Compare commits
1 commit
main
...
feat/new-l
Author | SHA1 | Date | |
---|---|---|---|
|
aa4e0463d4 |
13 changed files with 691 additions and 1817 deletions
|
@ -1,34 +0,0 @@
|
|||
name: Build Backend Application and Docker Image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
build-docker:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
packages: write
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
|
||||
- name: Login to GitHub Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: git.siwatsystem.com
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.RUNNER_TOKEN }}
|
||||
|
||||
- name: Build and push Docker image
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
push: true
|
||||
tags: git.siwatsystem.com/adsist-cms/worker:latest
|
5
.gitignore
vendored
5
.gitignore
vendored
|
@ -6,7 +6,4 @@ app.log
|
|||
__pycache__/
|
||||
.mptacache
|
||||
|
||||
mptas
|
||||
detector_worker.log
|
||||
.gitignore
|
||||
no_frame_debug.log
|
||||
mptas
|
188
CLAUDE.md
188
CLAUDE.md
|
@ -1,188 +0,0 @@
|
|||
# Python Detector Worker - CLAUDE.md
|
||||
|
||||
## Project Overview
|
||||
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
|
||||
|
||||
## Architecture & Technology Stack
|
||||
- **Framework**: FastAPI with WebSocket support
|
||||
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
|
||||
- **Containerization**: Docker (Python 3.13-bookworm base)
|
||||
- **Data Storage**: Redis integration for action handling
|
||||
- **Communication**: WebSocket-based real-time protocol
|
||||
|
||||
## Core Components
|
||||
|
||||
### Main Application (`app.py`)
|
||||
- **FastAPI WebSocket server** for real-time communication
|
||||
- **Multi-camera stream management** with shared stream optimization
|
||||
- **HTTP REST endpoint** for image retrieval (`/camera/{camera_id}/image`)
|
||||
- **Threading-based frame readers** for RTSP streams and HTTP snapshots
|
||||
- **Model loading and inference** using MPTA (Machine Learning Pipeline Archive) format
|
||||
- **Session management** with display identifier mapping
|
||||
- **Resource monitoring** (CPU, memory, GPU usage via psutil)
|
||||
|
||||
### Pipeline System (`siwatsystem/pympta.py`)
|
||||
- **MPTA file handling** - ZIP archives containing model configurations
|
||||
- **Hierarchical pipeline execution** with detection → classification branching
|
||||
- **Redis action system** for image saving and message publishing
|
||||
- **Dynamic model loading** with GPU optimization
|
||||
- **Configurable trigger classes and confidence thresholds**
|
||||
|
||||
### Testing & Debugging
|
||||
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
|
||||
- **Pipeline webcam utility** (`pipeline_webcam.py`) for local testing with visual output
|
||||
- **RTSP streaming debug tool** (`debug/rtsp_webcam.py`) using GStreamer
|
||||
|
||||
## Code Conventions & Patterns
|
||||
|
||||
### Logging
|
||||
- **Structured logging** using Python's logging module
|
||||
- **File + console output** to `detector_worker.log`
|
||||
- **Debug level separation** for detailed troubleshooting
|
||||
- **Context-aware messages** with camera IDs and model information
|
||||
|
||||
### Error Handling
|
||||
- **Graceful failure handling** with retry mechanisms (configurable max_retries)
|
||||
- **Thread-safe operations** using locks for streams and models
|
||||
- **WebSocket disconnect handling** with proper cleanup
|
||||
- **Model loading validation** with detailed error reporting
|
||||
|
||||
### Configuration
|
||||
- **JSON configuration** (`config.json`) for runtime parameters:
|
||||
- `poll_interval_ms`: Frame processing interval
|
||||
- `max_streams`: Concurrent stream limit
|
||||
- `target_fps`: Target frame rate
|
||||
- `reconnect_interval_sec`: Stream reconnection delay
|
||||
- `max_retries`: Maximum retry attempts (-1 for unlimited)
|
||||
|
||||
### Threading Model
|
||||
- **Frame reader threads** for each camera stream (RTSP/HTTP)
|
||||
- **Shared stream optimization** - multiple subscriptions can reuse the same camera stream
|
||||
- **Async WebSocket handling** with concurrent task management
|
||||
- **Thread-safe data structures** with proper locking mechanisms
|
||||
|
||||
## WebSocket Protocol
|
||||
|
||||
### Message Types
|
||||
- **subscribe**: Start camera stream with model pipeline
|
||||
- **unsubscribe**: Stop camera stream processing
|
||||
- **requestState**: Request current worker status
|
||||
- **setSessionId**: Associate display with session identifier
|
||||
- **patchSession**: Update session data
|
||||
- **stateReport**: Periodic heartbeat with system metrics
|
||||
- **imageDetection**: Detection results with timestamp and model info
|
||||
|
||||
### Subscription Format
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"rtspUrl": "rtsp://...", // OR snapshotUrl
|
||||
"snapshotUrl": "http://...",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://...model.mpta",
|
||||
"modelId": 101,
|
||||
"modelName": "Vehicle Detection",
|
||||
"cropX1": 100, "cropY1": 200,
|
||||
"cropX2": 300, "cropY2": 400
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Model Pipeline (MPTA) Format
|
||||
|
||||
### Structure
|
||||
- **ZIP archive** containing models and configuration
|
||||
- **pipeline.json** - Main configuration file
|
||||
- **Model files** - YOLO .pt files for detection/classification
|
||||
- **Redis configuration** - Optional for action execution
|
||||
|
||||
### Pipeline Flow
|
||||
1. **Detection stage** - YOLO object detection with bounding boxes
|
||||
2. **Trigger evaluation** - Check if detected class matches trigger conditions
|
||||
3. **Classification stage** - Crop detected region and run classification model
|
||||
4. **Action execution** - Redis operations (image saving, message publishing)
|
||||
|
||||
### Branch Configuration
|
||||
```json
|
||||
{
|
||||
"modelId": "detector-v1",
|
||||
"modelFile": "detector.pt",
|
||||
"triggerClasses": ["car", "truck"],
|
||||
"minConfidence": 0.5,
|
||||
"branches": [{
|
||||
"modelId": "classifier-v1",
|
||||
"modelFile": "classifier.pt",
|
||||
"crop": true,
|
||||
"triggerClasses": ["car"],
|
||||
"minConfidence": 0.3,
|
||||
"actions": [...]
