at expected location: {zip_path}")
return None
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
# Extract contents and track the directories created
extracted_dirs = []
with zipfile.ZipFile(zip_path, "r") as zip_ref:
file_list = zip_ref.namelist()
logger.debug(f"Files in .mpta archive: {file_list}")
# Extract and track the top-level directories
for file_path in file_list:
parts = file_path.split('/')
if len(parts) > 1:
top_dir = parts[0]
if top_dir and top_dir not in extracted_dirs:
extracted_dirs.append(top_dir)
# Now extract the files
zip_ref.extractall(target_dir)
logger.info(f"Successfully extracted .mpta file to {target_dir}")
logger.debug(f"Extracted directories: {extracted_dirs}")
# Check what was actually created after extraction
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
logger.debug(f"Actual directories created: {actual_dirs}")
except zipfile.BadZipFile as e:
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
return None
except Exception as e:
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
return None
finally:
if os.path.exists(zip_path):
os.remove(zip_path)
logger.debug(f"Removed temporary zip file: {zip_path}")
# Use the first extracted directory if it exists, otherwise use the expected name
pipeline_name = os.path.basename(zip_source)
pipeline_name = os.path.splitext(pipeline_name)[0]
# Find the directory with pipeline.json
mpta_dir = None
# First try the expected directory name
expected_dir = os.path.join(target_dir, pipeline_name)
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
mpta_dir = expected_dir
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
else:
# Look through all subdirectories for pipeline.json
for subdir in actual_dirs:
potential_dir = os.path.join(target_dir, subdir)
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
mpta_dir = potential_dir
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
break
if not mpta_dir:
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
return None
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
if not os.path.exists(pipeline_json_path):
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
return None
try:
with open(pipeline_json_path, "r") as f:
pipeline_config = json.load(f)
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
# Establish Redis connection if configured
redis_client = None
if "redis" in pipeline_config:
redis_config = pipeline_config["redis"]
if not validate_redis_config(redis_config):
logger.error("Invalid Redis configuration, skipping Redis connection")
else:
try:
redis_client = redis.Redis(
host=redis_config["host"],
port=redis_config["port"],
password=redis_config.get("password"),
db=redis_config.get("db", 0),
decode_responses=True
)
redis_client.ping()
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
except redis.exceptions.ConnectionError as e:
logger.error(f"Failed to connect to Redis: {e}")
redis_client = None
# Establish PostgreSQL connection if configured
db_manager = None
if "postgresql" in pipeline_config:
pg_config = pipeline_config["postgresql"]
if not validate_postgresql_config(pg_config):
logger.error("Invalid PostgreSQL configuration, skipping database connection")
else:
try:
db_manager = DatabaseManager(pg_config)
if db_manager.connect():
logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
else:
logger.error("Failed to connect to PostgreSQL")
db_manager = None
except Exception as e:
logger.error(f"Error initializing PostgreSQL connection: {e}")
db_manager = None
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
except json.JSONDecodeError as e:
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
return None
except KeyError as e:
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
return None
except Exception as e:
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
return None
def execute_actions(node, frame, detection_result, regions_dict=None):
if not node["redis_client"] or not node["actions"]:
return
# Create a dynamic context for this detection event
from datetime import datetime
action_context = {
**detection_result,
"timestamp_ms": int(time.time() * 1000),
"uuid": str(uuid.uuid4()),
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
"filename": f"{uuid.uuid4()}.jpg"
}
for action in node["actions"]:
try:
if action["type"] == "redis_save_image":
key = action["key"].format(**action_context)
# Check if we need to crop a specific region
region_name = action.get("region")
image_to_save = frame
if region_name and regions_dict:
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
if cropped_image is not None:
image_to_save = cropped_image
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
else:
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
# Encode image with specified format and quality (default to JPEG)
img_format = action.get("format", "jpeg").lower()
quality = action.get("quality", 90)
if img_format == "jpeg":
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
elif img_format == "png":
success, buffer = cv2.imencode('.png', image_to_save)
else:
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
if not success:
logger.error(f"Failed to encode image for redis_save_image")
continue
expire_seconds = action.get("expire_seconds")
if expire_seconds:
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
else:
node["redis_client"].set(key, buffer.tobytes())
logger.info(f"Saved image to Redis with key: {key}")
action_context["image_key"] = key
elif action["type"] == "redis_publish":
channel = action["channel"]
try:
# Handle JSON message format by creating it programmatically
message_template = action["message"]
# Check if the message is JSON-like (starts and ends with braces)
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
# Create JSON data programmatically to avoid formatting issues
json_data = {}
# Add common fields
json_data["event"] = "frontal_detected"
json_data["display_id"] = action_context.get("display_id", "unknown")
json_data["session_id"] = action_context.get("session_id")
json_data["timestamp"] = action_context.get("timestamp", "")
json_data["image_key"] = action_context.get("image_key", "")
# Convert to JSON string
message = json.dumps(json_data)
else:
# Use regular string formatting for non-JSON messages
message = message_template.format(**action_context)
# Publish to Redis
if not node["redis_client"]:
logger.error("Redis client is None, cannot publish message")
continue
# Test Redis connection
try:
node["redis_client"].ping()
logger.debug("Redis connection is active")
except Exception as ping_error:
logger.error(f"Redis connection test failed: {ping_error}")
continue
result = node["redis_client"].publish(channel, message)
logger.info(f"Published message to Redis channel '{channel}': {message}")
logger.info(f"Redis publish result (subscribers count): {result}")
# Additional debug info
if result == 0:
logger.warning(f"No subscribers listening to channel '{channel}'")
else:
logger.info(f"Message delivered to {result} subscriber(s)")
except KeyError as e:
logger.error(f"Missing key in redis_publish message template: {e}")
logger.debug(f"Available context keys: {list(action_context.keys())}")
except Exception as e:
logger.error(f"Error in redis_publish action: {e}")
logger.debug(f"Message template: {action['message']}")
logger.debug(f"Available context keys: {list(action_context.keys())}")
import traceback
logger.debug(f"Full traceback: {traceback.format_exc()}")
except Exception as e:
logger.error(f"Error executing action {action['type']}: {e}")
def execute_parallel_actions(node, frame, detection_result, regions_dict):
"""Execute parallel actions after all required branches have completed."""
if not node.get("parallelActions"):
return
logger.debug("Executing parallel actions...")
branch_results = detection_result.get("branch_results", {})
for action in node["parallelActions"]:
try:
action_type = action.get("type")
logger.debug(f"Processing parallel action: {action_type}")
if action_type == "postgresql_update_combined":
# Check if all required branches have completed
wait_for_branches = action.get("waitForBranches", [])
missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
if missing_branches:
logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
continue
logger.info(f"All required branches completed: {wait_for_branches}")
# Execute the database update
execute_postgresql_update_combined(node, action, detection_result, branch_results)
else:
logger.warning(f"Unknown parallel action type: {action_type}")
except Exception as e:
logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
import traceback
logger.debug(f"Full traceback: {traceback.format_exc()}")
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
"""Execute a PostgreSQL update with combined branch results."""
