python-detector-worker/core/detection/pipeline.py
2025-09-24 20:39:32 +07:00

981 lines
No EOL
41 KiB
Python

"""
Detection Pipeline Module.
Main detection pipeline orchestration that coordinates detection flow and execution.
"""
import logging
import time
import uuid
from datetime import datetime
from typing import Dict, List, Optional, Any
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from ..models.inference import YOLOWrapper
from ..models.pipeline import PipelineParser
from .branches import BranchProcessor
from ..storage.redis import RedisManager
from ..storage.database import DatabaseManager
logger = logging.getLogger(__name__)
class DetectionPipeline:
"""
Main detection pipeline that orchestrates the complete detection flow.
Handles detection execution, branch coordination, and result aggregation.
"""
def __init__(self, pipeline_parser: PipelineParser, model_manager: Any, message_sender=None):
"""
Initialize detection pipeline.
Args:
pipeline_parser: Pipeline parser with loaded configuration
model_manager: Model manager for loading models
message_sender: Optional callback function for sending WebSocket messages
"""
self.pipeline_parser = pipeline_parser
self.model_manager = model_manager
self.message_sender = message_sender
# Initialize components
self.branch_processor = BranchProcessor(model_manager)
self.redis_manager = None
self.db_manager = None
# Main detection model
self.detection_model: Optional[YOLOWrapper] = None
self.detection_model_id = None
# Thread pool for parallel processing
self.executor = ThreadPoolExecutor(max_workers=4)
# Pipeline configuration
self.pipeline_config = pipeline_parser.pipeline_config
# Statistics
self.stats = {
'detections_processed': 0,
'branches_executed': 0,
'actions_executed': 0,
'total_processing_time': 0.0
}
logger.info("DetectionPipeline initialized")
async def initialize(self) -> bool:
"""
Initialize all pipeline components including models, Redis, and database.
Returns:
True if successful, False otherwise
"""
try:
# Initialize Redis connection
if self.pipeline_parser.redis_config:
self.redis_manager = RedisManager(self.pipeline_parser.redis_config.__dict__)
if not await self.redis_manager.initialize():
logger.error("Failed to initialize Redis connection")
return False
logger.info("Redis connection initialized")
# Initialize database connection
if self.pipeline_parser.postgresql_config:
self.db_manager = DatabaseManager(self.pipeline_parser.postgresql_config.__dict__)
if not self.db_manager.connect():
logger.error("Failed to initialize database connection")
return False
# Create required tables
if not self.db_manager.create_car_frontal_info_table():
logger.warning("Failed to create car_frontal_info table")
logger.info("Database connection initialized")
# Initialize main detection model
if not await self._initialize_detection_model():
logger.error("Failed to initialize detection model")
return False
# Initialize branch processor
if not await self.branch_processor.initialize(
self.pipeline_config,
self.redis_manager,
self.db_manager
):
logger.error("Failed to initialize branch processor")
return False
logger.info("Detection pipeline initialization completed successfully")
return True
except Exception as e:
logger.error(f"Error initializing detection pipeline: {e}", exc_info=True)
return False
async def _initialize_detection_model(self) -> bool:
"""
Load and initialize the main detection model.
Returns:
True if successful, False otherwise
"""
try:
if not self.pipeline_config:
logger.warning("No pipeline configuration found")
return False
model_file = getattr(self.pipeline_config, 'model_file', None)
model_id = getattr(self.pipeline_config, 'model_id', None)
if not model_file:
logger.warning("No detection model file specified")
return False
# Load detection model
logger.info(f"Loading detection model: {model_id} ({model_file})")
# Get the model ID from the ModelManager context
pipeline_models = list(self.model_manager.get_all_downloaded_models())
if pipeline_models:
actual_model_id = pipeline_models[0] # Use the first available model
self.detection_model = self.model_manager.get_yolo_model(actual_model_id, model_file)
else:
logger.error("No models available in ModelManager")
return False
self.detection_model_id = model_id
if self.detection_model:
logger.info(f"Detection model {model_id} loaded successfully")
return True
else:
logger.error(f"Failed to load detection model {model_id}")
return False
except Exception as e:
logger.error(f"Error initializing detection model: {e}", exc_info=True)
return False
async def execute_detection_phase(self,
frame: np.ndarray,
display_id: str,
subscription_id: str) -> Dict[str, Any]:
"""
Execute only the detection phase - run main detection and send imageDetection message.