|
||||
}]
|
||||
}
|
||||
```
|
||||
|
||||
## Stream Management
|
||||
|
||||
### Shared Streams
|
||||
- Multiple subscriptions can share the same camera URL
|
||||
- Reference counting prevents premature stream termination
|
||||
- Automatic cleanup when last subscription ends
|
||||
|
||||
### Frame Processing
|
||||
- **Queue-based buffering** with single frame capacity (latest frame only)
|
||||
- **Configurable polling interval** based on target FPS
|
||||
- **Automatic reconnection** with exponential backoff
|
||||
|
||||
## Development & Testing
|
||||
|
||||
### Local Development
|
||||
```bash
|
||||
# Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Run the worker
|
||||
python app.py
|
||||
|
||||
# Test protocol compliance
|
||||
python test_protocol.py
|
||||
|
||||
# Test pipeline with webcam
|
||||
python pipeline_webcam.py --mpta-file path/to/model.mpta --video 0
|
||||
```
|
||||
|
||||
### Docker Deployment
|
||||
```bash
|
||||
# Build container
|
||||
docker build -t detector-worker .
|
||||
|
||||
# Run with volume mounts for models
|
||||
docker run -p 8000:8000 -v ./models:/app/models detector-worker
|
||||
```
|
||||
|
||||
### Testing Commands
|
||||
- **Protocol testing**: `python test_protocol.py`
|
||||
- **Pipeline validation**: `python pipeline_webcam.py --mpta-file <path> --video 0`
|
||||
- **RTSP debugging**: `python debug/rtsp_webcam.py`
|
||||
|
||||
## Dependencies
|
||||
- **fastapi[standard]**: Web framework with WebSocket support
|
||||
- **uvicorn**: ASGI server
|
||||
- **torch, torchvision**: PyTorch for ML inference
|
||||
- **ultralytics**: YOLO implementation
|
||||
- **opencv-python**: Computer vision operations
|
||||
- **websockets**: WebSocket client/server
|
||||
- **redis**: Redis client for action execution
|
||||
|
||||
## Security Considerations
|
||||
- Model files are loaded from trusted sources only
|
||||
- Redis connections use authentication when configured
|
||||
- WebSocket connections handle disconnects gracefully
|
||||
- Resource usage is monitored to prevent DoS
|
||||
|
||||
## Performance Optimizations
|
||||
- GPU acceleration when CUDA is available
|
||||
- Shared camera streams reduce resource usage
|
||||
- Frame queue optimization (single latest frame)
|
||||
- Model caching across subscriptions
|
||||
- Trigger class filtering for faster inference
|
690
app.py
690
app.py
|
@ -5,7 +5,6 @@ import time
|
|||
import queue
|
||||
import torch
|
||||
import cv2
|
||||
import numpy as np
|
||||
import base64
|
||||
import logging
|
||||
import threading
|
||||
|
@ -14,9 +13,8 @@ import asyncio
|
|||
import psutil
|
||||
import zipfile
|
||||
from urllib.parse import urlparse
|
||||
from fastapi import FastAPI, WebSocket, HTTPException
|
||||
from fastapi import FastAPI, WebSocket
|
||||
from fastapi.websockets import WebSocketDisconnect
|
||||
from fastapi.responses import Response
|
||||
from websockets.exceptions import ConnectionClosedError
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
@ -29,12 +27,6 @@ app = FastAPI()
|
|||
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
|
||||
models: Dict[str, Dict[str, Any]] = {}
|
||||
streams: Dict[str, Dict[str, Any]] = {}
|
||||
# Store session IDs per display
|
||||
session_ids: Dict[str, int] = {}
|
||||
# Track shared camera streams by camera URL
|
||||
camera_streams: Dict[str, Dict[str, Any]] = {}
|
||||
# Map subscriptions to their camera URL
|
||||
subscription_to_camera: Dict[str, str] = {}
|
||||
|
||||
with open("config.json", "r") as f:
|
||||
config = json.load(f)
|
||||
|
@ -49,456 +41,145 @@ max_retries = config.get("max_retries", 3)
|
|||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, # Set to INFO level for less verbose output
|
||||
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
||||
level=logging.DEBUG,
|
||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
||||
handlers=[
|
||||
logging.FileHandler("detector_worker.log"), # Write logs to a file
|
||||
logging.StreamHandler() # Also output to console
|
||||
logging.FileHandler("app.log"),
|
||||
logging.StreamHandler()
|
||||
]
|
||||
)
|
||||
|
||||
# Create a logger specifically for this application
|
||||
logger = logging.getLogger("detector_worker")
|
||||
logger.setLevel(logging.DEBUG) # Set app-specific logger to DEBUG level
|
||||
|
||||
# Ensure all other libraries (including root) use at least INFO level
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
logger.info("Starting detector worker application")
|
||||
logger.info(f"Configuration: Target FPS: {TARGET_FPS}, Max streams: {max_streams}, Max retries: {max_retries}")
|
||||
|
||||
# Ensure the models directory exists
|
||||
os.makedirs("models", exist_ok=True)
|
||||
logger.info("Ensured models directory exists")
|
||||
|
||||
# Constants for heartbeat and timeouts
|
||||
HEARTBEAT_INTERVAL = 2 # seconds
|
||||
WORKER_TIMEOUT_MS = 10000
|
||||
logger.debug(f"Heartbeat interval set to {HEARTBEAT_INTERVAL} seconds")
|
||||
|
||||
# Locks for thread-safe operations
|
||||
streams_lock = threading.Lock()
|
||||
models_lock = threading.Lock()
|
||||
logger.debug("Initialized thread locks")
|
||||
|
||||
# Add helper to download mpta ZIP file from a remote URL
|
||||
def download_mpta(url: str, dest_path: str) -> str:
|
||||
try:
|
||||
logger.info(f"Starting download of model from {url} to {dest_path}")
|
||||
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
|
||||
response = requests.get(url, stream=True)
|
||||
if response.status_code == 200:
|
||||
file_size = int(response.headers.get('content-length', 0))
|
||||
logger.info(f"Model file size: {file_size/1024/1024:.2f} MB")
|
||||
downloaded = 0
|
||||
with open(dest_path, "wb") as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
downloaded += len(chunk)
|
||||
if file_size > 0 and downloaded % (file_size // 10) < 8192: # Log approximately every 10%
|
||||
logger.debug(f"Download progress: {downloaded/file_size*100:.1f}%")
|
||||
logger.info(f"Successfully downloaded mpta file from {url} to {dest_path}")
|
||||
logging.info(f"Downloaded mpta file from {url} to {dest_path}")
|
||||
return dest_path
|
||||
else:
|
||||
logger.error(f"Failed to download mpta file (status code {response.status_code}): {response.text}")
|
||||
logging.error(f"Failed to download mpta file (status code {response.status_code})")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Exception downloading mpta file from {url}: {str(e)}", exc_info=True)
|
||||