if not node.get("db_manager"):
logger.error("No database manager available for postgresql_update_combined action")
return
try:
table = action["table"]
key_field = action["key_field"]
key_value_template = action["key_value"]
fields = action["fields"]
# Create context for key value formatting
action_context = {**detection_result}
key_value = key_value_template.format(**action_context)
logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
logger.debug(f"Available branch results: {list(branch_results.keys())}")
# Process field mappings
mapped_fields = {}
for db_field, value_template in fields.items():
try:
mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
if mapped_value is not None:
mapped_fields[db_field] = mapped_value
logger.info(f"Mapped field: {db_field} = {mapped_value}")
else:
logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
logger.debug(f"Available branch results: {branch_results}")
except Exception as e:
logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
import traceback
logger.debug(f"Field mapping error traceback: {traceback.format_exc()}")
if not mapped_fields:
logger.warning("No fields mapped successfully, skipping database update")
logger.debug(f"Branch results available: {branch_results}")
logger.debug(f"Field templates: {fields}")
return
# Add updated_at field automatically
mapped_fields["updated_at"] = "NOW()"
# Execute the database update
logger.info(f"Attempting database update with fields: {mapped_fields}")
success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
if success:
logger.info(f"✅ Successfully updated database: {table} with {len(mapped_fields)} fields")
logger.info(f"Updated fields: {mapped_fields}")
else:
logger.error(f"❌ Failed to update database: {table}")
logger.error(f"Attempted update with: {key_field}={key_value}, fields={mapped_fields}")
except KeyError as e:
logger.error(f"Missing required field in postgresql_update_combined action: {e}")
logger.debug(f"Action config: {action}")
except Exception as e:
logger.error(f"Error in postgresql_update_combined action: {e}")
import traceback
logger.debug(f"Full traceback: {traceback.format_exc()}")
def resolve_field_mapping(value_template, branch_results, action_context):
"""Resolve field mapping templates like {car_brand_cls_v1.brand}."""
try:
logger.debug(f"Resolving field mapping: '{value_template}'")
logger.debug(f"Available branch results: {list(branch_results.keys())}")
# Handle simple context variables first (non-branch references)
if not '.' in value_template:
result = value_template.format(**action_context)
logger.debug(f"Simple template resolved: '{value_template}' -> '{result}'")
return result
# Handle branch result references like {model_id.field}
import re
branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
logger.debug(f"Found branch references: {branch_refs}")
resolved_template = value_template
for ref in branch_refs:
try:
model_id, field_name = ref.split('.', 1)
logger.debug(f"Processing branch reference: model_id='{model_id}', field_name='{field_name}'")
if model_id in branch_results:
branch_data = branch_results[model_id]
logger.debug(f"Branch '{model_id}' data: {branch_data}")
if field_name in branch_data:
field_value = branch_data[field_name]
resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
logger.info(f"✅ Resolved {ref} to '{field_value}'")
else:
logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results.")
logger.debug(f"Available fields in '{model_id}': {list(branch_data.keys())}")
# Try alternative field names based on the class result and model type
if isinstance(branch_data, dict):
fallback_value = None
# First, try the exact field name
if field_name in branch_data:
fallback_value = branch_data[field_name]
# Then try 'class' field as fallback
elif 'class' in branch_data:
fallback_value = branch_data['class']
logger.info(f"Using 'class' field as fallback for '{field_name}': '{fallback_value}'")
# For brand models, also check if the class name exists as a key
elif field_name == 'brand' and branch_data.get('class') in branch_data:
fallback_value = branch_data[branch_data['class']]
logger.info(f"Found brand value using class name as key: '{fallback_value}'")
# For body_type models, also check if the class name exists as a key
elif field_name == 'body_type' and branch_data.get('class') in branch_data:
fallback_value = branch_data[branch_data['class']]
logger.info(f"Found body_type value using class name as key: '{fallback_value}'")
if fallback_value is not None:
resolved_template = resolved_template.replace(f'{{{ref}}}', str(fallback_value))
logger.info(f"✅ Resolved {ref} to '{fallback_value}' (using fallback)")
else:
logger.error(f"No suitable field found for '{field_name}' in branch '{model_id}'")
logger.debug(f"Branch data structure: {branch_data}")
return None
else:
logger.error(f"Branch data for '{model_id}' is not a dictionary: {type(branch_data)}")
return None
else:
logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
return None
except ValueError as e:
logger.error(f"Invalid branch reference format: {ref}")
return None
# Format any remaining simple variables
try:
final_value = resolved_template.format(**action_context)
logger.debug(f"Final resolved value: '{final_value}'")
return final_value
except KeyError as e:
logger.warning(f"Could not resolve context variable in template: {e}")
return resolved_template
except Exception as e:
logger.error(f"Error resolving field mapping '{value_template}': {e}")
import traceback
logger.debug(f"Field mapping error traceback: {traceback.format_exc()}")
return None
def run_detection_with_tracking(frame, node, context=None):
"""
Structured function for running YOLO detection with BoT-SORT tracking.
Now includes track ID-based validation requiring N consecutive frames of the same track ID.
Args:
frame: Input frame/image
node: Pipeline node configuration with model and settings
context: Optional context information (camera info, session data, etc.)
Returns:
tuple: (all_detections, regions_dict, track_validation_result) where:
- all_detections: List of all detection objects
- regions_dict: Dict mapping class names to highest confidence detections
- track_validation_result: Dict with validation status and stable tracks
Configuration options in node:
- model: YOLO model instance
- triggerClassIndices: List of class indices to detect (None for all classes)
- minConfidence: Minimum confidence threshold
- multiClass: Whether to enable multi-class detection mode
- expectedClasses: List of expected class names for multi-class validation
- tracking: Dict with tracking configuration
- enabled: Boolean to enable/disable tracking
- method: Tracking method ("botsort")
- reidConfig: Path to ReID config file
- stabilityThreshold: Number of consecutive frames required for validation
"""
try:
# Extract tracking configuration
tracking_config = node.get("tracking", {})
tracking_enabled = tracking_config.get("enabled", True)
reid_config_path = tracking_config.get("reidConfig", tracking_config.get("reidConfigPath", "botsort.yaml"))
stability_threshold = tracking_config.get("stabilityThreshold", node.get("stabilityThreshold", 4))
# Check if we need to reset tracker after cooldown
camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown")
stability_data = get_camera_stability_data(camera_id, model_id)
session_state = stability_data["session_state"]
if session_state.get("reset_tracker_on_resume", False):
# Reset YOLO tracker to get fresh track IDs
if hasattr(node["model"], 'trackers') and node["model"].trackers:
node["model"].trackers.clear() # Clear tracker state
logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs")
session_state["reset_tracker_on_resume"] = False # Clear the flag
# Get tracking zone from runtime context (camera-specific)
tracking_zone = context.get("trackingZone", []) if context else []
# Prepare class filtering
trigger_class_indices = node.get("triggerClassIndices")
class_filter = {"classes": trigger_class_indices} if trigger_class_indices else {}
logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, stability_threshold: {stability_threshold}, classes: {node.get('triggerClasses', 'all')}")
if tracking_enabled and tracking_zone:
# Use tracking with zone validation
logger.debug(f"Using tracking with ReID config: {reid_config_path}")
res = node["model"].track(
frame,
stream=False,
persist=True,
tracker=reid_config_path,
**class_filter
)[0]
elif tracking_enabled:
# Use tracking without zone restriction
logger.debug("Using tracking without zone restriction")
res = node["model"].track(
frame,
stream=False,
persist=True,
**class_filter
)[0]
else:
# Use detection only (no tracking)
logger.debug("Using detection only (tracking disabled)")
res = node["model"].predict(
frame,
stream=False,
**class_filter
)[0]
# Process detection results
candidate_detections = []
min_confidence = node.get("minConfidence", 0.0)
if res.boxes is None or len(res.boxes) == 0:
logger.debug(f"🚫 Camera {camera_id}: YOLO returned no detections")
# Update stability tracking even when no detection (to reset counters)
camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown")
track_validation_result = update_single_track_stability(node, None, camera_id, frame.shape, stability_threshold)
# Store validation state in context for pipeline decisions
if context is not None:
context["track_validation_result"] = track_validation_result
return [], {}, track_validation_result
logger.debug(f"🔍 Camera {camera_id}: YOLO detected {len(res.boxes)} raw objects - processing with tracking...")