This is the first phase that runs when a vehicle is validated.
Args:
frame: Input frame to process
display_id: Display identifier
subscription_id: Subscription identifier
Returns:
Dictionary with detection phase results
"""
start_time = time.time()
result = {
'status': 'success',
'detections': [],
'message_sent': False,
'processing_time': 0.0,
'timestamp': datetime.now().isoformat()
}
try:
# Run main detection model
if not self.detection_model:
result['status'] = 'error'
result['message'] = 'Detection model not available'
return result
# Create detection context
detection_context = {
'display_id': display_id,
'subscription_id': subscription_id,
'timestamp': datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
'timestamp_ms': int(time.time() * 1000)
}
# Run inference on single snapshot using .predict() method
detection_results = self.detection_model.model.predict(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
verbose=False
)
# Process detection results using clean logic
valid_detections = []
detected_regions = {}
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
# Handle .predict() results which have .boxes for detection models
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[DETECTION PHASE] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
for i, box in enumerate(result_obj.boxes):
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = self.detection_model.model.names[class_id]
logger.info(f"[DETECTION PHASE {i+1}] {class_name}: bbox={bbox}, conf={confidence:.3f}")
# Check if detection matches trigger classes
if trigger_classes and class_name not in trigger_classes:
logger.debug(f"[DETECTION PHASE] Filtered '{class_name}' - not in trigger_classes {trigger_classes}")
continue
logger.info(f"[DETECTION PHASE] Accepted '{class_name}' - matches trigger_classes")
# Store detection info
detection_info = {
'class_name': class_name,
'confidence': confidence,
'bbox': bbox
}
valid_detections.append(detection_info)
# Store region for processing phase
detected_regions[class_name] = {
'bbox': bbox,
'confidence': confidence
}
else:
logger.warning("[DETECTION PHASE] No boxes found in detection results")
# Store detected_regions in result for processing phase
result['detected_regions'] = detected_regions
result['detections'] = valid_detections
# If we have valid detections, send imageDetection message with empty detection
if valid_detections:
logger.info(f"Found {len(valid_detections)} valid detections, sending imageDetection message")
# Send imageDetection with empty detection data
message_sent = await self._send_image_detection_message(
subscription_id=subscription_id,
detection_context=detection_context
)
result['message_sent'] = message_sent
if message_sent:
logger.info(f"Detection phase completed - imageDetection message sent for {display_id}")
else:
logger.warning(f"Failed to send imageDetection message for {display_id}")
else:
logger.debug("No valid detections found in detection phase")
except Exception as e:
logger.error(f"Error in detection phase: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
result['processing_time'] = time.time() - start_time
return result
async def execute_processing_phase(self,
frame: np.ndarray,
display_id: str,
session_id: str,
subscription_id: str,
detected_regions: Dict[str, Any] = None) -> Dict[str, Any]:
"""
Execute the processing phase - run branches and database operations after receiving sessionId.
This is the second phase that runs after backend sends setSessionId.