logging.error(f"Exception downloading mpta file from {url}: {e}")
|
||||
return None
|
||||
|
||||
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
||||
def fetch_snapshot(url: str):
|
||||
try:
|
||||
response = requests.get(url, timeout=10)
|
||||
if response.status_code == 200:
|
||||
# Convert response content to numpy array
|
||||
nparr = np.frombuffer(response.content, np.uint8)
|
||||
# Decode image
|
||||
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
if frame is not None:
|
||||
logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
|
||||
return frame
|
||||
else:
|
||||
logger.error(f"Failed to decode image from snapshot URL: {url}")
|
||||
return None
|
||||
else:
|
||||
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
||||
return None
|
||||
|
||||
# Helper to get crop coordinates from stream
|
||||
def get_crop_coords(stream):
|
||||
return {
|
||||
"cropX1": stream.get("cropX1"),
|
||||
"cropY1": stream.get("cropY1"),
|
||||
"cropX2": stream.get("cropX2"),
|
||||
"cropY2": stream.get("cropY2")
|
||||
}
|
||||
|
||||
####################################################
|
||||
# REST API endpoint for image retrieval
|
||||
####################################################
|
||||
@app.get("/camera/{camera_id}/image")
|
||||
async def get_camera_image(camera_id: str):
|
||||
"""
|
||||
Get the current frame from a camera as JPEG image
|
||||
"""
|
||||
try:
|
||||
with streams_lock:
|
||||
if camera_id not in streams:
|
||||
logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
|
||||
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
||||
|
||||
stream = streams[camera_id]
|
||||
buffer = stream["buffer"]
|
||||
logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
|
||||
logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
|
||||
|
||||
if buffer.empty():
|
||||
logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
|
||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||
|
||||
# Get the latest frame (non-blocking)
|
||||
try:
|
||||
frame = buffer.queue[-1] # Get the most recent frame without removing it
|
||||
except IndexError:
|
||||
logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
|
||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||
# Encode frame as JPEG
|
||||
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||
if not success:
|
||||
raise HTTPException(status_code=500, detail="Failed to encode image as JPEG")
|
||||
|
||||
# Return image as binary response
|
||||
return Response(content=buffer_img.tobytes(), media_type="image/jpeg")
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving image for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
||||
|
||||
####################################################
|
||||
# Detection and frame processing functions
|
||||
####################################################
|
||||
@app.websocket("/")
|
||||
async def detect(websocket: WebSocket):
|
||||
logger.info("WebSocket connection accepted")
|
||||
logging.info("WebSocket connection accepted")
|
||||
persistent_data_dict = {}
|
||||
|
||||
async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
|
||||
try:
|
||||
# Apply crop if specified
|
||||
cropped_frame = frame
|
||||
if all(coord is not None for coord in [stream.get("cropX1"), stream.get("cropY1"), stream.get("cropX2"), stream.get("cropY2")]):
|
||||
cropX1, cropY1, cropX2, cropY2 = stream["cropX1"], stream["cropY1"], stream["cropX2"], stream["cropY2"]
|
||||
cropped_frame = frame[cropY1:cropY2, cropX1:cropX2]
|
||||
logger.debug(f"Applied crop coordinates ({cropX1}, {cropY1}, {cropX2}, {cropY2}) to frame for camera {camera_id}")
|
||||
|
||||
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
||||
start_time = time.time()
|
||||
detection_result = run_pipeline(cropped_frame, model_tree)
|
||||
process_time = (time.time() - start_time) * 1000
|
||||
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
||||
|
||||
# Log the raw detection result for debugging
|
||||
logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}")
|
||||
|
||||
# Direct class result (no detections/classifications structure)
|
||||
if detection_result and isinstance(detection_result, dict) and "class" in detection_result and "confidence" in detection_result:
|
||||
highest_confidence_detection = {
|
||||
"class": detection_result.get("class", "none"),
|
||||
"confidence": detection_result.get("confidence", 1.0),
|
||||
"box": [0, 0, 0, 0] # Empty bounding box for classifications
|
||||
}
|
||||
# Handle case when no detections found or result is empty
|
||||
elif not detection_result or not detection_result.get("detections"):
|
||||
# Check if we have classification results
|
||||
if detection_result and detection_result.get("classifications"):
|
||||
# Get the highest confidence classification
|
||||
classifications = detection_result.get("classifications", [])
|
||||
highest_confidence_class = max(classifications, key=lambda x: x.get("confidence", 0)) if classifications else None
|
||||
|
||||
if highest_confidence_class:
|
||||
highest_confidence_detection = {
|
||||
"class": highest_confidence_class.get("class", "none"),
|
||||
"confidence": highest_confidence_class.get("confidence", 1.0),
|
||||
"box": [0, 0, 0, 0] # Empty bounding box for classifications
|
||||
}
|
||||
else:
|
||||
highest_confidence_detection = {
|
||||
"class": "none",
|
||||
"confidence": 1.0,
|
||||
"box": [0, 0, 0, 0]
|
||||
}
|
||||
else:
|
||||
highest_confidence_detection = {
|
||||
"class": "none",
|
||||
"confidence": 1.0,
|
||||
"box": [0, 0, 0, 0]
|
||||
}
|
||||
else:
|
||||
# Find detection with highest confidence
|
||||
detections = detection_result.get("detections", [])
|
||||
highest_confidence_detection = max(detections, key=lambda x: x.get("confidence", 0)) if detections else {
|
||||
"class": "none",
|
||||
"confidence": 1.0,
|
||||
"box": [0, 0, 0, 0]
|
||||
}
|
||||
|
||||
# Convert detection format to match protocol - flatten detection attributes
|
||||
detection_dict = {}
|
||||
|
||||
# Handle different detection result formats
|
||||
if isinstance(highest_confidence_detection, dict):
|
||||
# Copy all fields from the detection result
|
||||
for key, value in highest_confidence_detection.items():
|
||||
if key not in ["box", "id"]: # Skip internal fields
|
||||
detection_dict[key] = value
|
||||
|
||||
# Extract display identifier for session ID lookup
|
||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
||||
|
||||
detection_result = run_pipeline(frame, model_tree)
|
||||
detection_data = {
