[Pongsatorn K. 2025/09/01] fixing pympta.py #6

Merged
taipong merged 2 commits from feat/tracker into dev 2025-09-01 05:02:12 +00:00
2 changed files with 100 additions and 49 deletions

2
.gitignore vendored
View file

@ -15,3 +15,5 @@ feeder/
.venv/ .venv/
.vscode/ .vscode/
dist/ dist/
websocket_comm.log
temp_debug/

View file

@ -61,12 +61,27 @@ def crop_region_by_class(frame, regions_dict, class_name):
bbox = regions_dict[class_name]['bbox'] bbox = regions_dict[class_name]['bbox']
x1, y1, x2, y2 = bbox x1, y1, x2, y2 = bbox
# Diagnostic logging for crop issues
frame_h, frame_w = frame.shape[:2]
logger.debug(f"CROP DEBUG: Frame dimensions: {frame_w}x{frame_h}")
logger.debug(f"CROP DEBUG: Original bbox: {bbox}")
logger.debug(f"CROP DEBUG: Bbox dimensions: {x2-x1}x{y2-y1}")
# Check if bbox is within frame bounds
if x1 < 0 or y1 < 0 or x2 > frame_w or y2 > frame_h:
logger.warning(f"CROP DEBUG: Bbox extends beyond frame! Clipping...")
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(frame_w, x2), min(frame_h, y2)
logger.debug(f"CROP DEBUG: Clipped bbox: ({x1}, {y1}, {x2}, {y2})")
cropped = frame[y1:y2, x1:x2] cropped = frame[y1:y2, x1:x2]
if cropped.size == 0: if cropped.size == 0:
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}") logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
return None return None
logger.debug(f"CROP DEBUG: Successful crop shape: {cropped.shape}")
return cropped return cropped
def format_action_context(base_context, additional_context=None): def format_action_context(base_context, additional_context=None):
@ -113,6 +128,7 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manage
"crop": node_config.get("crop", False), "crop": node_config.get("crop", False),
"cropClass": node_config.get("cropClass"), "cropClass": node_config.get("cropClass"),
"minConfidence": node_config.get("minConfidence", None), "minConfidence": node_config.get("minConfidence", None),
"frontalMinConfidence": node_config.get("frontalMinConfidence", None),
"minBboxAreaRatio": node_config.get("minBboxAreaRatio", 0.0), "minBboxAreaRatio": node_config.get("minBboxAreaRatio", 0.0),
"multiClass": node_config.get("multiClass", False), "multiClass": node_config.get("multiClass", False),
"expectedClasses": node_config.get("expectedClasses", []), "expectedClasses": node_config.get("expectedClasses", []),
@ -634,8 +650,7 @@ def run_detection_with_tracking(frame, node, context=None):
logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs") logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs")
session_state["reset_tracker_on_resume"] = False # Clear the flag session_state["reset_tracker_on_resume"] = False # Clear the flag
# Get tracking zone from runtime context (camera-specific) # Tracking zones removed - process all detections
tracking_zone = context.get("trackingZone", []) if context else []
# Prepare class filtering # Prepare class filtering
trigger_class_indices = node.get("triggerClassIndices") trigger_class_indices = node.get("triggerClassIndices")
@ -643,19 +658,13 @@ def run_detection_with_tracking(frame, node, context=None):
logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, stability_threshold: {stability_threshold}, classes: {node.get('triggerClasses', 'all')}") logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, stability_threshold: {stability_threshold}, classes: {node.get('triggerClasses', 'all')}")
if tracking_enabled and tracking_zone: # Use predict for detection-only models (frontal detection), track for main detection models
# Use tracking with zone validation model_id = node.get("modelId", "")
logger.debug(f"Using tracking with ReID config: {reid_config_path}") use_tracking = tracking_enabled and not ("frontal" in model_id.lower() or "detection" in model_id.lower())
res = node["model"].track(
frame, if use_tracking:
stream=False, # Use tracking for main detection models (yolo11m, etc.)
persist=True, logger.debug(f"Using tracking for {model_id}")
tracker=reid_config_path,
**class_filter
)[0]
elif tracking_enabled:
# Use tracking without zone restriction
logger.debug("Using tracking without zone restriction")