Args:
frame: Input frame to process
display_id: Display identifier
session_id: Session ID from backend
subscription_id: Subscription identifier
detected_regions: Pre-detected regions from detection phase
Returns:
Dictionary with processing phase results
"""
start_time = time.time()
result = {
'status': 'success',
'branch_results': {},
'actions_executed': [],
'session_id': session_id,
'processing_time': 0.0,
'timestamp': datetime.now().isoformat()
}
try:
# Create enhanced detection context with session_id
detection_context = {
'display_id': display_id,
'session_id': session_id,
'subscription_id': subscription_id,
'timestamp': datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
'timestamp_ms': int(time.time() * 1000),
'uuid': str(uuid.uuid4()),
'filename': f"{uuid.uuid4()}.jpg"
}
# If no detected_regions provided, re-run detection to get them
if not detected_regions:
# Use .predict() method for detection
detection_results = self.detection_model.model.predict(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
verbose=False
)
detected_regions = {}
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
for box in result_obj.boxes:
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = self.detection_model.model.names[class_id]
detected_regions[class_name] = {
'bbox': bbox,
'confidence': confidence
}
# Initialize database record with session_id
if session_id and self.db_manager:
success = self.db_manager.insert_initial_detection(
display_id=display_id,
captured_timestamp=detection_context['timestamp'],
session_id=session_id
)
if success:
logger.info(f"Created initial database record with session {session_id}")
else:
logger.warning(f"Failed to create initial database record for session {session_id}")
# Execute branches in parallel
if hasattr(self.pipeline_config, 'branches') and self.pipeline_config.branches:
branch_results = await self.branch_processor.execute_branches(
frame=frame,
branches=self.pipeline_config.branches,
detected_regions=detected_regions,
detection_context=detection_context
)
result['branch_results'] = branch_results
logger.info(f"Executed {len(branch_results)} branches for session {session_id}")
# Execute immediate actions (non-parallel)
immediate_actions = getattr(self.pipeline_config, 'actions', [])
if immediate_actions:
executed_actions = await self._execute_immediate_actions(
actions=immediate_actions,
frame=frame,
detected_regions=detected_regions,
detection_context=detection_context
)
result['actions_executed'].extend(executed_actions)
# Execute parallel actions (after all branches complete)
parallel_actions = getattr(self.pipeline_config, 'parallel_actions', [])
if parallel_actions:
# Add branch results to context
enhanced_context = {**detection_context}
if result['branch_results']:
enhanced_context['branch_results'] = result['branch_results']
executed_parallel_actions = await self._execute_parallel_actions(
actions=parallel_actions,
frame=frame,
detected_regions=detected_regions,
context=enhanced_context
)
result['actions_executed'].extend(executed_parallel_actions)
logger.info(f"Processing phase completed for session {session_id}: "
f"{len(result['branch_results'])} branches, {len(result['actions_executed'])} actions")
except Exception as e:
logger.error(f"Error in processing phase: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
result['processing_time'] = time.time() - start_time
return result
async def _send_image_detection_message(self,
subscription_id: str,
detection_context: Dict[str, Any]) -> bool:
"""
Send imageDetection message with empty detection data to backend.
Args:
subscription_id: Subscription identifier
detection_context: Detection context data
Returns:
True if message sent successfully, False otherwise
"""
try:
if not self.message_sender:
logger.warning("No message sender available for imageDetection")
return False
# Import here to avoid circular imports
from ..communication.messages import create_image_detection
# Create empty detection data as specified
detection_data = {}
# Get model info from pipeline configuration
model_id = 52 # Default model ID
model_name = "yolo11m" # Default
if self.pipeline_config:
model_name = getattr(self.pipeline_config, 'model_id', 'yolo11m')
# Try to extract numeric model ID from pipeline context, fallback to default
if hasattr(self.pipeline_config, 'model_id'):
# For now, use default model ID since pipeline config stores string identifiers
model_id = 52
# Create imageDetection message
detection_message = create_image_detection(
subscription_identifier=subscription_id,
detection_data=detection_data,
model_id=model_id,
model_name=model_name
)
# Send to backend via WebSocket
await self.message_sender(detection_message)
logger.info(f"[DETECTION PHASE] Sent imageDetection with empty detection: {detection_data}")
return True
except Exception as e:
logger.error(f"Error sending imageDetection message: {e}", exc_info=True)
return False
async def execute_detection(self,
frame: np.ndarray,
display_id: str,
session_id: Optional[str] = None,
subscription_id: Optional[str] = None) -> Dict[str, Any]:
"""
Execute the main detection pipeline on a frame.