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%S.%fZ", time.gmtime()),
|
||||
"cameraIdentifier": camera_id,
|
||||
"timestamp": time.time(),
|
||||
"data": {
|
||||
"detection": detection_dict,
|
||||
"detection": detection_result if detection_result else None,
|
||||
"modelId": stream["modelId"],
|
||||
"modelName": stream["modelName"]
|
||||
}
|
||||
}
|
||||
|
||||
# Add session ID if available
|
||||
if session_id is not None:
|
||||
detection_data["sessionId"] = session_id
|
||||
|
||||
if highest_confidence_detection["class"] != "none":
|
||||
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
|
||||
|
||||
# Log session ID if available
|
||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
||||
if session_id:
|
||||
logger.debug(f"Detection associated with session ID: {session_id}")
|
||||
|
||||
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
||||
await websocket.send_json(detection_data)
|
||||
logger.debug(f"Sent detection data to client for camera {camera_id}")
|
||||
return persistent_data
|
||||
except Exception as e:
|
||||
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
|
||||
return persistent_data
|
||||
|
||||
def frame_reader(camera_id, cap, buffer, stop_event):
|
||||
retries = 0
|
||||
logger.info(f"Starting frame reader thread for camera {camera_id}")
|
||||
frame_count = 0
|
||||
last_log_time = time.time()
|
||||
|
||||
try:
|
||||
# Log initial camera status and properties
|
||||
if cap.isOpened():
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
logger.info(f"Camera {camera_id} opened successfully with resolution {width}x{height}, FPS: {fps}")
|
||||
else:
|
||||
logger.error(f"Camera {camera_id} failed to open initially")
|
||||
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
if not cap.isOpened():
|
||||
logger.error(f"Camera {camera_id} is not open before trying to read")
|
||||
# Attempt to reopen
|
||||
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
||||
time.sleep(reconnect_interval)
|
||||
continue
|
||||
|
||||
logger.debug(f"Attempting to read frame from camera {camera_id}")
|
||||
ret, frame = cap.read()
|
||||
|
||||
if not ret:
|
||||
logger.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
||||
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logger.error(f"Max retries reached for camera: {camera_id}, stopping frame reader")
|
||||
logging.error(f"Max retries reached for camera: {camera_id}")
|
||||
break
|
||||
# Re-open
|
||||
logger.info(f"Attempting to reopen RTSP stream for camera: {camera_id}")
|
||||
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
||||
if not cap.isOpened():
|
||||
logger.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
||||
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
||||
continue
|
||||
logger.info(f"Successfully reopened RTSP stream for camera: {camera_id}")
|
||||
continue
|
||||
|
||||
# Successfully read a frame
|
||||
frame_count += 1
|
||||
current_time = time.time()
|
||||
# Log frame stats every 5 seconds
|
||||
if current_time - last_log_time > 5:
|
||||
logger.info(f"Camera {camera_id}: Read {frame_count} frames in the last {current_time - last_log_time:.1f} seconds")
|
||||
frame_count = 0
|
||||
last_log_time = current_time
|
||||
|
||||
logger.debug(f"Successfully read frame from camera {camera_id}, shape: {frame.shape}")
|
||||
retries = 0
|
||||
|
||||
# Overwrite old frame if buffer is full
|
||||
if not buffer.empty():
|
||||
try:
|
||||
buffer.get_nowait()
|
||||
logger.debug(f"[frame_reader] Removed old frame from buffer for camera {camera_id}")
|
||||
except queue.Empty:
|
||||
pass
|
||||
buffer.put(frame)
|
||||
logger.debug(f"[frame_reader] Added new frame to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
|
||||
|
||||
# Short sleep to avoid CPU overuse
|
||||
time.sleep(0.01)
|
||||
|
||||
except cv2.error as e:
|
||||
logger.error(f"OpenCV error for camera {camera_id}: {e}", exc_info=True)
|
||||
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logger.error(f"Max retries reached after OpenCV error for camera {camera_id}")
|
||||
logging.error(f"Max retries reached after OpenCV error for camera {camera_id}")
|
||||
break
|
||||
logger.info(f"Attempting to reopen RTSP stream after OpenCV error for camera: {camera_id}")
|
||||
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
||||
if not cap.isOpened():
|
||||
logger.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
||||
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
||||
continue
|
||||
logger.info(f"Successfully reopened RTSP stream after OpenCV error for camera: {camera_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
break
|
||||
except Exception as e:
|
||||
logger.error(f"Error in frame_reader thread for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
finally:
|
||||
logger.info(f"Frame reader thread for camera {camera_id} is exiting")
|
||||
if cap and cap.isOpened():
|
||||
cap.release()
|
||||
|
||||
def snapshot_reader(camera_id, snapshot_url, snapshot_interval, buffer, stop_event):
|
||||
"""Frame reader that fetches snapshots from HTTP/HTTPS URL at specified intervals"""
|
||||
retries = 0
|
||||
logger.info(f"Starting snapshot reader thread for camera {camera_id} from {snapshot_url}")
|
||||
frame_count = 0
|
||||
last_log_time = time.time()
|
||||
|
||||
try:
|
||||
interval_seconds = snapshot_interval / 1000.0 # Convert milliseconds to seconds
|
||||
logger.info(f"Snapshot interval for camera {camera_id}: {interval_seconds}s")
|
||||
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
start_time = time.time()
|
||||
frame = fetch_snapshot(snapshot_url)
|
||||
|
||||
if frame is None:
|
||||
logger.warning(f"Failed to fetch snapshot for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logger.error(f"Max retries reached for snapshot camera: {camera_id}, stopping reader")
|
||||
break
|
||||
time.sleep(min(interval_seconds, reconnect_interval))
|
||||
continue
|
||||
|
||||
# Successfully fetched a frame
|
||||
frame_count += 1
|
||||
current_time = time.time()
|
||||
# Log frame stats every 5 seconds
|
||||
if current_time - last_log_time > 5:
|
||||
logger.info(f"Camera {camera_id}: Fetched {frame_count} snapshots in the last {current_time - last_log_time:.1f} seconds")
|
||||
frame_count = 0
|
||||
last_log_time = current_time
|
||||
|
||||
logger.debug(f"Successfully fetched snapshot from camera {camera_id}, shape: {frame.shape}")
|
||||
retries = 0
|
||||
|
||||
# Overwrite old frame if buffer is full
|
||||
