1236 lines
60 KiB
Python
1236 lines
60 KiB
Python
import os
|
|
import json
|
|
import logging
|
|
import torch
|
|
import cv2
|
|
import zipfile
|
|
import shutil
|
|
import traceback
|
|
import redis
|
|
import time
|
|
import uuid
|
|
import concurrent.futures
|
|
from ultralytics import YOLO
|
|
from urllib.parse import urlparse
|
|
from .database import DatabaseManager
|
|
from datetime import datetime
|
|
|
|
# Create a logger specifically for this module
|
|
logger = logging.getLogger("detector_worker.pympta")
|
|
|
|
# Global camera-aware stability tracking
|
|
# Structure: {camera_id: {model_id: {"track_stability_counters": {track_id: count}, "stable_tracks": set(), "session_state": {...}}}}
|
|
_camera_stability_tracking = {}
|
|
|
|
# Session timeout configuration (waiting for backend sessionId)
|
|
_session_timeout_seconds = 15
|
|
|
|
def validate_redis_config(redis_config: dict) -> bool:
|
|
"""Validate Redis configuration parameters."""
|
|
required_fields = ["host", "port"]
|
|
for field in required_fields:
|
|
if field not in redis_config:
|
|
logger.error(f"Missing required Redis config field: {field}")
|
|
return False
|
|
|
|
if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
|
|
logger.error(f"Invalid Redis port: {redis_config['port']}")
|
|
return False
|
|
|
|
return True
|
|
|
|
def validate_postgresql_config(pg_config: dict) -> bool:
|
|
"""Validate PostgreSQL configuration parameters."""
|
|
required_fields = ["host", "port", "database", "username", "password"]
|
|
for field in required_fields:
|
|
if field not in pg_config:
|
|
logger.error(f"Missing required PostgreSQL config field: {field}")
|
|
return False
|
|
|
|
if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
|
|
logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
|
|
return False
|
|
|
|
return True
|
|
|
|
def crop_region_by_class(frame, regions_dict, class_name):
|
|
"""Crop a specific region from frame based on detected class."""
|
|
if class_name not in regions_dict:
|
|
logger.warning(f"Class '{class_name}' not found in detected regions")
|
|
return None
|
|
|
|
bbox = regions_dict[class_name]['bbox']
|
|
x1, y1, x2, y2 = bbox
|
|
cropped = frame[y1:y2, x1:x2]
|
|
|
|
if cropped.size == 0:
|
|
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
|
|
return None
|
|
|
|
return cropped
|
|
|
|
def format_action_context(base_context, additional_context=None):
|
|
"""Format action context with dynamic values."""
|
|
context = {**base_context}
|
|
if additional_context:
|
|
context.update(additional_context)
|
|
return context
|
|
|
|
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
|
|
# Recursively load a model node from configuration.
|
|
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
|
if not os.path.exists(model_path):
|
|
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
|
|
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
|
|
raise FileNotFoundError(f"Model file {model_path} not found.")
|
|
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
|
model = YOLO(model_path)
|
|
if torch.cuda.is_available():
|
|
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU VRAM")
|
|
model.to("cuda")
|
|
else:
|
|
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
|
|
|
|
# Prepare trigger class indices for optimization
|
|
trigger_classes = node_config.get("triggerClasses", [])
|
|
trigger_class_indices = None
|
|
if trigger_classes and hasattr(model, "names"):
|
|
# Convert class names to indices for the model
|
|
trigger_class_indices = [i for i, name in model.names.items()
|
|
if name in trigger_classes]
|
|
logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
|
|
|
|
# Extract stability threshold from tracking config
|
|
tracking_config = node_config.get("tracking", {"enabled": True, "reidConfigPath": "botsort.yaml"})
|
|
stability_threshold = tracking_config.get("stabilityThreshold", 1)
|
|
|
|
node = {
|
|
"modelId": node_config["modelId"],
|
|
"modelFile": node_config["modelFile"],
|
|
"triggerClasses": trigger_classes,
|
|
"triggerClassIndices": trigger_class_indices,
|
|
"classMapping": node_config.get("classMapping", {}),
|
|
"crop": node_config.get("crop", False),
|
|
"cropClass": node_config.get("cropClass"),
|
|
"minConfidence": node_config.get("minConfidence", None),
|
|
"multiClass": node_config.get("multiClass", False),
|
|
"expectedClasses": node_config.get("expectedClasses", []),
|
|
"parallel": node_config.get("parallel", False),
|
|
"actions": node_config.get("actions", []),
|
|
"parallelActions": node_config.get("parallelActions", []),
|
|
"tracking": tracking_config,
|
|
"stabilityThreshold": stability_threshold,
|
|
"model": model,
|
|
"branches": [],
|
|
"redis_client": redis_client,
|
|
"db_manager": db_manager
|
|
}
|
|
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
|
for child in node_config.get("branches", []):
|
|
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
|
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
|
|
return node
|
|
|
|
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
|
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
|
|
os.makedirs(target_dir, exist_ok=True)