Args:
frame: Input frame to process
display_id: Display identifier
session_id: Optional session ID
subscription_id: Optional subscription identifier
Returns:
Dictionary with detection results
"""
start_time = time.time()
result = {
'status': 'success',
'detections': [],
'branch_results': {},
'actions_executed': [],
'session_id': session_id,
'processing_time': 0.0,
'timestamp': datetime.now().isoformat()
}
try:
# Update stats
self.stats['detections_processed'] += 1
# Run main detection model
if not self.detection_model:
result['status'] = 'error'
result['message'] = 'Detection model not available'
return result
# Create detection context
detection_context = {
'display_id': display_id,
'session_id': session_id,
'subscription_id': subscription_id,
'timestamp': datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
'timestamp_ms': int(time.time() * 1000),
'uuid': str(uuid.uuid4()),
'filename': f"{uuid.uuid4()}.jpg"
}
# Run inference on single snapshot using .predict() method
detection_results = self.detection_model.model.predict(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
verbose=False
)
# Process detection results
detected_regions = {}
valid_detections = []
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
# Handle .predict() results which have .boxes for detection models
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[PIPELINE RAW] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
for i, box in enumerate(result_obj.boxes):
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = self.detection_model.model.names[class_id]
logger.info(f"[PIPELINE RAW {i+1}] {class_name}: bbox={bbox}, conf={confidence:.3f}")
# Check if detection matches trigger classes
if trigger_classes and class_name not in trigger_classes:
continue
# Store detection info
detection_info = {
'class_name': class_name,
'confidence': confidence,
'bbox': bbox
}
valid_detections.append(detection_info)
# Store region for cropping
detected_regions[class_name] = {
'bbox': bbox,
'confidence': confidence
}
logger.info(f"[PIPELINE DETECTION] {class_name}: bbox={bbox}, conf={confidence:.3f}")
result['detections'] = valid_detections
# If we have valid detections, proceed with branches and actions
if valid_detections:
logger.info(f"Found {len(valid_detections)} valid detections for pipeline processing")
# Initialize database record if session_id is provided
if session_id and self.db_manager:
success = self.db_manager.insert_initial_detection(
display_id=display_id,
captured_timestamp=detection_context['timestamp'],
session_id=session_id
)
if not success:
logger.warning(f"Failed to create initial database record for session {session_id}")
# Execute branches in parallel
if hasattr(self.pipeline_config, 'branches') and self.pipeline_config.branches:
branch_results = await self.branch_processor.execute_branches(
frame=frame,
branches=self.pipeline_config.branches,
detected_regions=detected_regions,
detection_context=detection_context
)
result['branch_results'] = branch_results
self.stats['branches_executed'] += len(branch_results)
# Execute immediate actions (non-parallel)
immediate_actions = getattr(self.pipeline_config, 'actions', [])
if immediate_actions:
executed_actions = await self._execute_immediate_actions(
actions=immediate_actions,
frame=frame,
detected_regions=detected_regions,
detection_context=detection_context
)
result['actions_executed'].extend(executed_actions)
# Execute parallel actions (after all branches complete)
parallel_actions = getattr(self.pipeline_config, 'parallel_actions', [])
if parallel_actions:
# Add branch results to context
enhanced_context = {**detection_context}
if result['branch_results']:
enhanced_context['branch_results'] = result['branch_results']
executed_parallel_actions = await self._execute_parallel_actions(
actions=parallel_actions,
frame=frame,
detected_regions=detected_regions,
context=enhanced_context
)
result['actions_executed'].extend(executed_parallel_actions)
self.stats['actions_executed'] += len(result['actions_executed'])
else:
logger.debug("No valid detections found for pipeline processing")
except Exception as e:
logger.error(f"Error in detection pipeline execution: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
# Update timing
processing_time = time.time() - start_time
result['processing_time'] = processing_time
self.stats['total_processing_time'] += processing_time
return result
async def _execute_immediate_actions(self,
actions: List[Dict],
frame: np.ndarray,
detected_regions: Dict[str, Any],
detection_context: Dict[str, Any]) -> List[Dict]:
"""
Execute immediate actions (non-parallel).
Args:
actions: List of action configurations
frame: Input frame
detected_regions: Dictionary of detected regions
detection_context: Detection context data
Returns:
List of executed action results
"""
executed_actions = []
for action in actions:
try:
action_type = action.type.value
logger.debug(f"Executing immediate action: {action_type}")
if action_type == 'redis_save_image':
result = await self._execute_redis_save_image(
action, frame, detected_regions, detection_context
)
elif action_type == 'redis_publish':
result = await self._execute_redis_publish(
action, detection_context
)
else:
logger.warning(f"Unknown immediate action type: {action_type}")
result = {'status': 'error', 'message': f'Unknown action type: {action_type}'}
executed_actions.append({
'action_type': action_type,
'result': result
})
except Exception as e:
logger.error(f"Error executing immediate action {action_type}: {e}", exc_info=True)
executed_actions.append({
'action_type': action.type.value,
'result': {'status': 'error', 'message': str(e)}
})
return executed_actions
async def _execute_parallel_actions(self,
actions: List[Dict],
frame: np.ndarray,
detected_regions: Dict[str, Any],
context: Dict[str, Any]) -> List[Dict]:
"""
Execute parallel actions (after branches complete).