# First pass: collect all valid detections
logger.debug(f"🔍 Camera {camera_id}: === DETECTION ANALYSIS ===")
for i, box in enumerate(res.boxes):
# Extract detection data
conf = float(box.cpu().conf[0])
cls_id = int(box.cpu().cls[0])
class_name = node["model"].names[cls_id]
# Extract bounding box
xy = box.cpu().xyxy[0]
x1, y1, x2, y2 = map(int, xy)
bbox = (x1, y1, x2, y2)
# Extract tracking ID if available
track_id = None
if hasattr(box, "id") and box.id is not None:
track_id = int(box.id.item())
logger.debug(f"🔍 Camera {camera_id}: Detection {i+1}: class='{class_name}' conf={conf:.3f} track_id={track_id} bbox={bbox}")
# Apply confidence filtering
if conf < min_confidence:
logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - confidence {conf:.3f} < {min_confidence}")
continue
# Apply tracking zone validation if enabled
if tracking_enabled and tracking_zone:
bbox_center_x = (x1 + x2) // 2
bbox_center_y = (y1 + y2) // 2
# Check if detection center is within tracking zone
if not _point_in_polygon((bbox_center_x, bbox_center_y), tracking_zone):
logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - outside tracking zone")
continue
# Create detection object
detection = {
"class": class_name,
"confidence": conf,
"id": track_id,
"bbox": bbox,
"class_id": cls_id
}
candidate_detections.append(detection)
logger.debug(f"✅ Camera {camera_id}: Detection {i+1} ACCEPTED as candidate: {class_name} (conf={conf:.3f}, track_id={track_id})")
# Second pass: select only the highest confidence detection overall
if not candidate_detections:
logger.debug(f"🚫 Camera {camera_id}: No valid candidates after filtering - no car will be tracked")
# Update stability tracking even when no detection (to reset counters)
camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown")
track_validation_result = update_single_track_stability(node, None, camera_id, frame.shape, stability_threshold)
# Store validation state in context for pipeline decisions
if context is not None:
context["track_validation_result"] = track_validation_result
return [], {}, track_validation_result
logger.debug(f"🏆 Camera {camera_id}: === SELECTING HIGHEST CONFIDENCE CAR ===")
for i, detection in enumerate(candidate_detections):
logger.debug(f"🏆 Camera {camera_id}: Candidate {i+1}: {detection['class']} conf={detection['confidence']:.3f} track_id={detection['id']}")
# Find the single highest confidence detection across all detected classes
best_detection = max(candidate_detections, key=lambda x: x["confidence"])
original_class = best_detection["class"]
track_id = best_detection["id"]
logger.info(f"🎯 Camera {camera_id}: SELECTED WINNER: {original_class} (conf={best_detection['confidence']:.3f}, track_id={track_id}, bbox={best_detection['bbox']})")
# Show which cars were NOT selected
for detection in candidate_detections:
if detection != best_detection:
logger.debug(f"🚫 Camera {camera_id}: NOT SELECTED: {detection['class']} (conf={detection['confidence']:.3f}, track_id={detection['id']}) - lower confidence")
# Apply class mapping if configured
mapped_class = original_class
class_mapping = node.get("classMapping", {})
if original_class in class_mapping:
mapped_class = class_mapping[original_class]
logger.info(f"Class mapping applied: {original_class}{mapped_class}")
# Update the detection object with mapped class
best_detection["class"] = mapped_class
best_detection["original_class"] = original_class # Keep original for reference
# Keep only the single best detection with mapped class
all_detections = [best_detection]
regions_dict = {
mapped_class: {
"bbox": best_detection["bbox"],
"confidence": best_detection["confidence"],
"detection": best_detection,
"track_id": track_id
}
}
# Multi-class validation
if node.get("multiClass", False) and node.get("expectedClasses"):
expected_classes = node["expectedClasses"]
detected_classes = list(regions_dict.keys())
logger.debug(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
# Check for required classes (flexible - at least one must match)
matching_classes = [cls for cls in expected_classes if cls in detected_classes]
if not matching_classes:
logger.warning(f"Multi-class validation failed: no expected classes detected")
return [], {}
logger.info(f"Multi-class validation passed: {matching_classes} detected")
logger.info(f"✅ Camera {camera_id}: DETECTION COMPLETE - tracking single car: track_id={track_id}, conf={best_detection['confidence']:.3f}")
logger.debug(f"📊 Camera {camera_id}: Detection summary: {len(res.boxes)} raw → {len(candidate_detections)} candidates → 1 selected")
# Update track-based stability tracking for the single selected car
camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown")
# Update stability tracking for the single best detection
track_validation_result = update_single_track_stability(node, best_detection, camera_id, frame.shape, stability_threshold)
# Store validation state in context for pipeline decisions
if context is not None:
context["track_validation_result"] = track_validation_result
return all_detections, regions_dict, track_validation_result
except Exception as e:
logger.error(f"Error in detection_with_tracking for {node.get('modelId', 'unknown')}: {e}")
logger.debug(f"Detection error traceback: {traceback.format_exc()}")
return [], {}, {"validation_complete": False, "stable_tracks": [], "current_tracks": []}
def _point_in_polygon(point, polygon):
"""Check if a point is inside a polygon using ray casting algorithm."""
if not polygon or len(polygon) < 3:
return True # No zone restriction if invalid polygon
x, y = point
n = len(polygon)
inside = False
p1x, p1y = polygon[0]
for i in range(1, n + 1):
p2x, p2y = polygon[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def get_camera_stability_data(camera_id, model_id):
"""Get or create stability tracking data for a specific camera and model."""
global _camera_stability_tracking
if camera_id not in _camera_stability_tracking:
_camera_stability_tracking[camera_id] = {}
if model_id not in _camera_stability_tracking[camera_id]:
logger.warning(f"🔄 Camera {camera_id}: Creating NEW stability data for {model_id} - this will reset any cooldown!")
_camera_stability_tracking[camera_id][model_id] = {
"track_stability_counters": {}, # Track ID -> consecutive frame count
"stable_tracks": set(), # Set of track IDs that have reached stability threshold
"session_state": {
"active": True,
"waiting_for_backend_session": False,
"wait_start_time": 0.0,
"reset_tracker_on_resume": False
},
"occupancy_state": {
"phase": "validation", # "validation", "waiting_for_session", or "occupancy"
"absence_counter": 0, # Count consecutive frames without stable tracks
"max_absence_frames": 3, # Trigger "none" after this many absent frames
"pipeline_completed": False # Track if full pipeline has run
}
# Removed detection_counter - using only track-based validation now
}
return _camera_stability_tracking[camera_id][model_id]
def reset_camera_stability_tracking(camera_id, model_id):
"""Reset all stability tracking data for a specific camera and model."""
if camera_id in _camera_stability_tracking and model_id in _camera_stability_tracking[camera_id]:
stability_data = _camera_stability_tracking[camera_id][model_id]
# Clear all tracking data
track_counters = stability_data["track_stability_counters"]
stable_tracks = stability_data["stable_tracks"]
old_counters = dict(track_counters)
old_stable = list(stable_tracks)
track_counters.clear()
stable_tracks.clear()
# Reset occupancy state to validation
stability_data["occupancy_state"]["phase"] = "validation"
stability_data["occupancy_state"]["absence_counter"] = 0
stability_data["occupancy_state"]["pipeline_completed"] = False
logger.info(f"🧹 Camera {camera_id}: CLEARED stability tracking - old_counters={old_counters}, old_stable={old_stable}")
# Occupancy state reset logging removed - not used in enhanced lightweight mode
else:
logger.debug(f"🧹 Camera {camera_id}: No stability tracking data to clear for model {model_id}")
def update_single_track_stability(node, detection, camera_id, frame_shape=None, stability_threshold=4):
"""Update track stability validation for a single highest confidence car."""