|
|
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
|
|
|
# Parse the source; only local files are supported here.
|
|
parsed = urlparse(zip_source)
|
|
if parsed.scheme in ("", "file"):
|
|
local_path = parsed.path if parsed.scheme == "file" else zip_source
|
|
logger.debug(f"Checking if local file exists: {local_path}")
|
|
if os.path.exists(local_path):
|
|
try:
|
|
shutil.copy(local_path, zip_path)
|
|
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
|
|
return None
|
|
else:
|
|
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
|
|
# List all subdirectories of models directory to help debugging
|
|
if os.path.exists("models"):
|
|
logger.error(f"Content of models directory: {os.listdir('models')}")
|
|
for root, dirs, files in os.walk("models"):
|
|
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
|
|
else:
|
|
logger.error("The models directory doesn't exist")
|
|
return None
|
|
else:
|
|
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
|
|
return None
|
|
|
|
try:
|
|
if not os.path.exists(zip_path):
|
|
logger.error(f"Zip file not found at expected location: {zip_path}")
|
|
return None
|
|
|
|
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
|
|
# Extract contents and track the directories created
|
|
extracted_dirs = []
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
file_list = zip_ref.namelist()
|
|
logger.debug(f"Files in .mpta archive: {file_list}")
|
|
|
|
# Extract and track the top-level directories
|
|
for file_path in file_list:
|
|
parts = file_path.split('/')
|
|
if len(parts) > 1:
|
|
top_dir = parts[0]
|
|
if top_dir and top_dir not in extracted_dirs:
|
|
extracted_dirs.append(top_dir)
|
|
|
|
# Now extract the files
|
|
zip_ref.extractall(target_dir)
|
|
|
|
logger.info(f"Successfully extracted .mpta file to {target_dir}")
|
|
logger.debug(f"Extracted directories: {extracted_dirs}")
|
|
|
|
# Check what was actually created after extraction
|
|
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
|
|
logger.debug(f"Actual directories created: {actual_dirs}")
|
|
except zipfile.BadZipFile as e:
|
|
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
|
|
return None
|
|
finally:
|
|
if os.path.exists(zip_path):
|
|
os.remove(zip_path)
|
|
logger.debug(f"Removed temporary zip file: {zip_path}")
|
|
|
|
# Use the first extracted directory if it exists, otherwise use the expected name
|
|
pipeline_name = os.path.basename(zip_source)
|
|
pipeline_name = os.path.splitext(pipeline_name)[0]
|
|
|
|
# Find the directory with pipeline.json
|
|
mpta_dir = None
|
|
# First try the expected directory name
|
|
expected_dir = os.path.join(target_dir, pipeline_name)
|
|
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
|
|
mpta_dir = expected_dir
|
|
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
|
|
else:
|
|
# Look through all subdirectories for pipeline.json
|
|
for subdir in actual_dirs:
|
|
potential_dir = os.path.join(target_dir, subdir)
|
|
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
|
|
mpta_dir = potential_dir
|
|
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
|
|
break
|
|
|
|
if not mpta_dir:
|
|
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
|
|
return None
|
|
|
|
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
|
|
if not os.path.exists(pipeline_json_path):
|
|
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
|
|
return None
|
|
|
|
try:
|
|
with open(pipeline_json_path, "r") as f:
|
|
pipeline_config = json.load(f)
|
|
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
|
|
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
|
|
|
|
# Establish Redis connection if configured
|
|
redis_client = None
|
|
if "redis" in pipeline_config:
|
|
redis_config = pipeline_config["redis"]
|
|
if not validate_redis_config(redis_config):
|
|
logger.error("Invalid Redis configuration, skipping Redis connection")
|
|
else:
|
|
try:
|
|
redis_client = redis.Redis(
|
|
host=redis_config["host"],
|
|
port=redis_config["port"],
|
|
password=redis_config.get("password"),
|
|
db=redis_config.get("db", 0),
|
|
decode_responses=True
|
|
)
|
|
redis_client.ping()
|
|
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
|
|
except redis.exceptions.ConnectionError as e:
|
|
logger.error(f"Failed to connect to Redis: {e}")
|
|
redis_client = None
|
|
|
|
# Establish PostgreSQL connection if configured
|
|
db_manager = None
|
|
if "postgresql" in pipeline_config:
|
|
pg_config = pipeline_config["postgresql"]
|
|
if not validate_postgresql_config(pg_config):
|
|
logger.error("Invalid PostgreSQL configuration, skipping database connection")
|
|
else:
|
|
try:
|
|
db_manager = DatabaseManager(pg_config)
|
|
if db_manager.connect():
|
|
logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
|
|
else:
|
|
logger.error("Failed to connect to PostgreSQL")
|
|
db_manager = None
|
|
except Exception as e:
|
|
logger.error(f"Error initializing PostgreSQL connection: {e}")
|
|
db_manager = None
|
|
|
|
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
|
return None
|
|
except KeyError as e:
|
|
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
|
return None
|
|
|
|
def execute_actions(node, frame, detection_result, regions_dict=None):
|
|
if not node["redis_client"] or not node["actions"]:
|
|
return
|
|
|
|
# Create a dynamic context for this detection event
|
|
from datetime import datetime
|
|
action_context = {
|
|
**detection_result,
|
|
"timestamp_ms": int(time.time() * 1000),
|
|
"uuid": str(uuid.uuid4()),
|
|
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
|
|
"filename": f"{uuid.uuid4()}.jpg"
|
|
}
|
|
|
|
for action in node["actions"]:
|
|
try:
|
|
if action["type"] == "redis_save_image":
|
|
key = action["key"].format(**action_context)
|
|
|
|
# Check if we need to crop a specific region
|
|
region_name = action.get("region")
|
|
image_to_save = frame
|
|
|
|
if region_name and regions_dict:
|
|
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
|
|
if cropped_image is not None:
|
|
image_to_save = cropped_image
|
|
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
|
|
else:
|
|
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
|
|
|
|
# Encode image with specified format and quality (default to JPEG)
|
|
img_format = action.get("format", "jpeg").lower()
|
|
quality = action.get("quality", 90)
|
|
|
|
if img_format == "jpeg":
|
|
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
|
|
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
|
|
elif img_format == "png":
|
|
success, buffer = cv2.imencode('.png', image_to_save)
|
|
else:
|
|
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
|
|
|
|
if not success:
|
|
logger.error(f"Failed to encode image for redis_save_image")
|
|
continue
|
|
|
|
expire_seconds = action.get("expire_seconds")
|
|
if expire_seconds:
|
|
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
|
logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
|
|
else:
|
|
node["redis_client"].set(key, buffer.tobytes())