Args:
actions: List of parallel action configurations
frame: Input frame
detected_regions: Dictionary of detected regions
context: Enhanced context with branch results
Returns:
List of executed action results
"""
executed_actions = []
for action in actions:
try:
action_type = action.type.value
logger.debug(f"Executing parallel action: {action_type}")
if action_type == 'postgresql_update_combined':
result = await self._execute_postgresql_update_combined(action, context)
# Send imageDetection message with actual processing results after database update
if result.get('status') == 'success':
await self._send_processing_results_message(context)
else:
logger.warning(f"Unknown parallel action type: {action_type}")
result = {'status': 'error', 'message': f'Unknown action type: {action_type}'}
executed_actions.append({
'action_type': action_type,
'result': result
})
except Exception as e:
logger.error(f"Error executing parallel action {action_type}: {e}", exc_info=True)
executed_actions.append({
'action_type': action.type.value,
'result': {'status': 'error', 'message': str(e)}
})
return executed_actions
async def _execute_redis_save_image(self,
action: Dict,
frame: np.ndarray,
detected_regions: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute redis_save_image action."""
if not self.redis_manager:
return {'status': 'error', 'message': 'Redis not available'}
try:
# Get image to save (cropped or full frame)
image_to_save = frame
region_name = action.params.get('region')
if region_name and region_name in detected_regions:
# Crop the specified region
bbox = detected_regions[region_name]['bbox']
x1, y1, x2, y2 = [int(coord) for coord in bbox]
cropped = frame[y1:y2, x1:x2]
if cropped.size > 0:
image_to_save = cropped
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
else:
logger.warning(f"Empty crop for region '{region_name}', using full frame")
# Format key with context
key = action.params['key'].format(**context)
# Save image to Redis
result = await self.redis_manager.save_image(
key=key,
image=image_to_save,
expire_seconds=action.params.get('expire_seconds'),
image_format=action.params.get('format', 'jpeg'),
quality=action.params.get('quality', 90)
)
if result:
# Add image_key to context for subsequent actions
context['image_key'] = key
return {'status': 'success', 'key': key}
else:
return {'status': 'error', 'message': 'Failed to save image to Redis'}
except Exception as e:
logger.error(f"Error in redis_save_image action: {e}", exc_info=True)
return {'status': 'error', 'message': str(e)}
async def _execute_redis_publish(self, action: Dict, context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute redis_publish action."""
if not self.redis_manager:
return {'status': 'error', 'message': 'Redis not available'}
try:
channel = action.params['channel']
message_template = action.params['message']
# Format message with context
message = message_template.format(**context)
# Publish message
result = await self.redis_manager.publish_message(channel, message)
if result >= 0: # Redis publish returns number of subscribers
return {'status': 'success', 'subscribers': result, 'channel': channel}
else:
return {'status': 'error', 'message': 'Failed to publish message to Redis'}
except Exception as e:
logger.error(f"Error in redis_publish action: {e}", exc_info=True)
return {'status': 'error', 'message': str(e)}
async def _execute_postgresql_update_combined(self,
action: Dict,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute postgresql_update_combined action."""
if not self.db_manager:
return {'status': 'error', 'message': 'Database not available'}
try:
# Wait for required branches if specified
wait_for_branches = action.params.get('waitForBranches', [])
branch_results = context.get('branch_results', {})
# Check if all required branches have completed
for branch_id in wait_for_branches:
if branch_id not in branch_results:
logger.warning(f"Branch {branch_id} result not available for database update")
return {'status': 'error', 'message': f'Missing branch result: {branch_id}'}
# Prepare fields for database update
table = action.params.get('table', 'car_frontal_info')
key_field = action.params.get('key_field', 'session_id')
key_value = action.params.get('key_value', '{session_id}').format(**context)
field_mappings = action.params.get('fields', {})
# Resolve field values using branch results
resolved_fields = {}
for field_name, field_template in field_mappings.items():
try:
# Replace template variables with actual values from branch results
resolved_value = self._resolve_field_template(field_template, branch_results, context)
resolved_fields[field_name] = resolved_value
except Exception as e:
logger.warning(f"Failed to resolve field {field_name}: {e}")
resolved_fields[field_name] = None
# Execute database update
success = self.db_manager.execute_update(
table=table,
key_field=key_field,
key_value=key_value,
fields=resolved_fields
)
if success:
return {'status': 'success', 'table': table, 'key': f'{key_field}={key_value}', 'fields': resolved_fields}
else:
return {'status': 'error', 'message': 'Database update failed'}
except Exception as e:
logger.error(f"Error in postgresql_update_combined action: {e}", exc_info=True)
return {'status': 'error', 'message': str(e)}
def _resolve_field_template(self, template: str, branch_results: Dict, context: Dict) -> str:
"""
Resolve field template using branch results and context.