if not buffer.empty():
|
||||
try:
|
||||
buffer.get_nowait()
|
||||
logger.debug(f"[snapshot_reader] Removed old snapshot from buffer for camera {camera_id}")
|
||||
except queue.Empty:
|
||||
pass
|
||||
buffer.put(frame)
|
||||
logger.debug(f"[snapshot_reader] Added new snapshot to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
|
||||
|
||||
# Wait for the specified interval
|
||||
elapsed = time.time() - start_time
|
||||
sleep_time = max(interval_seconds - elapsed, 0)
|
||||
if sleep_time > 0:
|
||||
time.sleep(sleep_time)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error fetching snapshot for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logger.error(f"Max retries reached after error for snapshot camera {camera_id}")
|
||||
break
|
||||
time.sleep(min(interval_seconds, reconnect_interval))
|
||||
except Exception as e:
|
||||
logger.error(f"Error in snapshot_reader thread for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
finally:
|
||||
logger.info(f"Snapshot reader thread for camera {camera_id} is exiting")
|
||||
logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
|
||||
|
||||
async def process_streams():
|
||||
logger.info("Started processing streams")
|
||||
logging.info("Started processing streams")
|
||||
try:
|
||||
while True:
|
||||
start_time = time.time()
|
||||
with streams_lock:
|
||||
current_streams = list(streams.items())
|
||||
if current_streams:
|
||||
logger.debug(f"Processing {len(current_streams)} active streams")
|
||||
else:
|
||||
logger.debug("No active streams to process")
|
||||
|
||||
for camera_id, stream in current_streams:
|
||||
buffer = stream["buffer"]
|
||||
if buffer.empty():
|
||||
logger.debug(f"Frame buffer is empty for camera {camera_id}")
|
||||
continue
|
||||
|
||||
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
||||
frame = buffer.get()
|
||||
|
||||
with models_lock:
|
||||
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
||||
if not model_tree:
|
||||
logger.warning(f"Model not found for camera {camera_id}, modelId {stream['modelId']}")
|
||||
continue
|
||||
logger.debug(f"Found model tree for camera {camera_id}, modelId {stream['modelId']}")
|
||||
|
||||
key = (camera_id, stream["modelId"])
|
||||
persistent_data = persistent_data_dict.get(key, {})
|
||||
logger.debug(f"Starting detection for camera {camera_id} with modelId {stream['modelId']}")
|
||||
updated_persistent_data = await handle_detection(
|
||||
camera_id, stream, frame, websocket, model_tree, persistent_data
|
||||
)
|
||||
persistent_data_dict[key] = updated_persistent_data
|
||||
|
||||
if not buffer.empty():
|
||||
frame = buffer.get()
|
||||
with models_lock:
|
||||
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
||||
key = (camera_id, stream["modelId"])
|
||||
persistent_data = persistent_data_dict.get(key, {})
|
||||
updated_persistent_data = await handle_detection(
|
||||
camera_id, stream, frame, websocket, model_tree, persistent_data
|
||||
)
|
||||
persistent_data_dict[key] = updated_persistent_data
|
||||
elapsed_time = (time.time() - start_time) * 1000 # ms
|
||||
sleep_time = max(poll_interval - elapsed_time, 0)
|
||||
logger.debug(f"Frame processing cycle: {elapsed_time:.2f}ms, sleeping for: {sleep_time:.2f}ms")
|
||||
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
||||
await asyncio.sleep(sleep_time / 1000.0)
|
||||
except asyncio.CancelledError:
|
||||
logger.info("Stream processing task cancelled")
|
||||
logging.info("Stream processing task cancelled")
|
||||
except Exception as e:
|
||||
logger.error(f"Error in process_streams: {str(e)}", exc_info=True)
|
||||
logging.error(f"Error in process_streams: {e}")
|
||||
|
||||
async def send_heartbeat():
|
||||
while True:
|
||||
|
@ -506,19 +187,18 @@ async def detect(websocket: WebSocket):
|
|||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream["modelId"],
|
||||
"modelName": stream["modelName"],
|
||||
"online": True,
|
||||
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
@ -532,225 +212,104 @@ async def detect(websocket: WebSocket):
|
|||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
logger.debug(f"Sent stateReport as heartbeat: CPU {cpu_usage:.1f}%, Memory {memory_usage:.1f}%, {len(camera_connections)} active cameras")
|
||||
logging.debug("Sent stateReport as heartbeat")
|
||||
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
||||
except Exception as e:
|
||||
logger.error(f"Error sending stateReport heartbeat: {e}")
|
||||
logging.error(f"Error sending stateReport heartbeat: {e}")
|
||||
break
|
||||
|
||||
async def on_message():
|
||||
while True:
|
||||
try:
|
||||
msg = await websocket.receive_text()
|
||||
logger.debug(f"Received message: {msg}")
|
||||
logging.debug(f"Received message: {msg}")
|
||||
data = json.loads(msg)
|
||||
msg_type = data.get("type")
|
||||
|
||||
if msg_type == "subscribe":
|
||||
payload = data.get("payload", {})
|
||||
subscriptionIdentifier = payload.get("subscriptionIdentifier")
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
rtsp_url = payload.get("rtspUrl")
|
||||
snapshot_url = payload.get("snapshotUrl")
|
||||
snapshot_interval = payload.get("snapshotInterval")
|
||||
model_url = payload.get("modelUrl")
|
||||
model_url = payload.get("modelUrl") # may be remote or local
|
||||
modelId = payload.get("modelId")
|
||||
modelName = payload.get("modelName")
|
||||
cropX1 = payload.get("cropX1")
|
||||
cropY1 = payload.get("cropY1")
|
||||
cropX2 = payload.get("cropX2")
|
||||
cropY2 = payload.get("cropY2")
|
||||
|
||||
# Extract camera_id from subscriptionIdentifier (format: displayIdentifier;cameraIdentifier)
|
||||
parts = subscriptionIdentifier.split(';')
|
||||
if len(parts) != 2:
|
||||
logger.error(f"Invalid subscriptionIdentifier format: {subscriptionIdentifier}")
|
||||
continue
|
||||
|
||||
display_identifier, camera_identifier = parts
|
||||
camera_id = subscriptionIdentifier # Use full subscriptionIdentifier as camera_id for mapping
|
||||
|
||||
if model_url:
|
||||
with models_lock:
|
||||
if (camera_id not in models) or (modelId not in models[camera_id]):
|
||||
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
|
||||
extraction_dir = os.path.join("models", camera_identifier, str(modelId))
|
||||
if camera_id not in models:
|
||||
models[camera_id] = {}
|
||||
if modelId not in models[camera_id]:
|
||||
logging.info(f"Loading model from {model_url}")
|
||||
extraction_dir = os.path.join("models", camera_id, str(modelId))
|
||||
os.makedirs(extraction_dir, exist_ok=True)