model_id = node.get("modelId", "unknown")
# Branch nodes should not do validation - only main pipeline should
is_branch_node = node.get("cropClass") is not None or node.get("parallel") is True
if is_branch_node:
logger.debug(f"⏭️ Camera {camera_id}: Skipping validation for branch node {model_id} - validation only done at main pipeline level")
return {"validation_complete": False, "branch_node": True, "stable_tracks": [], "current_tracks": []}
# Get camera-specific stability data
stability_data = get_camera_stability_data(camera_id, model_id)
track_counters = stability_data["track_stability_counters"]
stable_tracks = stability_data["stable_tracks"]
occupancy_state = stability_data["occupancy_state"]
current_phase = occupancy_state["phase"]
current_track_id = detection.get("id") if detection else None
if current_phase == "validation":
# ═══ VALIDATION PHASE: Count consecutive frames for single track ═══
logger.debug(f"📋 Camera {camera_id}: === TRACK VALIDATION ANALYSIS ===")
logger.debug(f"📋 Camera {camera_id}: Current track_id: {current_track_id}")
logger.debug(f"📋 Camera {camera_id}: Existing counters: {dict(track_counters)}")
logger.debug(f"📋 Camera {camera_id}: Stable tracks: {list(stable_tracks)}")
if current_track_id is not None:
# Check if this is a different track than we were tracking
previous_track_ids = list(track_counters.keys())
# ALWAYS reset counter if:
# 1. This is a different track ID than before
# 2. OR if we had no previous tracking (fresh start)
should_reset = (
len(previous_track_ids) == 0 or # No previous tracking
current_track_id not in previous_track_ids # Different track ID
)
logger.debug(f"📋 Camera {camera_id}: Previous track_ids: {previous_track_ids}")
logger.debug(f"📋 Camera {camera_id}: Should reset counters: {should_reset} (no_previous={len(previous_track_ids) == 0}, different_id={current_track_id not in previous_track_ids})")
if should_reset and previous_track_ids:
# Clear all previous tracking - different car detected
for old_track_id in previous_track_ids:
old_count = track_counters.pop(old_track_id, 0)
stable_tracks.discard(old_track_id)
logger.info(f"🔄 Camera {camera_id}: Different car detected (track {current_track_id}) - RESET previous track {old_track_id} counter from {old_count} to 0")
logger.debug(f"🔄 Camera {camera_id}: Cleared track {old_track_id} from counters and stable_tracks")
# Set counter to 1 for current track (fresh start each frame)
old_count = track_counters.get(current_track_id, 0)
track_counters[current_track_id] = track_counters.get(current_track_id, 0) + 1
current_count = track_counters[current_track_id]
logger.debug(f"🔢 Camera {camera_id}: Track {current_track_id} counter: {old_count}{current_count}")
logger.info(f"🔍 Camera {camera_id}: Track ID {current_track_id} validation {current_count}/{stability_threshold}")
# Check if track has reached stability threshold
logger.debug(f"📊 Camera {camera_id}: Checking stability: {current_count} >= {stability_threshold}? {current_count >= stability_threshold}")
logger.debug(f"📊 Camera {camera_id}: Already stable: {current_track_id in stable_tracks}")
if current_count >= stability_threshold and current_track_id not in stable_tracks:
stable_tracks.add(current_track_id)
occupancy_state["phase"] = "waiting_for_session"
occupancy_state["pipeline_completed"] = False
logger.info(f"✅ Camera {camera_id}: Track ID {current_track_id} STABLE after {current_count} consecutive frames")
logger.info(f"🎯 Camera {camera_id}: TRACK VALIDATION COMPLETE")
logger.debug(f"🎯 Camera {camera_id}: Phase changed to: waiting_for_session")
logger.debug(f"🎯 Camera {camera_id}: Stable tracks now: {list(stable_tracks)}")
return {
"validation_complete": True,
"send_none_detection": True,
"stable_tracks": [current_track_id],
"newly_stable_tracks": [current_track_id],
"current_tracks": [current_track_id]
}
elif current_count >= stability_threshold:
logger.debug(f"📊 Camera {camera_id}: Track {current_track_id} already stable - not re-adding")
else:
# No car detected - ALWAYS clear all tracking and reset counters
logger.debug(f"🚫 Camera {camera_id}: NO CAR DETECTED - clearing all tracking")
if track_counters:
logger.debug(f"🚫 Camera {camera_id}: Existing counters before reset: {dict(track_counters)}")
for track_id in list(track_counters.keys()):
old_count = track_counters.pop(track_id, 0)
stable_tracks.discard(track_id)
logger.info(f"🔄 Camera {camera_id}: No car detected - RESET track {track_id} counter from {old_count} to 0")
logger.debug(f"🚫 Camera {camera_id}: Cleared track {track_id} (was at {old_count}/{stability_threshold})")
track_counters.clear() # Ensure complete reset
stable_tracks.clear() # Clear all stable tracks
logger.debug(f"🚫 Camera {camera_id}: All counters and stable tracks cleared")
else:
logger.debug(f"🚫 Camera {camera_id}: No existing counters to clear")
logger.debug(f"Camera {camera_id}: VALIDATION - no car detected (all counters reset)")
elif current_phase == "waiting_for_session":
# ═══ WAITING PHASE: Maintain track stability ═══
logger.debug(f"⏳ Camera {camera_id}: WAITING FOR SESSION - monitoring stable track")
logger.debug(f"⏳ Camera {camera_id}: Current track_id: {current_track_id}, Stable tracks: {list(stable_tracks)}")
if current_track_id is None or current_track_id not in stable_tracks:
# Lost the stable track
logger.debug(f"⏳ Camera {camera_id}: Stable track lost - clearing all tracking")
stable_tracks.clear()
track_counters.clear()
logger.info(f"🔄 Camera {camera_id}: Lost stable track during waiting phase")
else:
logger.debug(f"⏳ Camera {camera_id}: Stable track {current_track_id} still present")
elif current_phase == "occupancy":
# ═══ OCCUPANCY PHASE: UNUSED in enhanced lightweight mode ═══
# This phase is bypassed by the new lightweight mode system
# Keeping minimal logic for backward compatibility but no CLI logging
if current_track_id is not None and current_track_id in stable_tracks:
occupancy_state["absence_counter"] = 0
else:
occupancy_state["absence_counter"] += 1
# Final return - validation not complete
result = {
"validation_complete": False,
"stable_tracks": list(stable_tracks),
"current_tracks": [current_track_id] if current_track_id is not None else []
}
logger.debug(f"📋 Camera {camera_id}: Track stability result: {result}")
logger.debug(f"📋 Camera {camera_id}: Final counters: {dict(track_counters)}")
logger.debug(f"📋 Camera {camera_id}: Final stable tracks: {list(stable_tracks)}")
return result
# Keep the old function for backward compatibility but mark as deprecated
def update_track_stability_validation(node, detections, camera_id, frame_shape=None, stability_threshold=4):
"""DEPRECATED: Use update_single_track_stability instead."""
logger.warning(f"update_track_stability_validation called for camera {camera_id} - this function is deprecated, use update_single_track_stability instead")
if detections:
best_detection = max(detections, key=lambda x: x.get("confidence", 0))
return update_single_track_stability(node, best_detection, camera_id, frame_shape, stability_threshold)
else:
return update_single_track_stability(node, None, camera_id, frame_shape, stability_threshold)
def update_detection_stability(node, detections, camera_id, frame_shape=None):
"""Legacy detection-based stability counter - DEPRECATED."""