|
|
logger.info(f"Saved image to Redis with key: {key}")
|
|
action_context["image_key"] = key
|
|
elif action["type"] == "redis_publish":
|
|
channel = action["channel"]
|
|
try:
|
|
# Handle JSON message format by creating it programmatically
|
|
message_template = action["message"]
|
|
|
|
# Check if the message is JSON-like (starts and ends with braces)
|
|
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
|
|
# Create JSON data programmatically to avoid formatting issues
|
|
json_data = {}
|
|
|
|
# Add common fields
|
|
json_data["event"] = "frontal_detected"
|
|
json_data["display_id"] = action_context.get("display_id", "unknown")
|
|
json_data["session_id"] = action_context.get("session_id")
|
|
json_data["timestamp"] = action_context.get("timestamp", "")
|
|
json_data["image_key"] = action_context.get("image_key", "")
|
|
|
|
# Convert to JSON string
|
|
message = json.dumps(json_data)
|
|
else:
|
|
# Use regular string formatting for non-JSON messages
|
|
message = message_template.format(**action_context)
|
|
|
|
# Publish to Redis
|
|
if not node["redis_client"]:
|
|
logger.error("Redis client is None, cannot publish message")
|
|
continue
|
|
|
|
# Test Redis connection
|
|
try:
|
|
node["redis_client"].ping()
|
|
logger.debug("Redis connection is active")
|
|
except Exception as ping_error:
|
|
logger.error(f"Redis connection test failed: {ping_error}")
|
|
continue
|
|
|
|
result = node["redis_client"].publish(channel, message)
|
|
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
|
logger.info(f"Redis publish result (subscribers count): {result}")
|
|
|
|
# Additional debug info
|
|
if result == 0:
|
|
logger.warning(f"No subscribers listening to channel '{channel}'")
|
|
else:
|
|
logger.info(f"Message delivered to {result} subscriber(s)")
|
|
|
|
except KeyError as e:
|
|
logger.error(f"Missing key in redis_publish message template: {e}")
|
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
|
except Exception as e:
|
|
logger.error(f"Error in redis_publish action: {e}")
|
|
logger.debug(f"Message template: {action['message']}")
|
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
|
import traceback
|
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
|
except Exception as e:
|
|
logger.error(f"Error executing action {action['type']}: {e}")
|
|
|
|
def execute_parallel_actions(node, frame, detection_result, regions_dict):
|
|
"""Execute parallel actions after all required branches have completed."""
|
|
if not node.get("parallelActions"):
|
|
return
|
|
|
|
logger.debug("Executing parallel actions...")
|
|
branch_results = detection_result.get("branch_results", {})
|
|
|
|
for action in node["parallelActions"]:
|
|
try:
|
|
action_type = action.get("type")
|
|
logger.debug(f"Processing parallel action: {action_type}")
|
|
|
|
if action_type == "postgresql_update_combined":
|
|
# Check if all required branches have completed
|
|
wait_for_branches = action.get("waitForBranches", [])
|
|
missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
|
|
|
|
if missing_branches:
|
|
logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
|
|
continue
|
|
|
|
logger.info(f"All required branches completed: {wait_for_branches}")
|
|
|
|
# Execute the database update
|
|
execute_postgresql_update_combined(node, action, detection_result, branch_results)
|
|
else:
|
|
logger.warning(f"Unknown parallel action type: {action_type}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
|
|
import traceback
|
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
|
|
|
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
|
|
"""Execute a PostgreSQL update with combined branch results."""
|
|
if not node.get("db_manager"):
|
|
logger.error("No database manager available for postgresql_update_combined action")
|
|
return
|
|
|
|
try:
|
|
table = action["table"]
|
|
key_field = action["key_field"]
|
|
key_value_template = action["key_value"]
|
|
fields = action["fields"]
|
|
|
|
# Create context for key value formatting
|
|
action_context = {**detection_result}
|
|
key_value = key_value_template.format(**action_context)
|
|
|
|
logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
|
|
|
|
# Process field mappings
|
|
mapped_fields = {}
|
|
for db_field, value_template in fields.items():
|
|
try:
|
|
mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
|
|
if mapped_value is not None:
|
|
mapped_fields[db_field] = mapped_value
|
|
logger.debug(f"Mapped field: {db_field} = {mapped_value}")
|
|
else:
|
|
logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
|
|
except Exception as e:
|
|
logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
|
|
|
|
if not mapped_fields:
|
|
logger.warning("No fields mapped successfully, skipping database update")
|
|
return
|
|
|
|
# Execute the database update
|
|
success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
|
|
|
|
if success:
|
|
logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
|
|
else:
|
|
logger.error(f"Failed to update database: {table}")
|
|
|
|
except KeyError as e:
|
|
logger.error(f"Missing required field in postgresql_update_combined action: {e}")
|
|
except Exception as e:
|
|
logger.error(f"Error in postgresql_update_combined action: {e}")
|
|
import traceback
|
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
|
|
|
def resolve_field_mapping(value_template, branch_results, action_context):
|
|
"""Resolve field mapping templates like {car_brand_cls_v1.brand}."""
|
|
try:
|
|
# Handle simple context variables first (non-branch references)
|
|
if not '.' in value_template:
|
|
return value_template.format(**action_context)
|
|
|
|
# Handle branch result references like {model_id.field}
|
|
import re
|
|
branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
|
|
|
|
resolved_template = value_template
|
|
for ref in branch_refs:
|
|
try:
|
|
model_id, field_name = ref.split('.', 1)
|
|
|
|
if model_id in branch_results:
|
|
branch_data = branch_results[model_id]
|
|
if field_name in branch_data:
|
|
field_value = branch_data[field_name]
|
|
resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
|
|
logger.debug(f"Resolved {ref} to {field_value}")
|
|
else:
|
|
logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
|
|
return None
|
|
else:
|
|
logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
|
|
return None
|
|
except ValueError as e:
|
|
logger.error(f"Invalid branch reference format: {ref}")
|
|
return None
|
|
|
|
# Format any remaining simple variables
|
|
try:
|
|
final_value = resolved_template.format(**action_context)
|
|
return final_value
|
|
except KeyError as e:
|
|
logger.warning(f"Could not resolve context variable in template: {e}")
|
|
return resolved_template
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error resolving field mapping '{value_template}': {e}")
|
|
return None
|
|
|
|
def run_detection_with_tracking(frame, node, context=None):
|
|
"""
|
|
Structured function for running YOLO detection with BoT-SORT tracking.