res = node["model"].track( res = node["model"].track(
frame, frame,
stream=False, stream=False,
@ -663,8 +672,8 @@ def run_detection_with_tracking(frame, node, context=None):
**class_filter **class_filter
)[0] )[0]
else: else:
# Use detection only (no tracking) # Use detection only for frontal detection and other detection-only models
logger.debug("Using detection only (tracking disabled)") logger.debug(f"Using prediction only for {model_id}")
res = node["model"].predict( res = node["model"].predict(
frame, frame,
stream=False, stream=False,
@ -673,7 +682,13 @@ def run_detection_with_tracking(frame, node, context=None):
# Process detection results # Process detection results
candidate_detections = [] candidate_detections = []
min_confidence = node.get("minConfidence", 0.0) # Use frontalMinConfidence for frontal detection models, otherwise use minConfidence
model_id = node.get("modelId", "")
if "frontal" in model_id.lower() and "frontalMinConfidence" in node:
min_confidence = node.get("frontalMinConfidence", 0.0)
logger.debug(f"Using frontalMinConfidence={min_confidence} for {model_id}")
else:
min_confidence = node.get("minConfidence", 0.0)
if res.boxes is None or len(res.boxes) == 0: if res.boxes is None or len(res.boxes) == 0:
logger.debug(f"🚫 Camera {camera_id}: YOLO returned no detections") logger.debug(f"🚫 Camera {camera_id}: YOLO returned no detections")
@ -716,15 +731,7 @@ def run_detection_with_tracking(frame, node, context=None):
logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - confidence {conf:.3f} < {min_confidence}") logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - confidence {conf:.3f} < {min_confidence}")
continue continue
# Apply tracking zone validation if enabled # Tracking zone validation removed - process all detections
if tracking_enabled and tracking_zone:
bbox_center_x = (x1 + x2) // 2
bbox_center_y = (y1 + y2) // 2
# Check if detection center is within tracking zone
if not _point_in_polygon((bbox_center_x, bbox_center_y), tracking_zone):
logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - outside tracking zone")
continue
# Create detection object # Create detection object
detection = { detection = {
@ -757,6 +764,11 @@ def run_detection_with_tracking(frame, node, context=None):
for i, detection in enumerate(candidate_detections): for i, detection in enumerate(candidate_detections):
logger.debug(f"🏆 Camera {camera_id}: Candidate {i+1}: {detection['class']} conf={detection['confidence']:.3f} track_id={detection['id']}") logger.debug(f"🏆 Camera {camera_id}: Candidate {i+1}: {detection['class']} conf={detection['confidence']:.3f} track_id={detection['id']}")
# Show all candidate detections before selection
logger.debug(f"Found {len(candidate_detections)} candidate detections:")
for i, det in enumerate(candidate_detections):
logger.debug(f"Candidate {i+1}: {det['class']} conf={det['confidence']:.3f} bbox={det['bbox']}")
# Find the single highest confidence detection across all detected classes # Find the single highest confidence detection across all detected classes
best_detection = max(candidate_detections, key=lambda x: x["confidence"]) best_detection = max(candidate_detections, key=lambda x: x["confidence"])
original_class = best_detection["class"] original_class = best_detection["class"]
@ -808,6 +820,25 @@ def run_detection_with_tracking(frame, node, context=None):
logger.info(f"✅ Camera {camera_id}: DETECTION COMPLETE - tracking single car: track_id={track_id}, conf={best_detection['confidence']:.3f}") logger.info(f"✅ Camera {camera_id}: DETECTION COMPLETE - tracking single car: track_id={track_id}, conf={best_detection['confidence']:.3f}")
logger.debug(f"📊 Camera {camera_id}: Detection summary: {len(res.boxes)} raw → {len(candidate_detections)} candidates → 1 selected") logger.debug(f"📊 Camera {camera_id}: Detection summary: {len(res.boxes)} raw → {len(candidate_detections)} candidates → 1 selected")