|
||||
# If model_url is remote, download it first.
|
||||
parsed = urlparse(model_url)
|
||||
if parsed.scheme in ("http", "https"):
|
||||
logger.info(f"Downloading remote .mpta file from {model_url}")
|
||||
filename = os.path.basename(parsed.path) or f"model_{modelId}.mpta"
|
||||
local_mpta = os.path.join(extraction_dir, filename)
|
||||
logger.debug(f"Download destination: {local_mpta}")
|
||||
local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path))
|
||||
local_path = download_mpta(model_url, local_mpta)
|
||||
if not local_path:
|
||||
logger.error(f"Failed to download the remote .mpta file from {model_url}")
|
||||
error_response = {
|
||||
"type": "error",
|
||||
"subscriptionIdentifier": subscriptionIdentifier,
|
||||
"error": f"Failed to download model from {model_url}"
|
||||
}
|
||||
await websocket.send_json(error_response)
|
||||
logging.error("Failed to download the remote mpta file.")
|
||||
continue
|
||||
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
|
||||
else:
|
||||
logger.info(f"Loading local .mpta file from {model_url}")
|
||||
# Check if file exists before attempting to load
|
||||
if not os.path.exists(model_url):
|
||||
logger.error(f"Local .mpta file not found: {model_url}")
|
||||
logger.debug(f"Current working directory: {os.getcwd()}")
|
||||
error_response = {
|
||||
"type": "error",
|
||||
"subscriptionIdentifier": subscriptionIdentifier,
|
||||
"error": f"Model file not found: {model_url}"
|
||||
}
|
||||
await websocket.send_json(error_response)
|
||||
continue
|
||||
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
|
||||
if model_tree is None:
|
||||
logger.error(f"Failed to load model {modelId} from .mpta file for camera {camera_id}")
|
||||
error_response = {
|
||||
"type": "error",
|
||||
"subscriptionIdentifier": subscriptionIdentifier,
|
||||
"error": f"Failed to load model {modelId}"
|
||||
}
|
||||
await websocket.send_json(error_response)
|
||||
logging.error("Failed to load model from mpta file.")
|
||||
continue
|
||||
if camera_id not in models:
|
||||
models[camera_id] = {}
|
||||
models[camera_id][modelId] = model_tree
|
||||
logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
|
||||
logger.debug(f"Model extraction directory: {extraction_dir}")
|
||||
if camera_id and (rtsp_url or snapshot_url):
|
||||
logging.info(f"Loaded model {modelId} for camera {camera_id}")
|
||||
|
||||
if camera_id and rtsp_url:
|
||||
with streams_lock:
|
||||
# Determine camera URL for shared stream management
|
||||
camera_url = snapshot_url if snapshot_url else rtsp_url
|
||||
|
||||
if camera_id not in streams and len(streams) < max_streams:
|
||||
# Check if we already have a stream for this camera URL
|
||||
shared_stream = camera_streams.get(camera_url)
|
||||
|
||||
if shared_stream:
|
||||
# Reuse existing stream
|
||||
logger.info(f"Reusing existing stream for camera URL: {camera_url}")
|
||||
buffer = shared_stream["buffer"]
|
||||
stop_event = shared_stream["stop_event"]
|
||||
thread = shared_stream["thread"]
|
||||
mode = shared_stream["mode"]
|
||||
|
||||
# Increment reference count
|
||||
shared_stream["ref_count"] = shared_stream.get("ref_count", 0) + 1
|
||||
else:
|
||||
# Create new stream
|
||||
buffer = queue.Queue(maxsize=1)
|
||||
stop_event = threading.Event()
|
||||
|
||||
if snapshot_url and snapshot_interval:
|
||||
logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
|
||||
thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
mode = "snapshot"
|
||||
|
||||
# Store shared stream info
|
||||
shared_stream = {
|
||||
"buffer": buffer,
|
||||
"thread": thread,
|
||||
"stop_event": stop_event,
|
||||
"mode": mode,
|
||||
"url": snapshot_url,
|
||||
"snapshot_interval": snapshot_interval,
|
||||
"ref_count": 1
|
||||
}
|
||||
camera_streams[camera_url] = shared_stream
|
||||
|
||||
elif rtsp_url:
|
||||
logger.info(f"Creating new RTSP stream for camera {camera_id}: {rtsp_url}")
|
||||
cap = cv2.VideoCapture(rtsp_url)
|
||||
if not cap.isOpened():
|
||||
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||
continue
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
mode = "rtsp"
|
||||
|
||||
# Store shared stream info
|
||||
shared_stream = {
|
||||
"buffer": buffer,
|
||||
"thread": thread,
|
||||
"stop_event": stop_event,
|
||||
"mode": mode,
|
||||
"url": rtsp_url,
|
||||
"cap": cap,
|
||||
"ref_count": 1
|
||||
}
|
||||
camera_streams[camera_url] = shared_stream
|
||||
else:
|
||||
logger.error(f"No valid URL provided for camera {camera_id}")
|
||||
continue
|
||||
|
||||
# Create stream info for this subscription
|
||||
stream_info = {
|
||||
cap = cv2.VideoCapture(rtsp_url)
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||
continue
|
||||
buffer = queue.Queue(maxsize=1)
|
||||
stop_event = threading.Event()
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
streams[camera_id] = {
|
||||
"cap": cap,
|
||||
"buffer": buffer,
|
||||
"thread": thread,
|
||||
"rtsp_url": rtsp_url,
|
||||
"stop_event": stop_event,
|
||||
"modelId": modelId,
|
||||
"modelName": modelName,
|
||||
"subscriptionIdentifier": subscriptionIdentifier,
|
||||
"cropX1": cropX1,
|
||||
"cropY1": cropY1,
|
||||
"cropX2": cropX2,
|
||||
"cropY2": cropY2,
|
||||
"mode": mode,
|
||||
"camera_url": camera_url
|
||||
"modelName": modelName
|
||||
}
|
||||
|
||||
if mode == "snapshot":
|
||||
stream_info["snapshot_url"] = snapshot_url
|
||||
stream_info["snapshot_interval"] = snapshot_interval
|
||||
elif mode == "rtsp":
|
||||
stream_info["rtsp_url"] = rtsp_url
|
||||
stream_info["cap"] = shared_stream["cap"]
|
||||
|
||||
streams[camera_id] = stream_info
|
||||
subscription_to_camera[camera_id] = camera_url
|
||||
|
||||
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
|
||||
elif camera_id and camera_id in streams:
|
||||
# If already subscribed, unsubscribe first
|
||||
logger.info(f"Resubscribing to camera {camera_id}")
|
||||
# Note: Keep models in memory for reuse across subscriptions
|