|
|
|
|
Args:
|
|
frame: Input frame/image
|
|
node: Pipeline node configuration with model and settings
|
|
context: Optional context information (camera info, session data, etc.)
|
|
|
|
Returns:
|
|
tuple: (all_detections, regions_dict) where:
|
|
- all_detections: List of all detection objects
|
|
- regions_dict: Dict mapping class names to highest confidence detections
|
|
|
|
Configuration options in node:
|
|
- model: YOLO model instance
|
|
- triggerClassIndices: List of class indices to detect (None for all classes)
|
|
- minConfidence: Minimum confidence threshold
|
|
- multiClass: Whether to enable multi-class detection mode
|
|
- expectedClasses: List of expected class names for multi-class validation
|
|
- tracking: Dict with tracking configuration
|
|
- enabled: Boolean to enable/disable tracking
|
|
- reidConfigPath: Path to ReID config file (default: "botsort.yaml")
|
|
"""
|
|
try:
|
|
# Extract tracking configuration
|
|
tracking_config = node.get("tracking", {})
|
|
tracking_enabled = tracking_config.get("enabled", True)
|
|
reid_config_path = tracking_config.get("reidConfigPath", "botsort.yaml")
|
|
|
|
# Check if we need to reset tracker after cooldown
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
if session_state.get("reset_tracker_on_resume", False):
|
|
# Reset YOLO tracker to get fresh track IDs
|
|
if hasattr(node["model"], 'trackers') and node["model"].trackers:
|
|
node["model"].trackers.clear() # Clear tracker state
|
|
logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs")
|
|
session_state["reset_tracker_on_resume"] = False # Clear the flag
|
|
|
|
# Get tracking zone from runtime context (camera-specific)
|
|
tracking_zone = context.get("trackingZone", []) if context else []
|
|
|
|
# Prepare class filtering
|
|
trigger_class_indices = node.get("triggerClassIndices")
|
|
class_filter = {"classes": trigger_class_indices} if trigger_class_indices else {}
|
|
|
|
logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, classes: {node.get('triggerClasses', 'all')}")
|
|
|
|
if tracking_enabled and tracking_zone:
|
|
# Use tracking with zone validation
|
|
logger.debug(f"Using tracking with ReID config: {reid_config_path}")
|
|
res = node["model"].track(
|
|
frame,
|
|
stream=False,
|
|
persist=True,
|
|
tracker=reid_config_path,
|
|
**class_filter
|
|
)[0]
|
|
elif tracking_enabled:
|
|
# Use tracking without zone restriction
|
|
logger.debug("Using tracking without zone restriction")
|
|
res = node["model"].track(
|
|
frame,
|
|
stream=False,
|
|
persist=True,
|
|
**class_filter
|
|
)[0]
|
|
else:
|
|
# Use detection only (no tracking)
|
|
logger.debug("Using detection only (tracking disabled)")
|
|
res = node["model"].predict(
|
|
frame,
|
|
stream=False,
|
|
**class_filter
|
|
)[0]
|
|
|
|
# Process detection results
|
|
candidate_detections = []
|
|
min_confidence = node.get("minConfidence", 0.0)
|
|
|
|
if res.boxes is None or len(res.boxes) == 0:
|
|
logger.debug("No detections found")
|
|
return [], {}
|
|
|
|
logger.debug(f"Processing {len(res.boxes)} raw detections")
|
|
|
|
# First pass: collect all valid detections
|
|
for i, box in enumerate(res.boxes):
|
|
# Extract detection data
|
|
conf = float(box.cpu().conf[0])
|
|
cls_id = int(box.cpu().cls[0])
|
|
class_name = node["model"].names[cls_id]
|
|
|
|
# Apply confidence filtering
|
|
if conf < min_confidence:
|
|
logger.debug(f"Detection {i} '{class_name}' rejected: {conf:.3f} < {min_confidence}")
|
|
continue
|
|
|
|
# Extract bounding box
|
|
xy = box.cpu().xyxy[0]
|
|
x1, y1, x2, y2 = map(int, xy)
|
|
bbox = (x1, y1, x2, y2)
|
|
|
|
# Extract tracking ID if available
|
|
track_id = None
|
|
if hasattr(box, "id") and box.id is not None:
|
|
track_id = int(box.id.item())
|
|
|
|
# Apply tracking zone validation if enabled
|
|
if tracking_enabled and tracking_zone:
|
|
bbox_center_x = (x1 + x2) // 2
|
|
bbox_center_y = (y1 + y2) // 2
|
|
|
|
# Check if detection center is within tracking zone
|
|
if not _point_in_polygon((bbox_center_x, bbox_center_y), tracking_zone):
|
|
logger.debug(f"Detection {i} '{class_name}' outside tracking zone")
|
|
continue
|
|
|
|
# Create detection object
|
|
detection = {
|
|
"class": class_name,
|
|
"confidence": conf,
|
|
"id": track_id,
|
|
"bbox": bbox,
|
|
"class_id": cls_id
|
|
}
|
|
|
|
candidate_detections.append(detection)
|
|
logger.debug(f"Detection {i} candidate: {class_name} (conf={conf:.3f}, id={track_id}, bbox={bbox})")
|
|
|
|
# Second pass: select only the highest confidence detection overall
|
|
if not candidate_detections:
|
|
logger.debug("No valid candidate detections found")
|
|
return [], {}
|
|
|
|
# Find the single highest confidence detection across all detected classes
|
|
best_detection = max(candidate_detections, key=lambda x: x["confidence"])
|
|
original_class = best_detection["class"]
|
|
logger.info(f"Selected highest confidence detection: {original_class} (conf={best_detection['confidence']:.3f})")
|
|
|
|
# Apply class mapping if configured
|
|
mapped_class = original_class
|
|
class_mapping = node.get("classMapping", {})
|
|
if original_class in class_mapping:
|
|
mapped_class = class_mapping[original_class]
|
|
logger.info(f"Class mapping applied: {original_class} → {mapped_class}")
|
|
# Update the detection object with mapped class
|
|
best_detection["class"] = mapped_class
|
|
best_detection["original_class"] = original_class # Keep original for reference
|
|
|
|
# Keep only the best detection with mapped class
|
|
all_detections = [best_detection]
|
|
regions_dict = {
|
|
mapped_class: {
|
|
"bbox": best_detection["bbox"],
|
|
"confidence": best_detection["confidence"],
|
|
"detection": best_detection,
|
|
"track_id": best_detection["id"]
|
|
}
|
|
}
|
|
|
|
# Multi-class validation
|
|
if node.get("multiClass", False) and node.get("expectedClasses"):
|
|
expected_classes = node["expectedClasses"]
|
|
detected_classes = list(regions_dict.keys())
|
|
|
|
logger.debug(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
|
|
|
|
# Check for required classes (flexible - at least one must match)
|
|
matching_classes = [cls for cls in expected_classes if cls in detected_classes]
|
|
if not matching_classes:
|
|
logger.warning(f"Multi-class validation failed: no expected classes detected")
|
|
return [], {}
|
|
|
|
logger.info(f"Multi-class validation passed: {matching_classes} detected")
|
|
|
|
logger.info(f"Detection completed: {len(all_detections)} detections, {len(regions_dict)} unique classes")
|
|
|
|
# Update stability tracking for detections with track IDs (requires camera_id from context)
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
update_track_stability(node, all_detections, camera_id)
|
|
|
|
return all_detections, regions_dict
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in detection_with_tracking for {node.get('modelId', 'unknown')}: {e}")
|
|
logger.debug(f"Detection error traceback: {traceback.format_exc()}")
|
|
return [], {}
|
|
|
|
def _point_in_polygon(point, polygon):
|
|
"""Check if a point is inside a polygon using ray casting algorithm."""