# Debug: Save vehicle crop for debugging (disabled for production)
# if node.get("modelId") in ["yolo11n", "yolo11m"] and regions_dict:
# try:
# import datetime
# os.makedirs("temp_debug", exist_ok=True)
# timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3]
#
# for class_name, region_data in regions_dict.items():
# bbox = region_data['bbox']
# x1, y1, x2, y2 = bbox
# cropped = frame[y1:y2, x1:x2]
# if cropped.size > 0:
# model_name = node.get("modelId", "yolo")
# debug_path = f"temp_debug/{model_name}_{class_name}_crop_{timestamp}.jpg"
# cv2.imwrite(debug_path, cropped)
# logger.debug(f"Saved {model_name} {class_name} crop to {debug_path}")
# except Exception as e:
# logger.error(f"Failed to save {node.get('modelId', 'yolo')} crop: {e}")
# Update track-based stability tracking for the single selected car # Update track-based stability tracking for the single selected car
camera_id = context.get("camera_id", "unknown") if context else "unknown" camera_id = context.get("camera_id", "unknown") if context else "unknown"
model_id = node.get("modelId", "unknown") model_id = node.get("modelId", "unknown")
@ -826,28 +857,6 @@ def run_detection_with_tracking(frame, node, context=None):
logger.debug(f"Detection error traceback: {traceback.format_exc()}") logger.debug(f"Detection error traceback: {traceback.format_exc()}")
return [], {}, {"validation_complete": False, "stable_tracks": [], "current_tracks": []} return [], {}, {"validation_complete": False, "stable_tracks": [], "current_tracks": []}
def _point_in_polygon(point, polygon):
"""Check if a point is inside a polygon using ray casting algorithm."""
if not polygon or len(polygon) < 3:
return True # No zone restriction if invalid polygon
x, y = point
n = len(polygon)
inside = False
p1x, p1y = polygon[0]
for i in range(1, n + 1):
p2x, p2y = polygon[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def get_camera_stability_data(camera_id, model_id): def get_camera_stability_data(camera_id, model_id):
"""Get or create stability tracking data for a specific camera and model.""" """Get or create stability tracking data for a specific camera and model."""
@ -1424,6 +1433,46 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None, valid
# Normal detection stage - Using structured detection function # Normal detection stage - Using structured detection function
all_detections, regions_dict, track_validation_result = run_detection_with_tracking(frame, node, context) all_detections, regions_dict, track_validation_result = run_detection_with_tracking(frame, node, context)
# Debug: Save crops for debugging (disabled for production)
# if regions_dict:
# try:
# import datetime
# os.makedirs("temp_debug", exist_ok=True)
# timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# model_id = node.get("modelId", "unknown")
#
# # Save vehicle crop from yolo model (any vehicle: car, truck, bus, motorcycle)
# if model_id in ["yolo11n", "yolo11m"]:
# # Look for any vehicle class in regions_dict
# vehicle_classes = ["car", "truck", "bus", "motorcycle"]
# found_vehicle = None
# for vehicle_class in vehicle_classes:
# if vehicle_class in regions_dict:
# found_vehicle = vehicle_class
# break
#
# if found_vehicle:
# bbox = regions_dict[found_vehicle]['bbox']
# x1, y1, x2, y2 = bbox
# cropped = frame[y1:y2, x1:x2]
# if cropped.size > 0:
# debug_path = f"temp_debug/{found_vehicle}_crop_{timestamp}.jpg"
# cv2.imwrite(debug_path, cropped)
# logger.debug(f"Saved {found_vehicle} crop to {debug_path}")
#
# # Save frontal crop from frontal_detection_v1
# elif model_id == "frontal_detection_v1" and "frontal" in regions_dict:
# bbox = regions_dict["frontal"]['bbox']
# x1, y1, x2, y2 = bbox
# cropped = frame[y1:y2, x1:x2]
# if cropped.size > 0:
# debug_path = f"temp_debug/frontal_crop_{timestamp}.jpg"
# cv2.imwrite(debug_path, cropped)
# logger.debug(f"Saved frontal crop to {debug_path}")
#
# except Exception as e:
# logger.error(f"Failed to save crops: {e}")
if not all_detections: if not all_detections:
logger.debug("No detections from structured detection function - sending 'none' detection") logger.debug("No detections from structured detection function - sending 'none' detection")
none_detection = { none_detection = {