from typing import Any, Dict import os import json import time import queue import torch import cv2 import base64 import logging import threading import requests import asyncio import psutil import zipfile from urllib.parse import urlparse from fastapi import FastAPI, WebSocket from fastapi.websockets import WebSocketDisconnect from websockets.exceptions import ConnectionClosedError from ultralytics import YOLO # Import shared pipeline functions from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline app = FastAPI() # Global dictionaries to keep track of models and streams # "models" now holds a nested dict: { camera_id: { modelId: model_tree } } models: Dict[str, Dict[str, Any]] = {} streams: Dict[str, Dict[str, Any]] = {} with open("config.json", "r") as f: config = json.load(f) poll_interval = config.get("poll_interval_ms", 100) reconnect_interval = config.get("reconnect_interval_sec", 5) TARGET_FPS = config.get("target_fps", 10) poll_interval = 1000 / TARGET_FPS logging.info(f"Poll interval: {poll_interval}ms") max_streams = config.get("max_streams", 5) max_retries = config.get("max_retries", 3) # Configure logging logging.basicConfig( level=logging.INFO, # Set to INFO level for less verbose output format="%(asctime)s [%(levelname)s] %(name)s: %(message)s", handlers=[ logging.FileHandler("detector_worker.log"), # Write logs to a file logging.StreamHandler() # Also output to console ] ) # Create a logger specifically for this application logger = logging.getLogger("detector_worker") logger.setLevel(logging.DEBUG) # Set app-specific logger to DEBUG level # Ensure all other libraries (including root) use at least INFO level logging.getLogger().setLevel(logging.INFO) logger.info("Starting detector worker application") logger.info(f"Configuration: Target FPS: {TARGET_FPS}, Max streams: {max_streams}, Max retries: {max_retries}") # Ensure the models directory exists os.makedirs("models", exist_ok=True) logger.info("Ensured models directory exists") # Constants for heartbeat and timeouts HEARTBEAT_INTERVAL = 2 # seconds WORKER_TIMEOUT_MS = 10000 logger.debug(f"Heartbeat interval set to {HEARTBEAT_INTERVAL} seconds") # Locks for thread-safe operations streams_lock = threading.Lock() models_lock = threading.Lock() logger.debug("Initialized thread locks") # Add helper to download mpta ZIP file from a remote URL def download_mpta(url: str, dest_path: str) -> str: try: logger.info(f"Starting download of model from {url} to {dest_path}") os.makedirs(os.path.dirname(dest_path), exist_ok=True) response = requests.get(url, stream=True) if response.status_code == 200: file_size = int(response.headers.get('content-length', 0)) logger.info(f"Model file size: {file_size/1024/1024:.2f} MB") downloaded = 0 with open(dest_path, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) downloaded += len(chunk) if file_size > 0 and downloaded % (file_size // 10) < 8192: # Log approximately every 10% logger.debug(f"Download progress: {downloaded/file_size*100:.1f}%") logger.info(f"Successfully downloaded mpta file from {url} to {dest_path}") return dest_path else: logger.error(f"Failed to download mpta file (status code {response.status_code}): {response.text}") return None except Exception as e: logger.error(f"Exception downloading mpta file from {url}: {str(e)}", exc_info=True) return None #################################################### # Detection and frame processing functions #################################################### @app.websocket("/") async def detect(websocket: WebSocket): logger.info("WebSocket connection accepted") persistent_data_dict = {} async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data): try: logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}") start_time = time.time() detection_result = run_pipeline(frame, model_tree) process_time = (time.time() - start_time) * 1000 logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms") # Log the raw detection result for debugging logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}") # Direct class result (no detections/classifications structure) if detection_result and isinstance(detection_result, dict) and "class" in detection_result and "confidence" in detection_result: highest_confidence_detection = { "class": detection_result.get("class", "none"), "confidence": detection_result.get("confidence", 1.0), "box": [0, 0, 0, 0] # Empty bounding