|
|
if not polygon or len(polygon) < 3:
|
|
return True # No zone restriction if invalid polygon
|
|
|
|
x, y = point
|
|
n = len(polygon)
|
|
inside = False
|
|
|
|
p1x, p1y = polygon[0]
|
|
for i in range(1, n + 1):
|
|
p2x, p2y = polygon[i % n]
|
|
if y > min(p1y, p2y):
|
|
if y <= max(p1y, p2y):
|
|
if x <= max(p1x, p2x):
|
|
if p1y != p2y:
|
|
xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
|
|
if p1x == p2x or x <= xinters:
|
|
inside = not inside
|
|
p1x, p1y = p2x, p2y
|
|
|
|
return inside
|
|
|
|
def get_camera_stability_data(camera_id, model_id):
|
|
"""Get or create stability tracking data for a specific camera and model."""
|
|
global _camera_stability_tracking
|
|
|
|
if camera_id not in _camera_stability_tracking:
|
|
_camera_stability_tracking[camera_id] = {}
|
|
|
|
if model_id not in _camera_stability_tracking[camera_id]:
|
|
logger.warning(f"🔄 Camera {camera_id}: Creating NEW stability data for {model_id} - this will reset any cooldown!")
|
|
_camera_stability_tracking[camera_id][model_id] = {
|
|
"track_stability_counters": {},
|
|
"stable_tracks": set(),
|
|
"session_state": {
|
|
"active": True,
|
|
"waiting_for_backend_session": False,
|
|
"wait_start_time": 0.0,
|
|
"reset_tracker_on_resume": False
|
|
}
|
|
}
|
|
|
|
return _camera_stability_tracking[camera_id][model_id]
|
|
|
|
def update_track_stability(node, detections, camera_id):
|
|
"""Update stability counters for tracked objects per camera."""
|
|
stability_threshold = node.get("stabilityThreshold", 1)
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
# Get camera-specific stability data
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
track_counters = stability_data["track_stability_counters"]
|
|
stable_tracks = stability_data["stable_tracks"]
|
|
|
|
# Get current track IDs from detections
|
|
current_track_ids = set()
|
|
for detection in detections:
|
|
track_id = detection.get("id")
|
|
if track_id is not None:
|
|
current_track_ids.add(track_id)
|
|
|
|
# Increment counter for this track
|
|
track_counters[track_id] = track_counters.get(track_id, 0) + 1
|
|
|
|
# Check if track becomes stable
|
|
if track_counters[track_id] >= stability_threshold and track_id not in stable_tracks:
|
|
stable_tracks.add(track_id)
|
|
logger.info(f"Camera {camera_id}: Track ID {track_id} became stable after {track_counters[track_id]} detections (threshold: {stability_threshold})")
|
|
|
|
# Clean up counters for tracks that disappeared
|
|
disappeared_tracks = set(track_counters.keys()) - current_track_ids
|
|
for track_id in disappeared_tracks:
|
|
logger.debug(f"Camera {camera_id}: Track ID {track_id} disappeared, removing from counters")
|
|
track_counters.pop(track_id, None)
|
|
stable_tracks.discard(track_id)
|
|
|
|
logger.debug(f"Camera {camera_id}: Track stability: active={list(current_track_ids)}, stable={list(stable_tracks)}, counters={track_counters}")
|
|
|
|
def check_stable_tracks(camera_id, model_id, regions_dict):
|
|
"""Check if any stable tracks match the detected classes for a specific camera."""
|
|
# Get camera-specific stability data
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
stable_tracks = stability_data["stable_tracks"]
|
|
|
|
if not stable_tracks:
|
|
return False, []
|
|
|
|
# Check if any detection in regions_dict has a stable track ID
|
|
stable_detections = []
|
|
for class_name, region_data in regions_dict.items():
|
|
detection = region_data.get("detection", {})
|
|
track_id = detection.get("id")
|
|
|
|
if track_id is not None and track_id in stable_tracks:
|
|
stable_detections.append((class_name, track_id))
|
|
logger.debug(f"Camera {camera_id}: Found stable detection: {class_name} with stable track ID {track_id}")
|
|
|
|
has_stable_tracks = len(stable_detections) > 0
|
|
return has_stable_tracks, stable_detections
|
|
|
|
def reset_tracking_state(camera_id, model_id, reason="session ended"):
|
|
"""Reset tracking state after session completion or timeout."""
