import os import json import logging import torch import cv2 import requests import zipfile import shutil import traceback from ultralytics import YOLO from urllib.parse import urlparse # Create a logger specifically for this module logger = logging.getLogger("detector_worker.pympta") def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict: # Recursively load a model node from configuration. model_path = os.path.join(mpta_dir, node_config["modelFile"]) if not os.path.exists(model_path): logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}") logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}") raise FileNotFoundError(f"Model file {model_path} not found.") logger.info(f"Loading model for node {node_config['modelId']} from {model_path}") model = YOLO(model_path) if torch.cuda.is_available(): logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU") model.to("cuda") else: logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}") # Prepare trigger class indices for optimization trigger_classes = node_config.get("triggerClasses", []) trigger_class_indices = None if trigger_classes and hasattr(model, "names"): # Convert class names to indices for the model trigger_class_indices = [i for i, name in model.names.items() if name in trigger_classes] logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}") node = { "modelId": node_config["modelId"], "modelFile": node_config["modelFile"], "triggerClasses": trigger_classes, "triggerClassIndices": trigger_class_indices, "crop": node_config.get("crop", False), "minConfidence": node_config.get("minConfidence", None), "model": model, "branches": [] } logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}") for child in node_config.get("branches", []): logger.debug(f"Loading branch for parent node {node_config['modelId']}") node["branches"].append(load_pipeline_node(child, mpta_dir)) return node def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict: logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}") os.makedirs(target_dir, exist_ok=True) zip_path = os.path.join(target_dir, "pipeline.mpta") # Parse the source; only local files are supported here. parsed = urlparse(zip_source) if parsed.scheme in ("", "file"): local_path = parsed.path if parsed.scheme == "file" else zip_source logger.debug(f"Checking if local file exists: {local_path}") if os.path.exists(local_path): try: shutil.copy(local_path, zip_path) logger.info(f"Copied local .mpta file from {local_path} to {zip_path}") except Exception as e: logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True) return None else: logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}") # List all subdirectories of models directory to help debugging if os.path.exists("models"): logger.error(f"Content of models directory: {os.listdir('models')}") for root, dirs, files in os.walk("models"): logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}") else: logger.error("The models directory doesn't exist") return None else: logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}") return None try: if not os.path.exists(zip_path): logger.error(f"Zip file not found at expected location: {zip_path}") return None logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}") # Extract contents and track the directories created extracted_dirs = [] with zipfile.ZipFile(zip_path, "r") as zip_ref: file_list = zip_ref.namelist() logger.debug(f"Files in .mpta archive: {file_list}") # Extract and track the top-level directories for file_path in file_list: parts = file_path.split('/') if len(parts) > 1: top_dir = parts[0] if top_dir and top_dir not in extracted_dirs: extracted_dirs.append(top_dir) # Now extract the files zip_ref.extractall(target_dir) logger.info(f"Successfully extracted .mpta file to {target_dir}") logger.debug(f"Extracted directories: {extracted_dirs}") # Check what was actually created after extraction actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))] logger.debug(f"Actual directories created: {actual_dirs}") except zipfile.BadZipFile as e: logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True) return None except Exception as e: logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True) return None finally: if os.path.exists(zip_path): os.remove(zip_path) logger.debug(f"Removed temporary zip file: {zip_path}") # Use the first extracted directory if it exists, otherwise use the expected name pipeline_name = os.path.basename(zip_source) pipeline_name = os.path.splitext(pipeline_name)[0] # Find the directory with pipeline.json mpta_dir = None # First try the expected directory name expected_dir = os.path.join(target_dir, pipeline_name) if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")): mpta_dir = expected_dir logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}") else: # Look through all subdirectories for pipeline.json for subdir in actual_dirs: potential_dir = os.path.join(target_dir, subdir) if os.path.exists(os.path.join(potential_dir, "pipeline.json")): mpta_dir = potential_dir logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})") break if not mpta_dir: logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}") return None pipeline_json_path = os.path.join(mpta_dir, "pipeline.json") if not os.path.exists(pipeline_json_path): logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}") return None try: with open(pipeline_json_path, "r") as f: pipeline_config = json.load(f) logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}") logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}") return load_pipeline_node(pipeline_config["pipeline"], mpta_dir) except json.JSONDecodeError as e: logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True) return None except KeyError as e: logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True) return None except Exception as e: logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True) return None def run_pipeline(frame, node: dict, return_bbox: bool=False): """ - For detection nodes (task != 'classify'): • runs `track(..., classes=triggerClassIndices)` • picks top box ≥ minConfidence • optionally crops & resizes → recurse into child • else returns (det_dict, bbox) - For classify nodes: • runs `predict()` • returns top (class,confidence) and no bbox """ try: task = getattr(node["model"], "task", None) # ─── Classification stage ─────────────────────────────────── if task == "classify": # run the classifier and grab its top-1 directly via the Probs API results = node["model"].predict(frame, stream=False) # nothing returned? if not results: return (None, None) if return_bbox else None # take the first result's probs object r = results[0] probs = r.probs if probs is None: return (None, None) if return_bbox else None # get the top-1 class index and its confidence top1_idx = int(probs.top1) top1_conf = float(probs.top1conf) det = { "class": node["model"].names[top1_idx], "confidence": top1_conf, "id": None } return (det, None) if return_bbox else det # ─── Detection stage ──────────────────────────────────────── # only look for your triggerClasses tk = node["triggerClassIndices"] res = node["model"].track( frame, stream=False, persist=True, **({"classes": tk} if tk else {}) )[0] dets, boxes = [], [] for box in res.boxes: conf = float(box.cpu().conf[0]) cid = int(box.cpu().cls[0]) name = node["model"].names[cid] if conf < node["minConfidence"]: continue xy = box.cpu().xyxy[0] x1,y1,x2,y2 = map(int, xy) dets.append({"class": name, "confidence": conf, "id": box.id.item() if hasattr(box, "id") else None}) boxes.append((x1, y1, x2, y2)) if not dets: return (None, None) if return_bbox else None # take highest‐confidence best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"]) best_det = dets[best_idx] best_box = boxes[best_idx] # ─── Branch (classification) ─────────────────────────────── for br in node["branches"]: if (best_det["class"] in br["triggerClasses"] and best_det["confidence"] >= br["minConfidence"]): # crop if requested sub = frame if br["crop"]: x1,y1,x2,y2 = best_box sub = frame[y1:y2, x1:x2] sub = cv2.resize(sub, (224, 224)) det2, _ = run_pipeline(sub, br, return_bbox=True) if det2: # return classification result + original bbox return (det2, best_box) if return_bbox else det2 # ─── No branch matched → return this detection ───────────── return (best_det, best_box) if return_bbox else best_det except Exception as e: logging.error(f"Error in node {node.get('modelId')}: {e}") return (None, None) if return_bbox else None