# This function is deprecated in favor of track-based validation only
logger.warning(f"update_detection_stability called for camera {camera_id} - this function is deprecated, use track-based validation instead")
return {"validation_complete": False, "valid_detections": 0, "deprecated": True}
def update_track_stability(node, detections, camera_id, frame_shape=None):
"""Update stability counters with two-phase detection system: validation → occupancy."""
stability_threshold = node.get("stabilityThreshold", 1)
model_id = node.get("modelId", "unknown")
min_bbox_area_ratio = node.get("minBboxAreaRatio", 0.0)
# Note: This function is deprecated - using detection-based stability now
# Get camera-specific stability data
stability_data = get_camera_stability_data(camera_id, model_id)
track_counters = stability_data["track_stability_counters"]
stable_tracks = stability_data["stable_tracks"]
occupancy_state = stability_data["occupancy_state"]
# Validate detections against confidence + area requirements
valid_detections = []
if frame_shape is not None:
frame_height, frame_width = frame_shape[:2]
frame_area = frame_width * frame_height
for detection in detections:
bbox = detection.get("bbox", [])
if len(bbox) >= 4:
x1, y1, x2, y2 = bbox
bbox_width = abs(x2 - x1)
bbox_height = abs(y2 - y1)
bbox_area = bbox_width * bbox_height
area_ratio = bbox_area / frame_area if frame_area > 0 else 0.0
if area_ratio >= min_bbox_area_ratio:
valid_detections.append(detection)
pass # Valid detection - no debug spam
else:
pass # Small detection - no debug spam
else:
valid_detections = detections
current_phase = occupancy_state["phase"]
if current_phase == "validation":
# ═══ VALIDATION PHASE: Count detections until stable ═══
detection_key = f"camera_{camera_id}_detections"
if valid_detections:
# Valid detection found - increment counter
track_counters[detection_key] = track_counters.get(detection_key, 0) + 1
current_count = track_counters[detection_key]
pass # Validation count - shown in main logs
# Check if we've reached the stability threshold
if current_count >= stability_threshold and detection_key not in stable_tracks:
stable_tracks.add(detection_key)
# Switch to waiting for backend session phase
occupancy_state["phase"] = "waiting_for_session"
occupancy_state["absence_counter"] = 0
occupancy_state["pipeline_completed"] = False
logger.info(f"✅ Camera {camera_id}: VALIDATION COMPLETE after {current_count} detections - READY FOR FULL PIPELINE")
else:
# No valid detections - reset validation counter for consecutive requirement
if detection_key in track_counters:
old_count = track_counters[detection_key]
track_counters.pop(detection_key, None)
stable_tracks.discard(detection_key)
logger.info(f"🔄 Camera {camera_id}: VALIDATION RESET - no valid detection, counter reset from {old_count} to 0 (requires consecutive detections)")
else:
logger.debug(f"Camera {camera_id}: VALIDATION - no valid detection, counter remains 0")
elif current_phase == "waiting_for_session":
# ═══ WAITING FOR BACKEND SESSION PHASE ═══
# Don't do occupancy monitoring yet, just maintain validation of current detections
# The main pipeline will handle sessionId detection and phase transition
pass # Waiting phase - no occupancy logic yet
elif current_phase == "occupancy":
# ═══ OCCUPANCY PHASE: Monitor car presence ═══
if valid_detections:
# Car still present - reset absence counter
if occupancy_state["absence_counter"] > 0:
pass # Car detected - counter reset (no debug spam)
occupancy_state["absence_counter"] = 0
else:
# No car detected - increment absence counter
occupancy_state["absence_counter"] += 1
pass # Absence count - will show in timeout log
pass # Phase summary - excessive debug
# Return occupancy state for pipeline decisions
return occupancy_state
def check_stable_tracks(camera_id, model_id, regions_dict):
"""Check if any stable tracks match the detected classes for a specific camera."""
# Get camera-specific stability data
stability_data = get_camera_stability_data(camera_id, model_id)
stable_tracks = stability_data["stable_tracks"]
if not stable_tracks:
return False, []
# Check for track-based stability
stable_detections = []
for class_name, region_data in regions_dict.items():
detection = region_data.get("detection", {})
track_id = detection.get("id")
if track_id is not None and track_id in stable_tracks:
stable_detections.append((class_name, track_id))
logger.debug(f"Camera {camera_id}: Found stable detection: {class_name} with stable track ID {track_id}")
has_stable_tracks = len(stable_detections) > 0
return has_stable_tracks, stable_detections
def reset_tracking_state(camera_id, model_id, reason="session ended"):
"""Reset tracking state after session completion or timeout."""
stability_data = get_camera_stability_data(camera_id, model_id)
session_state = stability_data["session_state"]
# Clear all tracking data for fresh start
stability_data["track_stability_counters"].clear()
stability_data["stable_tracks"].clear()
session_state["active"] = True
session_state["waiting_for_backend_session"] = False
session_state["wait_start_time"] = 0.0
session_state["reset_tracker_on_resume"] = True
logger.info(f"Camera {camera_id}: 🔄 Reset tracking state - {reason}")
logger.info(f"Camera {camera_id}: 🧹 Cleared stability counters and stable tracks for fresh session")
def is_camera_active(camera_id, model_id):
"""Check if camera should be processing detections."""
stability_data = get_camera_stability_data(camera_id, model_id)
session_state = stability_data["session_state"]
# Check if waiting for backend sessionId has timed out
if session_state.get("waiting_for_backend_session", False):
current_time = time.time()
wait_start_time = session_state.get("wait_start_time", 0)
elapsed_time = current_time - wait_start_time
if elapsed_time >= _session_timeout_seconds:
logger.warning(f"Camera {camera_id}: Backend sessionId timeout ({_session_timeout_seconds}s) - resetting tracking")
reset_tracking_state(camera_id, model_id, "backend sessionId timeout")
return True
else:
remaining_time = _session_timeout_seconds - elapsed_time
logger.debug(f"Camera {camera_id}: Still waiting for backend sessionId - {remaining_time:.1f}s remaining")
return False
return session_state.get("active", True)
def cleanup_camera_stability(camera_id):
"""Clean up stability tracking data when a camera is disconnected."""
global _camera_stability_tracking
if camera_id in _camera_stability_tracking:
del _camera_stability_tracking[camera_id]
logger.info(f"Cleaned up stability tracking data for camera {camera_id}")
def occupancy_detector(camera_id, model_id, enable=True):
"""
Temporary function to stop model inference after pipeline completion.
Args:
camera_id (str): Camera identifier
model_id (str): Model identifier
enable (bool): True to enable occupancy mode (stop model after pipeline), False to disable
When enabled:
- Model stops inference after completing full pipeline
- Backend sessionId handling continues in background
Note: This is a temporary function that will be changed in the future.
"""
stability_data = get_camera_stability_data(camera_id, model_id)
session_state = stability_data["session_state"]
if enable:
session_state["occupancy_mode"] = True
session_state["occupancy_enabled_at"] = time.time()
# Occupancy mode logging removed - not used in enhanced lightweight mode
else:
session_state["occupancy_mode"] = False
session_state.pop("occupancy_enabled_at", None)
# Occupancy mode logging removed - not used in enhanced lightweight mode
return session_state.get("occupancy_mode", False)
def validate_pipeline_execution(node, regions_dict):
"""
Pre-validate that all required branches will execute successfully before
committing to Redis actions and database records.