box for classifications } # Handle case when no detections found or result is empty elif not detection_result or not detection_result.get("detections"): # Check if we have classification results if detection_result and detection_result.get("classifications"): # Get the highest confidence classification classifications = detection_result.get("classifications", []) highest_confidence_class = max(classifications, key=lambda x: x.get("confidence", 0)) if classifications else None if highest_confidence_class: highest_confidence_detection = { "class": highest_confidence_class.get("class", "none"), "confidence": highest_confidence_class.get("confidence", 1.0), "box": [0, 0, 0, 0] # Empty bounding box for classifications } else: highest_confidence_detection = { "class": "none", "confidence": 1.0, "box": [0, 0, 0, 0] } else: highest_confidence_detection = { "class": "none", "confidence": 1.0, "box": [0, 0, 0, 0] } else: # Find detection with highest confidence detections = detection_result.get("detections", []) highest_confidence_detection = max(detections, key=lambda x: x.get("confidence", 0)) if detections else { "class": "none", "confidence": 1.0, "box": [0, 0, 0, 0] } detection_data = { "type": "imageDetection", "cameraIdentifier": camera_id, "timestamp": time.time(), "data": { "detection": highest_confidence_detection, # Send only the highest confidence detection "modelId": stream["modelId"], "modelName": stream["modelName"] } } if highest_confidence_detection["class"] != "none": logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}") await websocket.send_json(detection_data) logger.debug(f"Sent detection data to client for camera {camera_id}:\n{json.dumps(detection_data, indent=2)}") return persistent_data except Exception as e: logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True) return persistent_data def frame_reader(camera_id, cap, buffer, stop_event): retries = 0 logger.info(f"Starting frame reader thread for camera {camera_id}") frame_count = 0 last_log_time = time.time() try: # Log initial camera status and properties if cap.isOpened(): width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) logger.info(f"Camera {camera_id} opened successfully with resolution {width}x{height}, FPS: {fps}") else: logger.error(f"Camera {camera_id} failed to open initially") while not stop_event.is_set(): try: if not cap.isOpened(): logger.error(f"Camera {camera_id} is not open before trying to read") # Attempt to reopen cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"]) time.sleep(reconnect_interval) continue logger.debug(f"Attempting to read frame from camera {camera_id}") ret, frame = cap.read() if not ret: logger.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}") cap.release() time.sleep(reconnect_interval) retries += 1 if retries > max_retries and max_retries != -1: logger.error(f"Max retries reached for camera: {camera_id}, stopping frame reader") break # Re-open logger.info(f"Attempting to reopen RTSP stream for camera: {camera_id}") cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"]) if not cap.isOpened(): logger.error(f"Failed to reopen RTSP stream for camera: {camera_id}") continue logger.info(f"Successfully reopened RTSP stream for camera: {camera_id}") continue # Successfully read a frame frame_count += 1 current_time = time.time() # Log frame stats every 5 seconds if current_time - last_log_time > 5: logger.info(f"Camera {camera_id}: Read {frame_count} frames in the last {current_time - last_log_time:.1f} seconds") frame_count = 0 last_log_time = current_time logger.debug(f"Successfully read frame from camera {camera_id}, shape: {frame.shape}") retries = 0 # Overwrite old frame if buffer is full if not buffer.empty(): try: buffer.get_nowait() logger.debug(f"Removed old frame from buffer for camera {camera_id}") except queue.Empty: pass buffer.put(frame) logger.debug(f"Added new frame to buffer for camera {camera_id}") # Short sleep to avoid CPU overuse time.sleep(0.01) except cv2.error as e: logger.error(f"OpenCV error for camera {camera_id}: {e}", exc_info=True) cap.release() time.sleep(reconnect_interval) retries += 1 if retries > max_retries and max_retries != -1: logger.error(f"Max retries reached after OpenCV error for camera {camera_id}") break logger.info(f"Attempting to reopen RTSP stream after OpenCV error for camera: {camera_id}") cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"]) if not cap.isOpened(): logger.