||||
# If already subscribed, unsubscribe
|
||||
stream = streams.pop(camera_id)
|
||||
stream["cap"].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
with models_lock:
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "unsubscribe":
|
||||
payload = data.get("payload", {})
|
||||
subscriptionIdentifier = payload.get("subscriptionIdentifier")
|
||||
camera_id = subscriptionIdentifier
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
logging.debug(f"Unsubscribing from camera {camera_id}")
|
||||
with streams_lock:
|
||||
if camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
camera_url = subscription_to_camera.pop(camera_id, None)
|
||||
|
||||
if camera_url and camera_url in camera_streams:
|
||||
shared_stream = camera_streams[camera_url]
|
||||
shared_stream["ref_count"] -= 1
|
||||
|
||||
# If no more references, stop the shared stream
|
||||
if shared_stream["ref_count"] <= 0:
|
||||
logger.info(f"Stopping shared stream for camera URL: {camera_url}")
|
||||
shared_stream["stop_event"].set()
|
||||
shared_stream["thread"].join()
|
||||
if "cap" in shared_stream:
|
||||
shared_stream["cap"].release()
|
||||
del camera_streams[camera_url]
|
||||
else:
|
||||
logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
|
||||
|
||||
logger.info(f"Unsubscribed from camera {camera_id}")
|
||||
# Note: Keep models in memory for potential reuse
|
||||
stream["stop_event"].set()
|
||||
stream["thread"].join()
|
||||
stream["cap"].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
with models_lock:
|
||||
if camera_id in models:
|
||||
del models[camera_id]
|
||||
elif msg_type == "requestState":
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
||||
else:
|
||||
gpu_usage = None
|
||||
|
@ -758,11 +317,10 @@ async def detect(websocket: WebSocket):
|
|||
|
||||
camera_connections = [
|
||||
{
|
||||
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream["modelId"],
|
||||
"modelName": stream["modelName"],
|
||||
"online": True,
|
||||
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
@ -776,47 +334,17 @@ async def detect(websocket: WebSocket):
|
|||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
|
||||
elif msg_type == "setSessionId":
|
||||
payload = data.get("payload", {})
|
||||
display_identifier = payload.get("displayIdentifier")
|
||||
session_id = payload.get("sessionId")
|
||||
|
||||
if display_identifier:
|
||||
# Store session ID for this display
|
||||
if session_id is None:
|
||||
session_ids.pop(display_identifier, None)
|
||||
logger.info(f"Cleared session ID for display {display_identifier}")
|
||||
else:
|
||||
session_ids[display_identifier] = session_id
|
||||
logger.info(f"Set session ID {session_id} for display {display_identifier}")
|
||||
|
||||
elif msg_type == "patchSession":
|
||||
session_id = data.get("sessionId")
|
||||
patch_data = data.get("data", {})
|
||||
|
||||
# For now, just acknowledge the patch - actual implementation depends on backend requirements
|
||||
response = {
|
||||
"type": "patchSessionResult",
|
||||
"payload": {
|
||||
"sessionId": session_id,
|
||||
"success": True,
|
||||
"message": "Session patch acknowledged"
|
||||
}
|
||||
}
|
||||
await websocket.send_json(response)
|
||||
logger.info(f"Acknowledged patch for session {session_id}")
|
||||
|
||||
else:
|
||||
logger.error(f"Unknown message type: {msg_type}")
|
||||
logging.error(f"Unknown message type: {msg_type}")
|
||||
except json.JSONDecodeError:
|
||||
logger.error("Received invalid JSON message")
|
||||
logging.error("Received invalid JSON message")
|
||||
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
||||
logger.warning(f"WebSocket disconnected: {e}")
|
||||
logging.warning(f"WebSocket disconnected: {e}")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.error(f"Error handling message: {e}")
|
||||
logging.error(f"Error handling message: {e}")
|
||||
break
|
||||
|
||||
try:
|
||||
await websocket.accept()
|
||||
stream_task = asyncio.create_task(process_streams())
|
||||
|
@ -824,28 +352,22 @@ async def detect(websocket: WebSocket):
|
|||
message_task = asyncio.create_task(on_message())
|
||||
await asyncio.gather(heartbeat_task, message_task)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in detect websocket: {e}")
|
||||
logging.error(f"Error in detect websocket: {e}")
|
||||
finally:
|
||||
stream_task.cancel()
|
||||
await stream_task
|
||||
with streams_lock:
|
||||
# Clean up shared camera streams
|
||||
for camera_url, shared_stream in camera_streams.items():
|
||||
shared_stream["stop_event"].set()
|
||||
shared_stream["thread"].join()
|
||||
if "cap" in shared_stream:
|
||||
shared_stream["cap"].release()
|
||||
while not shared_stream["buffer"].empty():
|
||||
for camera_id, stream in streams.items():
|
||||
stream["stop_event"].set()
|
||||
stream["thread"].join()
|
||||
stream["cap"].release()
|
||||
while not stream["buffer"].empty():
|
||||
try:
|
||||
shared_stream["buffer"].get_nowait()
|
||||
stream["buffer"].get_nowait()
|
||||
except queue.Empty:
|
||||
pass
|
||||
logger.info(f"Released shared camera stream for {camera_url}")
|
||||
|
||||
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
||||
streams.clear()
|
||||
camera_streams.clear()
|
||||
subscription_to_camera.clear()
|
||||
with models_lock:
|
||||
models.clear()
|
||||
session_ids.clear()
|
||||
logger.info("WebSocket connection closed")
|
||||
logging.info("WebSocket connection closed")
|
||||
|
|
366
app_single.py
Normal file
366
app_single.py
Normal file
|
@ -0,0 +1,366 @@
|
|||
from typing import List
|
||||
from fastapi import FastAPI, WebSocket
|
||||
from fastapi.websockets import WebSocketDisconnect
|
||||
from websockets.exceptions import ConnectionClosedError
|
||||
from ultralytics import YOLO
|
||||
import torch
|
||||
import cv2
|
||||
import base64
|
||||
import numpy as np
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import queue
|
||||
import os
|
||||
import requests