Returns:
- (True, []) if pipeline can execute completely
- (False, missing_branches) if some required branches won't execute
"""
# Get all branches that parallel actions are waiting for
required_branches = set()
for action in node.get("parallelActions", []):
if action.get("type") == "postgresql_update_combined":
wait_for_branches = action.get("waitForBranches", [])
required_branches.update(wait_for_branches)
if not required_branches:
# No parallel actions requiring specific branches
logger.debug("No parallel actions with waitForBranches - validation passes")
return True, []
logger.debug(f"Pre-validation: checking if required branches {list(required_branches)} will execute")
# Check each required branch
missing_branches = []
for branch in node.get("branches", []):
branch_id = branch["modelId"]
if branch_id not in required_branches:
continue # This branch is not required by parallel actions
# Check if this branch would be triggered
trigger_classes = branch.get("triggerClasses", [])
min_conf = branch.get("minConfidence", 0)
branch_triggered = False
for det_class in regions_dict:
det_confidence = regions_dict[det_class]["confidence"]
if (det_class in trigger_classes and det_confidence >= min_conf):
branch_triggered = True
logger.debug(f"Pre-validation: branch {branch_id} WILL be triggered by {det_class} (conf={det_confidence:.3f} >= {min_conf})")
break
if not branch_triggered:
missing_branches.append(branch_id)
logger.warning(f"Pre-validation: branch {branch_id} will NOT be triggered - no matching classes or insufficient confidence")
logger.debug(f" Required: {trigger_classes} with min_conf={min_conf}")
logger.debug(f" Available: {[(cls, regions_dict[cls]['confidence']) for cls in regions_dict]}")
if missing_branches:
logger.error(f"Pipeline pre-validation FAILED: required branches {missing_branches} will not execute")
return False, missing_branches
else:
logger.info(f"Pipeline pre-validation PASSED: all required branches {list(required_branches)} will execute")
return True, []
def run_lightweight_detection_with_validation(frame, node: dict, min_confidence=0.7, min_bbox_area_ratio=0.3):
"""
Run lightweight detection with validation rules for session ID triggering.
Returns detection info only if it passes validation thresholds.
"""
logger.debug(f"Running lightweight detection with validation: {node['modelId']} (conf>={min_confidence}, bbox_area>={min_bbox_area_ratio})")
try:
# Run basic detection only - no branches, no actions
model = node["model"]
trigger_classes = node.get("triggerClasses", [])
trigger_class_indices = node.get("triggerClassIndices")
# Run YOLO inference
res = model(frame, verbose=False)
best_detection = None
frame_height, frame_width = frame.shape[:2]
frame_area = frame_height * frame_width
for r in res:
boxes = r.boxes
if boxes is None or len(boxes) == 0:
continue
for box in boxes:
# Extract detection info
xyxy = box.xyxy[0].cpu().numpy()
conf = box.conf[0].cpu().numpy()
cls_id = int(box.cls[0].cpu().numpy())
class_name = model.names[cls_id]
# Apply confidence threshold
if conf < min_confidence:
continue
# Apply trigger class filtering if specified
if trigger_class_indices and cls_id not in trigger_class_indices:
continue
if trigger_classes and class_name not in trigger_classes:
continue
# Calculate bbox area ratio
x1, y1, x2, y2 = xyxy
bbox_area = (x2 - x1) * (y2 - y1)
bbox_area_ratio = bbox_area / frame_area if frame_area > 0 else 0
# Apply bbox area threshold
if bbox_area_ratio < min_bbox_area_ratio:
logger.debug(f"Detection filtered out: bbox_area_ratio={bbox_area_ratio:.3f} < {min_bbox_area_ratio}")
continue
# Validation passed
if not best_detection or conf > best_detection["confidence"]:
best_detection = {
"class": class_name,
"confidence": float(conf),
"bbox": [int(x) for x in xyxy],
"bbox_area_ratio": float(bbox_area_ratio),
"validation_passed": True
}
if best_detection:
logger.debug(f"Validation PASSED: {best_detection['class']} (conf: {best_detection['confidence']:.3f}, area: {best_detection['bbox_area_ratio']:.3f})")
return best_detection
else:
logger.debug(f"Validation FAILED: No detection meets criteria (conf>={min_confidence}, area>={min_bbox_area_ratio})")
return {"validation_passed": False}
except Exception as e:
logger.error(f"Error in lightweight detection with validation: {str(e)}", exc_info=True)
return {"validation_passed": False}
def run_lightweight_detection(frame, node: dict):
"""
Run lightweight detection for car presence validation only.
Returns basic detection info without running branches or external actions.
"""
logger.debug(f"Running lightweight detection: {node['modelId']}")
try:
# Run basic detection only - no branches, no actions
model = node["model"]
min_confidence = node.get("minConfidence", 0.5)
trigger_classes = node.get("triggerClasses", [])
trigger_class_indices = node.get("triggerClassIndices")
# Run YOLO inference
res = model(frame, verbose=False)
car_detected = False
best_detection = None
for r in res:
boxes = r.boxes
if boxes is None or len(boxes) == 0:
continue
for box in boxes:
# Extract detection info
xyxy = box.xyxy[0].cpu().numpy()
conf = box.conf[0].cpu().numpy()
cls_id = int(box.cls[0].cpu().numpy())
class_name = model.names[cls_id]
# Apply confidence threshold
if conf < min_confidence:
continue
# Apply trigger class filtering if specified
if trigger_class_indices and cls_id not in trigger_class_indices:
continue
if trigger_classes and class_name not in trigger_classes:
continue
# Car detected
car_detected = True
if not best_detection or conf > best_detection["confidence"]:
best_detection = {
"class": class_name,
"confidence": float(conf),
"bbox": [int(x) for x in xyxy]
}
logger.debug(f"Lightweight detection result: car_detected={car_detected}")
if best_detection:
logger.debug(f"Best detection: {best_detection['class']} (conf: {best_detection['confidence']:.3f})")
return {
"car_detected": car_detected,
"best_detection": best_detection
}
except Exception as e:
logger.error(f"Error in lightweight detection: {str(e)}", exc_info=True)
return {"car_detected": False, "best_detection": None}
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
"""
Enhanced pipeline that supports:
- Multi-class detection (detecting multiple classes simultaneously)
- Parallel branch processing
- Region-based actions and cropping
- Context passing for session/camera information
"""
try:
# Extract backend sessionId from context at the start of function
backend_session_id = context.get("backend_session_id") if context else None
camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown")
if backend_session_id:
logger.info(f"🔑 PIPELINE USING BACKEND SESSION_ID: {backend_session_id} for camera {camera_id}")
task = getattr(node["model"], "task", None)
# ─── Classification stage ───────────────────────────────────
if task == "classify":
results = node["model"].predict(frame, stream=False)
if not results:
return (None, None) if return_bbox else None
r = results[0]
probs = r.probs
if probs is None:
return (None, None) if return_bbox else None
top1_idx = int(probs.top1)
top1_conf = float(probs.top1conf)
class_name = node["model"].names[top1_idx]
det = {
"class": class_name,
"confidence": top1_conf,
"id": None,
class_name: class_name # Add class name as key for backward compatibility
}
# Add specific field mappings for database operations based on model type
model_id = node.get("modelId", "").lower()
if "brand" in model_id or "brand_cls" in model_id:
det["brand"] = class_name
elif "bodytype" in model_id or "body" in model_id:
det["body_type"] = class_name
elif "color" in model_id:
det["color"] = class_name
execute_actions(node, frame, det, context.get("regions_dict") if context else None)
return (det, None) if return_bbox else det
# ─── Occupancy mode check (stop future frames after pipeline completion) ───────────────────────────────────────
# Old occupancy mode logic removed - now using two-phase detection system
# ─── Session management check ───────────────────────────────────────
if not is_camera_active(camera_id, model_id):
logger.debug(f"⏰ Camera {camera_id}: Waiting for backend sessionId, sending 'none' detection")
none_detection = {
"class": "none",
"confidence": 1.0,
"bbox": [0, 0, 0, 0],
"branch_results": {}
}
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
# ─── Detection stage - Using structured detection function ──────────────────
all_detections, regions_dict, track_validation_result = run_detection_with_tracking(frame, node, context)