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error") continue logger.info(f"Successfully reopened RTSP stream after OpenCV error for camera: {camera_id}") except Exception as e: logger.error(f"Unexpected error for camera {camera_id}: {str(e)}", exc_info=True) cap.release() break except Exception as e: logger.error(f"Error in frame_reader thread for camera {camera_id}: {str(e)}", exc_info=True) finally: logger.info(f"Frame reader thread for camera {camera_id} is exiting") if cap and cap.isOpened(): cap.release() async def process_streams(): logger.info("Started processing streams") try: while True: start_time = time.time() with streams_lock: current_streams = list(streams.items()) if current_streams: logger.debug(f"Processing {len(current_streams)} active streams") else: logger.debug("No active streams to process") for camera_id, stream in current_streams: buffer = stream["buffer"] if buffer.empty(): logger.debug(f"Frame buffer is empty for camera {camera_id}") continue logger.debug(f"Got frame from buffer for camera {camera_id}") frame = buffer.get() with models_lock: model_tree = models.get(camera_id, {}).get(stream["modelId"]) if not model_tree: logger.warning(f"Model not found for camera {camera_id}, modelId {stream['modelId']}") continue logger.debug(f"Found model tree for camera {camera_id}, modelId {stream['modelId']}") key = (camera_id, stream["modelId"]) persistent_data = persistent_data_dict.get(key, {}) logger.debug(f"Starting detection for camera {camera_id} with modelId {stream['modelId']}") updated_persistent_data = await handle_detection( camera_id, stream, frame, websocket, model_tree, persistent_data ) persistent_data_dict[key] = updated_persistent_data elapsed_time = (time.time() - start_time) * 1000 # ms sleep_time = max(poll_interval - elapsed_time, 0) logger.debug(f"Frame processing cycle: {elapsed_time:.2f}ms, sleeping for: {sleep_time:.2f}ms") await asyncio.sleep(sleep_time / 1000.0) except asyncio.CancelledError: logger.info("Stream processing task cancelled") except Exception as e: logger.error(f"Error in process_streams: {str(e)}", exc_info=True) async def send_heartbeat(): while True: try: cpu_usage = psutil.cpu_percent() memory_usage = psutil.virtual_memory().percent if torch.cuda.is_available(): gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # MB gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # MB else: gpu_usage = None gpu_memory_usage = None camera_connections = [ { "cameraIdentifier": camera_id, "modelId": stream["modelId"], "modelName": stream["modelName"], "online": True } for camera_id, stream in streams.items() ] state_report = { "type": "stateReport", "cpuUsage": cpu_usage, "memoryUsage": memory_usage, "gpuUsage": gpu_usage, "gpuMemoryUsage": gpu_memory_usage, "cameraConnections": camera_connections } await websocket.send_text(json.dumps(state_report)) logger.debug(f"Sent stateReport as heartbeat: CPU {cpu_usage:.1f}%, Memory {memory_usage:.1f}%, {len(camera_connections)} active cameras") await asyncio.sleep(HEARTBEAT_INTERVAL) except Exception as e: logger.error(f"Error sending stateReport heartbeat: {e}") break async def on_message(): while True: try: msg = await websocket.receive_text() logger.debug(f"Received message: {msg}") data = json.loads(msg) msg_type = data.get("type") if msg_type == "subscribe": payload = data.get("payload", {}) camera_id = payload.get("cameraIdentifier") rtsp_url = payload.get("rtspUrl") model_url = payload.get("modelUrl") # may be remote or local modelId = payload.get("modelId") modelName = payload.get("modelName") if model_url: with models_lock: if (camera_id not in models) or (modelId not in models[camera_id]): logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}") extraction_dir = os.path.join("models", camera_id, str(modelId)) os.makedirs(extraction_dir, exist_ok=True) # If model_url is remote, download it first. parsed = urlparse(model_url) if parsed.scheme in ("http", "https"): logger.info(f"Downloading remote model from {model_url}") local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path)) logger.debug(f"Download destination: {local_mpta}") local_path = download_mpta(model_url, local_mpta) if not local_path: logger.error(f"Failed to download the remote mpta file from {model_url}") error_response = { "type": "error", "cameraIdentifier": camera_id, "error": f"Failed