Args:
template: Template string like "{car_brand_cls_v2.brand}"
branch_results: Dictionary of branch execution results
context: Detection context
Returns:
Resolved field value
"""
try:
# Handle simple context variables first
if template.startswith('{') and template.endswith('}'):
var_name = template[1:-1]
# Check for branch result reference (e.g., "car_brand_cls_v2.brand")
if '.' in var_name:
branch_id, field_name = var_name.split('.', 1)
if branch_id in branch_results:
branch_data = branch_results[branch_id]
# Look for the field in branch results
if isinstance(branch_data, dict) and 'result' in branch_data:
result_data = branch_data['result']
if isinstance(result_data, dict) and field_name in result_data:
return str(result_data[field_name])
logger.warning(f"Field {field_name} not found in branch {branch_id} results")
return None
else:
logger.warning(f"Branch {branch_id} not found in results")
return None
# Simple context variable
elif var_name in context:
return str(context[var_name])
logger.warning(f"Template variable {var_name} not found in context or branch results")
return None
# Return template as-is if not a template variable
return template
except Exception as e:
logger.error(f"Error resolving field template {template}: {e}")
return None
async def _send_processing_results_message(self, context: Dict[str, Any]):
"""
Send imageDetection message with actual processing results after database update.
Args:
context: Detection context containing branch results and subscription info
"""
try:
branch_results = context.get('branch_results', {})
# Extract detection results from branch results
detection_data = {
"carBrand": None,
"carModel": None,
"bodyType": None,
"licensePlateText": None,
"licensePlateConfidence": None
}
# Extract car brand from car_brand_cls_v2 results
if 'car_brand_cls_v2' in branch_results:
brand_result = branch_results['car_brand_cls_v2'].get('result', {})
detection_data["carBrand"] = brand_result.get('brand')
# Extract body type from car_bodytype_cls_v1 results
if 'car_bodytype_cls_v1' in branch_results:
bodytype_result = branch_results['car_bodytype_cls_v1'].get('result', {})
detection_data["bodyType"] = bodytype_result.get('body_type')
# Create detection message
subscription_id = context.get('subscription_id', '')
# Get the actual numeric model ID from context
model_id_value = context.get('model_id', 52)
if isinstance(model_id_value, str):
try:
model_id_value = int(model_id_value)
except (ValueError, TypeError):
model_id_value = 52
model_name = str(getattr(self.pipeline_config, 'model_id', 'unknown'))
logger.debug(f"Creating DetectionData with modelId={model_id_value}, modelName='{model_name}'")
from core.communication.models import ImageDetectionMessage, DetectionData
detection_data_obj = DetectionData(
detection=detection_data,
modelId=model_id_value,
modelName=model_name
)
detection_message = ImageDetectionMessage(
subscriptionIdentifier=subscription_id,
data=detection_data_obj
)
# Send to backend via WebSocket
if self.message_sender:
await self.message_sender(detection_message)
logger.info(f"[RESULTS] Sent imageDetection with processing results: {detection_data}")
else:
logger.warning("No message sender available for processing results")
except Exception as e:
logger.error(f"Error sending processing results message: {e}", exc_info=True)
def get_statistics(self) -> Dict[str, Any]:
"""Get detection pipeline statistics."""
branch_stats = self.branch_processor.get_statistics() if self.branch_processor else {}
return {
'pipeline': self.stats,
'branches': branch_stats,
'redis_available': self.redis_manager is not None,
'database_available': self.db_manager is not None,
'detection_model_loaded': self.detection_model is not None
}
def cleanup(self):
"""Cleanup resources."""
if self.executor:
self.executor.shutdown(wait=False)
if self.redis_manager:
self.redis_manager.cleanup()
if self.db_manager:
self.db_manager.disconnect()
if self.branch_processor:
self.branch_processor.cleanup()
logger.info("Detection pipeline cleaned up")