if not all_detections:
logger.debug("No detections from structured detection function - sending 'none' detection")
none_detection = {
"class": "none",
"confidence": 1.0,
"bbox": [0, 0, 0, 0],
"branch_results": {}
}
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
# Extract bounding boxes for compatibility
all_boxes = [det["bbox"] for det in all_detections]
# ─── Track-Based Validation System: Using Track ID Stability ────────────────────────
tracking_config = node.get("tracking", {})
stability_threshold = tracking_config.get("stabilityThreshold", node.get("stabilityThreshold", 1))
camera_id = context.get("camera_id", "unknown") if context else "unknown"
if stability_threshold > 1 and tracking_config.get("enabled", True):
# Extract occupancy state from stability data (updated by track validation function)
model_id = node.get("modelId", "unknown")
stability_data = get_camera_stability_data(camera_id, model_id)
occupancy_state = stability_data["occupancy_state"]
current_phase = occupancy_state.get("phase", "validation")
absence_counter = occupancy_state.get("absence_counter", 0)
max_absence_frames = occupancy_state.get("max_absence_frames", 3)
if current_phase == "validation":
# ═══ TRACK VALIDATION PHASE ═══
# Check if this is a branch node - branches should execute regardless of main validation state
is_branch_node = node.get("cropClass") is not None or node.get("parallel") is True
if is_branch_node:
# This is a branch node - allow normal execution regardless of main pipeline validation
logger.debug(f"🔍 Camera {camera_id}: Branch node {model_id} executing during track validation phase")
else:
# Main pipeline node during track validation - check for stable tracks
stable_tracks = track_validation_result.get("stable_tracks", [])
if not stable_tracks:
# No stable tracks yet - return detection without branches until track validation completes
if all_detections:
# Return the best detection but skip branches during validation
primary_detection = max(all_detections, key=lambda x: x["confidence"])
logger.debug(f"🔍 Camera {camera_id}: TRACK VALIDATION PHASE - returning detection without branches (stable_tracks: {len(stable_tracks)}, sessionId: {backend_session_id or 'none'})")
else:
# No detection - return none
primary_detection = {"class": "none", "confidence": 0.0, "bbox": [0, 0, 0, 0]}
logger.debug(f"🔍 Camera {camera_id}: TRACK VALIDATION PHASE - no detection found (sessionId: {backend_session_id or 'none'})")
primary_bbox = primary_detection.get("bbox", [0, 0, 0, 0])
return (primary_detection, primary_bbox) if return_bbox else primary_detection
else:
# We have stable tracks - validation is complete, proceed with pipeline
logger.info(f"🎯 Camera {camera_id}: STABLE TRACKS DETECTED - proceeding with full pipeline (tracks: {stable_tracks})")
elif current_phase == "waiting_for_session":
# ═══ WAITING FOR BACKEND SESSION PHASE ═══
if backend_session_id:
# Backend has responded with sessionId - NOW run the full pipeline for the first time
logger.info(f"🎯 Camera {camera_id}: BACKEND SESSION RECEIVED - RUNNING FULL PIPELINE (sessionId: {backend_session_id})")
occupancy_state["phase"] = "occupancy"
occupancy_state["absence_counter"] = 0
# Continue with normal pipeline processing now that we have sessionId
else:
# Still waiting for backend sessionId - send None detection dict to trigger sessionId generation
if not occupancy_state["pipeline_completed"]:
# First time in waiting phase - send empty detection to trigger sessionId
logger.info(f"⚙️ Camera {camera_id}: WAITING PHASE - sending empty detection {{}} for sessionId generation")
occupancy_state["pipeline_completed"] = True
# Return a special detection that signals app.py to send empty detection: {}
none_detection = {
"class": "validation_complete",
"confidence": 1.0,
"bbox": [0, 0, 0, 0],
"send_empty_detection": True
}
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
else:
# Already sent None detection - continue waiting for sessionId
logger.debug(f"⏳ Camera {camera_id}: WAITING FOR BACKEND SESSION - None detection already sent, waiting for sessionId")
waiting_detection = {
"class": "waiting_session_id",
"confidence": 1.0,
"bbox": [0, 0, 0, 0],
"waiting_for_session": True
}
return (waiting_detection, [0, 0, 0, 0]) if return_bbox else waiting_detection
elif current_phase == "occupancy":
# ═══ OCCUPANCY PHASE ═══
stable_tracks = track_validation_result.get("stable_tracks", [])
current_tracks = track_validation_result.get("current_tracks", [])
# Check if any stable tracks are still present
stable_tracks_present = bool(set(stable_tracks) & set(current_tracks))
if absence_counter >= max_absence_frames:
# Stable tracks have been absent for too long - trigger "none" detection and reset
# Occupancy timeout logging removed - not used in enhanced lightweight mode
# Reset occupancy state to validation phase
stability_data = get_camera_stability_data(camera_id, model_id)
stability_data["occupancy_state"]["phase"] = "validation"
stability_data["occupancy_state"]["absence_counter"] = 0
stability_data["track_stability_counters"].clear()
stability_data["stable_tracks"].clear()
logger.info(f"🔄 Camera {camera_id}: RESET TO VALIDATION PHASE - cleared track stability tracking (sessionId should become null)")
# Return "none" detection to trigger cache clearing in app.py
none_detection = {"class": "none", "confidence": 1.0, "bbox": [0, 0, 0, 0], "occupancy_triggered": True}
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
else:
# Still in occupancy phase - check if stable tracks are present
if stable_tracks_present:
# Stable tracks detected - continue with cached result or light processing
# Occupancy phase logging removed - not used in enhanced lightweight mode
pass
else:
# No stable tracks - absence counter was already incremented in track validation
# Occupancy phase logging removed - not used in enhanced lightweight mode
pass
# Continue with normal pipeline processing
pass
# ─── Pre-validate pipeline execution (only proceed if we have stable tracks for main pipeline) ────────────────────────
is_branch_node = node.get("cropClass") is not None or node.get("parallel") is True
if not is_branch_node and stability_threshold > 1 and tracking_config.get("enabled", True):
# Main pipeline node with tracking - check for stable tracks before proceeding
stable_tracks = track_validation_result.get("stable_tracks", [])
if not stable_tracks:
logger.debug(f"🔒 Camera {camera_id}: Main pipeline requires stable tracks - none found, skipping pipeline execution")
none_detection = {"class": "none", "confidence": 1.0, "bbox": [0, 0, 0, 0], "awaiting_stable_tracks": True}
return (none_detection, [0, 0, 0, 0]) if return_bbox else none_detection
pipeline_valid, missing_branches = validate_pipeline_execution(node, regions_dict)
if not pipeline_valid:
logger.error(f"Pipeline execution validation FAILED - required branches {missing_branches} cannot execute")
logger.error("Aborting pipeline: no Redis actions or database records will be created")
return (None, None) if return_bbox else None
# ─── Execute actions with region information ────────────────
detection_result = {
"detections": all_detections,
"regions": regions_dict,
**(context or {})
}
# ─── Database operations will be handled when backend sessionId is received ────
if node.get("db_manager") and regions_dict:
detected_classes = list(regions_dict.keys())
logger.debug(f"Valid detections found: {detected_classes}")
if backend_session_id:
# Backend sessionId is available, proceed with database operations
from datetime import datetime
display_id = detection_result.get("display_id", "unknown")
timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
inserted_session_id = node["db_manager"].insert_initial_detection(
display_id=display_id,
captured_timestamp=timestamp,
session_id=backend_session_id
)
if inserted_session_id:
detection_result["session_id"] = inserted_session_id
detection_result["timestamp"] = timestamp
logger.info(f"💾 DATABASE RECORD CREATED with backend session_id: {inserted_session_id}")
logger.debug(f"Database record: display_id={display_id}, timestamp={timestamp}")
else:
logger.error(f"Failed to create database record with backend session_id: {backend_session_id}")
else:
logger.info(f"📡 Camera {camera_id}: Full pipeline completed, detection data will be sent to backend. Database operations will occur when sessionId is received.")