to download model from {model_url}" } await websocket.send_json(error_response) continue model_tree = load_pipeline_from_zip(local_path, extraction_dir) else: logger.info(f"Loading local model from {model_url}") # Check if file exists before attempting to load if not os.path.exists(model_url): logger.error(f"Local model file not found: {model_url}") logger.debug(f"Current working directory: {os.getcwd()}") error_response = { "type": "error", "cameraIdentifier": camera_id, "error": f"Model file not found: {model_url}" } await websocket.send_json(error_response) continue model_tree = load_pipeline_from_zip(model_url, extraction_dir) if model_tree is None: logger.error(f"Failed to load model {modelId} from mpta file for camera {camera_id}") error_response = { "type": "error", "cameraIdentifier": camera_id, "error": f"Failed to load model {modelId}" } await websocket.send_json(error_response) continue if camera_id not in models: models[camera_id] = {} models[camera_id][modelId] = model_tree logger.info(f"Successfully loaded model {modelId} for camera {camera_id}") success_response = { "type": "modelLoaded", "cameraIdentifier": camera_id, "modelId": modelId } await websocket.send_json(success_response) if camera_id and rtsp_url: with streams_lock: if camera_id not in streams and len(streams) < max_streams: cap = cv2.VideoCapture(rtsp_url) if not cap.isOpened(): logger.error(f"Failed to open RTSP stream for camera {camera_id}") continue buffer = queue.Queue(maxsize=1) stop_event = threading.Event() thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event)) thread.daemon = True thread.start() streams[camera_id] = { "cap": cap, "buffer": buffer, "thread": thread, "rtsp_url": rtsp_url, "stop_event": stop_event, "modelId": modelId, "modelName": modelName } logger.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName}, URL {rtsp_url}") elif camera_id and camera_id in streams: # If already subscribed, unsubscribe stream = streams.pop(camera_id) stream["cap"].release() logger.info(f"Unsubscribed from camera {camera_id}") with models_lock: if camera_id in models and modelId in models[camera_id]: del models[camera_id][modelId] if not models[camera_id]: del models[camera_id] elif msg_type == "unsubscribe": payload = data.get("payload", {}) camera_id = payload.get("cameraIdentifier") logger.debug(f"Unsubscribing from camera {camera_id}") with streams_lock: if camera_id and camera_id in streams: stream = streams.pop(camera_id) stream["stop_event"].set() stream["thread"].join() stream["cap"].release() logger.info(f"Unsubscribed from camera {camera_id}") with models_lock: if camera_id in models: del models[camera_id] elif msg_type == "requestState": cpu_usage = psutil.cpu_percent() memory_usage = psutil.virtual_memory().percent if torch.cuda.is_available(): gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) else: gpu_usage = None gpu_memory_usage = None camera_connections = [ { "cameraIdentifier": camera_id, "modelId": stream["modelId"], "modelName": stream["modelName"], "online": True } for camera_id, stream in streams.items() ] state_report = { "type": "stateReport", "cpuUsage": cpu_usage, "memoryUsage": memory_usage, "gpuUsage": gpu_usage, "gpuMemoryUsage": gpu_memory_usage, "cameraConnections": camera_connections } await websocket.send_text(json.dumps(state_report)) else: logger.error(f"Unknown message type: {msg_type}") except json.JSONDecodeError: logger.error("Received invalid JSON message") except (WebSocketDisconnect, ConnectionClosedError) as e: logger.warning(f"WebSocket disconnected: {e}") break except Exception as e: logger.error(f"Error handling message: {e}") break try: await websocket.accept() stream_task = asyncio.create_task(process_streams()) heartbeat_task = asyncio.create_task(send_heartbeat()) message_task = asyncio.create_task(on_message()) await asyncio.gather(heartbeat_task, message_task) except Exception as e: logger.error(f"Error in detect websocket: {e}") finally: stream_task.cancel() await stream_task with streams_lock: for camera_id, stream in streams.items(): stream["stop_event"].set() stream["thread"].join() stream["cap"].release() while not stream["buffer"].empty(): try: stream["buffer"].get_nowait() except queue.Empty: pass logger.info(f"Released camera {camera_id} and cleaned up resources") streams.clear() with models_lock: models.clear() logger.info("WebSocket connection closed")