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
# Clear all tracking data for fresh start
|
|
stability_data["track_stability_counters"].clear()
|
|
stability_data["stable_tracks"].clear()
|
|
session_state["active"] = True
|
|
session_state["waiting_for_backend_session"] = False
|
|
session_state["wait_start_time"] = 0.0
|
|
session_state["reset_tracker_on_resume"] = True
|
|
|
|
logger.info(f"Camera {camera_id}: 🔄 Reset tracking state - {reason}")
|
|
logger.info(f"Camera {camera_id}: 🧹 Cleared stability counters and stable tracks for fresh session")
|
|
|
|
def is_camera_active(camera_id, model_id):
|
|
"""Check if camera should be processing detections."""
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
# Check if waiting for backend sessionId has timed out
|
|
if session_state.get("waiting_for_backend_session", False):
|
|
current_time = time.time()
|
|
wait_start_time = session_state.get("wait_start_time", 0)
|
|
elapsed_time = current_time - wait_start_time
|
|
|
|
if elapsed_time >= _session_timeout_seconds:
|
|
logger.warning(f"Camera {camera_id}: Backend sessionId timeout ({_session_timeout_seconds}s) - resetting tracking")
|
|
reset_tracking_state(camera_id, model_id, "backend sessionId timeout")
|
|
return True
|
|
else:
|
|
remaining_time = _session_timeout_seconds - elapsed_time
|
|
logger.debug(f"Camera {camera_id}: Still waiting for backend sessionId - {remaining_time:.1f}s remaining")
|
|
return False
|
|
|
|
return session_state.get("active", True)
|
|
|
|
def cleanup_camera_stability(camera_id):
|
|
"""Clean up stability tracking data when a camera is disconnected."""
|
|
global _camera_stability_tracking
|
|
if camera_id in _camera_stability_tracking:
|
|
del _camera_stability_tracking[camera_id]
|
|
logger.info(f"Cleaned up stability tracking data for camera {camera_id}")
|
|
|
|
def validate_pipeline_execution(node, regions_dict):
|
|
"""
|
|
Pre-validate that all required branches will execute successfully before
|
|
committing to Redis actions and database records.
|
|
|
|
Returns:
|
|
- (True, []) if pipeline can execute completely
|
|
- (False, missing_branches) if some required branches won't execute
|
|
"""
|
|
# Get all branches that parallel actions are waiting for
|
|
required_branches = set()
|
|
|
|
for action in node.get("parallelActions", []):
|
|
if action.get("type") == "postgresql_update_combined":
|
|
wait_for_branches = action.get("waitForBranches", [])
|
|
required_branches.update(wait_for_branches)
|
|
|
|
if not required_branches:
|
|
# No parallel actions requiring specific branches
|
|
logger.debug("No parallel actions with waitForBranches - validation passes")
|
|
return True, []
|
|
|
|
logger.debug(f"Pre-validation: checking if required branches {list(required_branches)} will execute")
|
|
|
|
# Check each required branch
|
|
missing_branches = []
|
|
|
|
for branch in node.get("branches", []):
|
|
branch_id = branch["modelId"]
|
|
|
|
if branch_id not in required_branches:
|
|
continue # This branch is not required by parallel actions
|
|
|
|
# Check if this branch would be triggered
|
|
trigger_classes = branch.get("triggerClasses", [])
|
|
min_conf = branch.get("minConfidence", 0)
|
|
|
|
branch_triggered = False
|
|
for det_class in regions_dict:
|
|
det_confidence = regions_dict[det_class]["confidence"]
|
|
|
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
|
branch_triggered = True
|
|
logger.debug(f"Pre-validation: branch {branch_id} WILL be triggered by {det_class} (conf={det_confidence:.3f} >= {min_conf})")
|
|
break
|
|
|
|
if not branch_triggered:
|
|
missing_branches.append(branch_id)
|
|
logger.warning(f"Pre-validation: branch {branch_id} will NOT be triggered - no matching classes or insufficient confidence")
|
|
logger.debug(f" Required: {trigger_classes} with min_conf={min_conf}")
|
|
logger.debug(f" Available: {[(cls, regions_dict[cls]['confidence']) for cls in regions_dict]}")
|
|
|
|
if missing_branches:
|
|
logger.error(f"Pipeline pre-validation FAILED: required branches {missing_branches} will not execute")
|
|
return False, missing_branches
|
|
else:
|
|
logger.info(f"Pipeline pre-validation PASSED: all required branches {list(required_branches)} will execute")
|
|
return True, []
|
|
|
|
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
|
|
"""
|
|
Enhanced pipeline that supports:
|
|
- Multi-class detection (detecting multiple classes simultaneously)
|
|
- Parallel branch processing
|
|
- Region-based actions and cropping
|
|
- Context passing for session/camera information
|
|
"""
|
|
try:
|
|
# Extract backend sessionId from context at the start of function
|
|
backend_session_id = context.get("backend_session_id") if context else None
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
if backend_session_id:
|
|
logger.info(f"🔑 PIPELINE USING BACKEND SESSION_ID: {backend_session_id} for camera {camera_id}")
|
|
else:
|
|
logger.debug(f"❌ No backend session_id in pipeline context for camera {camera_id}")
|
|
|
|
task = getattr(node["model"], "task", None)
|
|
|
|
# ─── Classification stage ───────────────────────────────────
|
|
if task == "classify":
|
|
results = node["model"].predict(frame, stream=False)
|
|
if not results:
|
|
return (None, None) if return_bbox else None
|
|
|
|
r = results[0]
|
|
probs = r.probs
|
|
if probs is None:
|
|
return (None, None) if return_bbox else None
|
|
|
|
top1_idx = int(probs.top1)
|
|
top1_conf = float(probs.top1conf)
|
|
class_name = node["model"].names[top1_idx]
|
|
|
|
det = {
|
|
"class": class_name,
|
|
"confidence": top1_conf,
|
|
"id": None,
|
|
class_name: class_name # Add class name as key for backward compatibility
|
|
}
|
|
|
|
# Add specific field mappings for database operations based on model type
|
|
model_id = node.get("modelId", "").lower()
|
|
if "brand" in model_id or "brand_cls" in model_id:
|
|
det["brand"] = class_name
|
|