# Store detection info for later database operations when sessionId arrives
detection_result["awaiting_session_id"] = True
from datetime import datetime
detection_result["timestamp"] = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# Execute actions for root node only if it doesn't have branches
# Branch nodes with actions will execute them after branch processing
if not node.get("branches") or node.get("modelId") == "yolo11n":
execute_actions(node, frame, detection_result, regions_dict)
# ─── Branch processing (no stability check here) ─────────────────────────────
if node["branches"]:
branch_results = {}
# Extract camera_id for logging
camera_id = detection_result.get("camera_id", context.get("camera_id", "unknown") if context else "unknown")
# Filter branches that should be triggered
active_branches = []
for br in node["branches"]:
trigger_classes = br.get("triggerClasses", [])
min_conf = br.get("minConfidence", 0)
logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
# Check if any detected class matches branch trigger
branch_triggered = False
for det_class in regions_dict:
det_confidence = regions_dict[det_class]["confidence"]
logger.debug(f" Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
if (det_class in trigger_classes and det_confidence >= min_conf):
active_branches.append(br)
branch_triggered = True
logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
break
if not branch_triggered:
logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
if active_branches:
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
# Run branches in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
futures = {}
for br in active_branches:
sub_frame = frame
crop_class = br.get("cropClass")
logger.info(f"Starting parallel branch: {br['modelId']}, cropClass: {crop_class}")
if br.get("crop", False) and crop_class:
if crop_class in regions_dict:
cropped = crop_region_by_class(frame, regions_dict, crop_class)
if cropped is not None:
sub_frame = cropped # Use cropped image without manual resizing
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']} - model will handle resizing")
else:
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
continue
else:
logger.warning(f"Crop class {crop_class} not found in detected regions for {br['modelId']}, skipping branch")
continue
# Add regions_dict and session_id to context for child branches
branch_context = dict(context) if context else {}
branch_context["regions_dict"] = regions_dict
# Pass session_id from detection_result to branch context for Redis actions
if "session_id" in detection_result:
branch_context["session_id"] = detection_result["session_id"]
logger.debug(f"Added session_id to branch context: {detection_result['session_id']}")
elif backend_session_id:
branch_context["session_id"] = backend_session_id
logger.debug(f"Added backend_session_id to branch context: {backend_session_id}")
future = executor.submit(run_pipeline, sub_frame, br, True, branch_context)
futures[future] = br
# Collect results
for future in concurrent.futures.as_completed(futures):
br = futures[future]
try:
result, _ = future.result()
if result:
branch_results[br["modelId"]] = result
logger.info(f"Branch {br['modelId']} completed: {result}")
# Collect nested branch results if they exist
if "branch_results" in result:
for nested_id, nested_result in result["branch_results"].items():
branch_results[nested_id] = nested_result
logger.info(f"Collected nested branch result: {nested_id} = {nested_result}")
except Exception as e:
logger.error(f"Branch {br['modelId']} failed: {e}")
else:
# Run branches sequentially
for br in active_branches:
sub_frame = frame
crop_class = br.get("cropClass")
logger.info(f"Starting sequential branch: {br['modelId']}, cropClass: {crop_class}")
if br.get("crop", False) and crop_class:
if crop_class in regions_dict:
cropped = crop_region_by_class(frame, regions_dict, crop_class)
if cropped is not None:
sub_frame = cropped # Use cropped image without manual resizing
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']} - model will handle resizing")
else:
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
continue
else:
logger.warning(f"Crop class {crop_class} not found in detected regions for {br['modelId']}, skipping branch")
continue
try:
# Add regions_dict and session_id to context for child branches
branch_context = dict(context) if context else {}
branch_context["regions_dict"] = regions_dict
# Pass session_id from detection_result to branch context for Redis actions
if "session_id" in detection_result:
branch_context["session_id"] = detection_result["session_id"]
logger.debug(f"Added session_id to sequential branch context: {detection_result['session_id']}")
elif backend_session_id:
branch_context["session_id"] = backend_session_id
logger.debug(f"Added backend_session_id to sequential branch context: {backend_session_id}")
result, _ = run_pipeline(sub_frame, br, True, branch_context)
if result:
branch_results[br["modelId"]] = result
logger.info(f"Branch {br['modelId']} completed: {result}")
# Collect nested branch results if they exist
if "branch_results" in result:
for nested_id, nested_result in result["branch_results"].items():
branch_results[nested_id] = nested_result
logger.info(f"Collected nested branch result: {nested_id} = {nested_result}")
else:
logger.warning(f"Branch {br['modelId']} returned no result")
except Exception as e:
logger.error(f"Error in sequential branch {br['modelId']}: {e}")
import traceback
logger.debug(f"Branch error traceback: {traceback.format_exc()}")
# Store branch results in detection_result for parallel actions
detection_result["branch_results"] = branch_results
# ─── Execute Parallel Actions ───────────────────────────────
if node.get("parallelActions") and "branch_results" in detection_result:
execute_parallel_actions(node, frame, detection_result, regions_dict)
# ─── Auto-enable occupancy mode after successful pipeline completion ─────────────────
camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown")
# Enable occupancy detector automatically after first successful pipeline
# Auto-enabling occupancy logging removed - not used in enhanced lightweight mode
occupancy_detector(camera_id, model_id, enable=True)
logger.info(f"✅ Camera {camera_id}: Pipeline completed, detection data will be sent to backend")
logger.info(f"🛑 Camera {camera_id}: Model will stop inference for future frames")
logger.info(f"📡 Backend sessionId will be handled when received via WebSocket")
# ─── Execute actions after successful detection AND branch processing ──────────
# This ensures detection nodes (like frontal_detection_v1) execute their actions
# after completing both detection and branch processing
if node.get("actions") and regions_dict and node.get("modelId") != "yolo11n":
# Execute actions for branch detection nodes, skip root to avoid duplication
logger.debug(f"Executing post-detection actions for branch node {node.get('modelId')}")
execute_actions(node, frame, detection_result, regions_dict)
# ─── Return detection result ────────────────────────────────
primary_detection = max(all_detections, key=lambda x: x["confidence"])
primary_bbox = primary_detection["bbox"]
# Add branch results and session_id to primary detection for compatibility
if "branch_results" in detection_result:
primary_detection["branch_results"] = detection_result["branch_results"]
if "session_id" in detection_result:
primary_detection["session_id"] = detection_result["session_id"]
return (primary_detection, primary_bbox) if return_bbox else primary_detection
except Exception as e:
logger.error(f"Error in node {node.get('modelId')}: {e}")
import traceback
traceback.print_exc()
return (None, None) if return_bbox else None