elif "bodytype" in model_id or "body" in model_id:
|
|
det["body_type"] = class_name
|
|
elif "color" in model_id:
|
|
det["color"] = class_name
|
|
|
|
execute_actions(node, frame, det, context.get("regions_dict") if context else None)
|
|
return (det, None) if return_bbox else det
|
|
|
|
# ─── Session management check ───────────────────────────────────────
|
|
if not is_camera_active(camera_id, model_id):
|
|
logger.debug(f"⏰ Camera {camera_id}: Waiting for backend sessionId, skipping pipeline")
|
|
return (None, None) if return_bbox else None
|
|
|
|
# ─── Detection stage - Using structured detection function ──────────────────
|
|
all_detections, regions_dict = run_detection_with_tracking(frame, node, context)
|
|
|
|
if not all_detections:
|
|
logger.warning("No detections from structured detection function - returning null")
|
|
return (None, None) if return_bbox else None
|
|
|
|
# Extract bounding boxes for compatibility
|
|
all_boxes = [det["bbox"] for det in all_detections]
|
|
|
|
# ─── Stability validation (only for root pipeline node) ────────────────────────
|
|
stability_threshold = node.get("stabilityThreshold", 1)
|
|
if stability_threshold > 1:
|
|
# Extract camera_id for stability check
|
|
camera_id = context.get("camera_id", "unknown") if context else "unknown"
|
|
model_id = node.get("modelId", "unknown")
|
|
|
|
# Check if we have stable tracks for this specific camera
|
|
has_stable_tracks, stable_detections = check_stable_tracks(camera_id, model_id, regions_dict)
|
|
|
|
if not has_stable_tracks:
|
|
logger.info(f"Camera {camera_id}: Track not stable yet (threshold: {stability_threshold}) - validation only, skipping branches")
|
|
# Return early with just the detection result, no branch processing
|
|
primary_detection = max(all_detections, key=lambda x: x["confidence"]) if all_detections else {"class": "none", "confidence": 0.0, "bbox": [0, 0, 0, 0]}
|
|
primary_bbox = primary_detection.get("bbox", [0, 0, 0, 0])
|
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
|
else:
|
|
logger.info(f"Camera {camera_id}: Stable tracks {[det[1] for det in stable_detections]} detected - checking backend sessionId")
|
|
|
|
# Check if we need to wait for backend sessionId
|
|
if not backend_session_id:
|
|
logger.info(f"Camera {camera_id}: Stable car detected, waiting for backend sessionId...")
|
|
stability_data = get_camera_stability_data(camera_id, model_id)
|
|
session_state = stability_data["session_state"]
|
|
|
|
if not session_state.get("waiting_for_backend_session", False):
|
|
# Start waiting for backend sessionId
|
|
session_state["waiting_for_backend_session"] = True
|
|
session_state["wait_start_time"] = time.time()
|
|
logger.info(f"⏳ Camera {camera_id}: WAITING FOR BACKEND SESSION_ID (timeout: {_session_timeout_seconds}s)")
|
|
logger.info(f"📡 Stable car detected - sending imageDetection to trigger backend session creation")
|
|
|
|
# Return detection to signal backend, but don't proceed with pipeline
|
|
primary_detection = max(all_detections, key=lambda x: x["confidence"]) if all_detections else {"class": "none", "confidence": 0.0, "bbox": [0, 0, 0, 0]}
|
|
primary_bbox = primary_detection.get("bbox", [0, 0, 0, 0])
|
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
|
|
|
logger.info(f"🚀 Camera {camera_id}: BACKEND SESSION_ID AVAILABLE ({backend_session_id}) - proceeding with full pipeline")
|
|
|
|
# ─── Pre-validate pipeline execution ────────────────────────
|
|
pipeline_valid, missing_branches = validate_pipeline_execution(node, regions_dict)
|
|
|
|
if not pipeline_valid:
|
|
logger.error(f"Pipeline execution validation FAILED - required branches {missing_branches} cannot execute")
|
|
logger.error("Aborting pipeline: no Redis actions or database records will be created")
|
|
return (None, None) if return_bbox else None
|
|
|
|
# ─── Execute actions with region information ────────────────
|
|
detection_result = {
|
|
"detections": all_detections,
|
|
"regions": regions_dict,
|
|
**(context or {})
|
|
}
|
|
|
|
# ─── Check backend sessionId before database operations ────
|
|
|
|
if node.get("db_manager") and regions_dict:
|
|
detected_classes = list(regions_dict.keys())
|
|
logger.debug(f"Valid detections found - checking for backend sessionId: {detected_classes}")
|
|
|
|
if not backend_session_id:
|
|
logger.error(f"🚫 Camera {camera_id}: No backend sessionId available - cannot proceed with database operations")
|
|
logger.error(f"🚫 Camera {camera_id}: Pipeline requires backend sessionId for Redis/PostgreSQL operations")
|
|
# Reset tracking and wait for new stable car
|
|
reset_tracking_state(camera_id, model_id, "missing backend sessionId")
|
|
return (None, None) if return_bbox else None
|
|
|
|
# Use backend sessionId for database operations
|
|
if detected_classes:
|
|
from datetime import datetime
|
|
display_id = detection_result.get("display_id", "unknown")
|
|
timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
|
|
|
inserted_session_id = node["db_manager"].insert_initial_detection(
|
|
display_id=display_id,
|
|
captured_timestamp=timestamp,
|
|
session_id=backend_session_id # Use backend sessionId
|
|
)
|
|
|
|
if inserted_session_id:
|
|
detection_result["session_id"] = inserted_session_id
|
|
detection_result["timestamp"] = timestamp
|
|
logger.info(f"💾 DATABASE RECORD CREATED with backend session_id: {inserted_session_id}")
|
|
logger.debug(f"Database record: display_id={display_id}, timestamp={timestamp}")
|
|
else:
|
|
logger.error(f"Failed to create database record with backend session_id: {backend_session_id}")
|
|
reset_tracking_state(camera_id, model_id, "database insertion failed")
|
|
return (None, None) if return_bbox else None
|
|
|
|
# Execute actions for root node only if it doesn't have branches
|
|
# Branch nodes with actions will execute them after branch processing
|
|
if not node.get("branches") or node.get("modelId") == "yolo11n":
|
|
execute_actions(node, frame, detection_result, regions_dict)
|
|
|
|
# ─── Branch processing (no stability check here) ─────────────────────────────
|
|
if node["branches"]:
|
|
branch_results = {}
|
|
|
|
# Extract camera_id for logging
|
|
camera_id = detection_result.get("camera_id", context.get("camera_id", "unknown") if context else "unknown")
|
|
|
|
|
|
# Filter branches that should be triggered
|
|
active_branches = []
|
|
for br in node["branches"]:
|
|
trigger_classes = br.get("triggerClasses", [])
|
|
min_conf = br.get("minConfidence", 0)
|
|
|
|
logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
|
|
|
|
# Check if any detected class matches branch trigger
|
|
branch_triggered = False
|
|
for det_class in regions_dict:
|
|
det_confidence = regions_dict[det_class]["confidence"]
|
|
logger.debug(f" Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
|
|
|
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
|
active_branches.append(br)
|
|
branch_triggered = True
|
|
logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
|
|
break
|
|
|
|
if not branch_triggered:
|
|
logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
|
|
|
|
if active_branches:
|
|
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
|
|
# Run branches in parallel
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
|
|
futures = {}
|
|
|
|
for br in active_branches:
|
|
sub_frame = frame
|
|
crop_class = br.get("cropClass")
|
|
|
|
logger.info(f"Starting parallel branch: {br['modelId']}, cropClass: {crop_class}")
|
|
|
|
if br.get("crop", False) and crop_class:
|
|
if crop_class in regions_dict:
|
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
|
if cropped is not None:
|
|
sub_frame = cropped # Use cropped image without manual resizing
|
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']} - model will handle resizing")
|
|
else:
|
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
|
continue
|
|
else:
|
|
logger.warning(f"Crop class {crop_class} not found in detected regions for {br['modelId']}, skipping branch")
|
|
continue
|
|
|
|
# Add regions_dict to context for child branches
|
|
branch_context = dict(context) if context else {}
|
|
branch_context["regions_dict"] = regions_dict
|
|
future = executor.submit(run_pipeline, sub_frame, br, True, branch_context)
|
|
futures[future] = br
|
|
|
|
# Collect results
|
|
for future in concurrent.futures.as_completed(futures):
|
|
br = futures[future]
|
|
try:
|
|
result, _ = future.result()
|
|
if result:
|
|
branch_results[br["modelId"]] = result
|
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
|
except Exception as e:
|
|
logger.error(f"Branch {br['modelId']} failed: {e}")
|
|
else:
|
|
# Run branches sequentially
|
|
for br in active_branches:
|
|
sub_frame = frame
|
|
crop_class = br.get("cropClass")
|
|
|
|
logger.info(f"Starting sequential branch: {br['modelId']}, cropClass: {crop_class}")
|
|
|
|
if br.get("crop", False) and crop_class:
|
|
if crop_class in regions_dict:
|
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
|
if cropped is not None:
|
|
sub_frame = cropped # Use cropped image without manual resizing
|
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']} - model will handle resizing")
|
|
else:
|
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
|
continue
|
|
else:
|
|
logger.warning(f"Crop class {crop_class} not found in detected regions for {br['modelId']}, skipping branch")
|
|
continue
|
|
|
|
try:
|
|
# Add regions_dict to context for child branches
|
|
branch_context = dict(context) if context else {}
|
|
branch_context["regions_dict"] = regions_dict
|
|
result, _ = run_pipeline(sub_frame, br, True, branch_context)
|
|
if result:
|
|
branch_results[br["modelId"]] = result
|
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
|
else:
|
|
logger.warning(f"Branch {br['modelId']} returned no result")
|
|
except Exception as e:
|
|
logger.error(f"Error in sequential branch {br['modelId']}: {e}")
|
|
import traceback
|
|
logger.debug(f"Branch error traceback: {traceback.format_exc()}")
|
|
|
|
# Store branch results in detection_result for parallel actions
|
|
detection_result["branch_results"] = branch_results
|
|
|
|
# ─── Execute Parallel Actions ───────────────────────────────
|
|
if node.get("parallelActions") and "branch_results" in detection_result:
|
|
execute_parallel_actions(node, frame, detection_result, regions_dict)
|
|
|
|
# ─── Note: Tracking will be reset when backend sends setSessionId: null ─────────────────
|
|
logger.info(f"Camera {camera_id}: Pipeline completed successfully - waiting for backend to end session")
|
|
|
|
# ─── Execute actions after successful detection AND branch processing ──────────
|
|
# This ensures detection nodes (like frontal_detection_v1) execute their actions
|
|
# after completing both detection and branch processing
|
|
if node.get("actions") and regions_dict and node.get("modelId") != "yolo11n":
|
|
# Execute actions for branch detection nodes, skip root to avoid duplication
|
|
logger.debug(f"Executing post-detection actions for branch node {node.get('modelId')}")
|
|
execute_actions(node, frame, detection_result, regions_dict)
|
|
|
|
# ─── Return detection result ────────────────────────────────
|
|
primary_detection = max(all_detections, key=lambda x: x["confidence"])
|
|
primary_bbox = primary_detection["bbox"]
|
|
|
|
# Add branch results and session_id to primary detection for compatibility
|
|
if "branch_results" in detection_result:
|
|
primary_detection["branch_results"] = detection_result["branch_results"]
|
|
if "session_id" in detection_result:
|
|
primary_detection["session_id"] = detection_result["session_id"]
|
|
|
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in node {node.get('modelId')}: {e}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
return (None, None) if return_bbox else None
|