|
||||
from urllib.parse import urlparse
|
||||
import asyncio
|
||||
import psutil
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
models = {}
|
||||
|
||||
with open("config.json", "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
poll_interval = config.get("poll_interval_ms", 100)
|
||||
reconnect_interval = config.get("reconnect_interval_sec", 5)
|
||||
TARGET_FPS = config.get("target_fps", 10)
|
||||
poll_interval = 1000 / TARGET_FPS
|
||||
logging.info(f"Poll interval: {poll_interval}ms")
|
||||
max_streams = config.get("max_streams", 5)
|
||||
max_retries = config.get("max_retries", 3)
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG,
|
||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
||||
handlers=[
|
||||
logging.FileHandler("app.log"),
|
||||
logging.StreamHandler()
|
||||
]
|
||||
)
|
||||
|
||||
# Ensure the models directory exists
|
||||
os.makedirs("models", exist_ok=True)
|
||||
|
||||
# Add constants for heartbeat
|
||||
HEARTBEAT_INTERVAL = 2 # seconds
|
||||
WORKER_TIMEOUT_MS = 10000
|
||||
|
||||
# Add a lock for thread-safe operations on shared resources
|
||||
streams_lock = threading.Lock()
|
||||
models_lock = threading.Lock()
|
||||
|
||||
@app.websocket("/")
|
||||
async def detect(websocket: WebSocket):
|
||||
import asyncio
|
||||
import time
|
||||
|
||||
logging.info("WebSocket connection accepted")
|
||||
|
||||
streams = {}
|
||||
|
||||
# This function is user-modifiable
|
||||
# Save data you want to persist across frames in the persistent_data dictionary
|
||||
async def handle_detection(camera_id, stream, frame, websocket, model: YOLO, persistent_data):
|
||||
try:
|
||||
highest_conf_box = None
|
||||
max_conf = -1
|
||||
|
||||
for r in model.track(frame, stream=False, persist=True):
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
highest_conf_box = {
|
||||
"class": model.names[int(box_cpu.cls[0])],
|
||||
"confidence": conf,
|
||||
"id": box.id.item(),
|
||||
}
|
||||
|
||||
# Broadcast to all subscribers of this URL
|
||||
detection_data = {
|
||||
"type": "imageDetection",
|
||||
"cameraIdentifier": camera_id,
|
||||
"timestamp": time.time(),
|
||||
"data": {
|
||||
"detections": highest_conf_box if highest_conf_box else None,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName']
|
||||
}
|
||||
}
|
||||
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
||||
await websocket.send_json(detection_data)
|
||||
return persistent_data
|
||||
except Exception as e:
|
||||
logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
|
||||
return persistent_data
|
||||
|
||||
def frame_reader(camera_id, cap, buffer, stop_event):
|
||||
import time
|
||||
retries = 0
|
||||
try:
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logging.error(f"Max retries reached for camera: {camera_id}")
|
||||
break
|
||||
# Re-open the VideoCapture
|
||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
||||
continue
|
||||
continue
|
||||
retries = 0 # Reset on success
|
||||
if not buffer.empty():
|
||||
try:
|
||||
buffer.get_nowait() # Discard the old frame
|
||||
except queue.Empty:
|
||||
pass
|
||||
buffer.put(frame)
|
||||
except cv2.error as e:
|
||||
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
|
||||
break
|
||||
# Re-open the VideoCapture
|
||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
||||
continue
|
||||
except Exception as e:
|
||||
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
|
||||
|
||||
async def process_streams():
|
||||
global models
|
||||
logging.info("Started processing streams")
|
||||
persistent_data_dict = {}
|
||||
try:
|
||||
while True:
|
||||
start_time = time.time()
|
||||
# Round-robin processing
|
||||
with streams_lock:
|
||||
current_streams = list(streams.items())
|
||||
for camera_id, stream in current_streams:
|
||||
buffer = stream['buffer']
|
||||
if not buffer.empty():
|
||||
frame = buffer.get()
|
||||
with models_lock:
|
||||
model = models.get(camera_id, {}).get(stream['modelId'])
|
||||
key = (camera_id, stream['modelId'])
|
||||
persistent_data = persistent_data_dict.get(key, {})
|
||||
updated_persistent_data = await handle_detection(camera_id, stream, frame, websocket, model, persistent_data)
|
||||
persistent_data_dict[key] = updated_persistent_data
|
||||
elapsed_time = (time.time() - start_time) * 1000 # in ms
|
||||
sleep_time = max(poll_interval - elapsed_time, 0)
|
||||
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
||||
await asyncio.sleep(sleep_time / 1000.0)
|
||||
except asyncio.CancelledError:
|
||||
logging.info("Stream processing task cancelled")
|
||||
except Exception as e:
|
||||
logging.error(f"Error in process_streams: {e}")
|
||||
|
||||
async def send_heartbeat():
|
||||
while True:
|
||||
try:
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName'],
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
||||
state_report = {
|
||||
"type": "stateReport",
|
||||
"cpuUsage": cpu_usage,
|
||||
"memoryUsage": memory_usage,
|
||||
"gpuUsage": gpu_usage,
|
||||
"gpuMemoryUsage": gpu_memory_usage,
|
||||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
logging.debug("Sent stateReport as heartbeat")
|
||||
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
||||
except Exception as e:
|
||||
logging.error(f"Error sending stateReport heartbeat: {e}")
|
||||
break
|
||||
|
||||
async def on_message():
|
||||
global models
|
||||
while True:
|
||||
try:
|
||||
msg = await websocket.receive_text()
|
||||
logging.debug(f"Received message: {msg}")
|
||||
print(f"Received message: {msg}")
|
||||
data = json.loads(msg)
|
||||
msg_type = data.get("type")
|
||||
|
||||
if msg_type == "subscribe":
|
||||
payload = data.get("payload", {})
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
rtsp_url = payload.get("rtspUrl")
|
||||
model_url = payload.get("modelUrl")
|
||||
modelId = payload.get("modelId")
|
||||
modelName = payload.get("modelName")
|
||||
|
||||
if model_url:
|
||||
with models_lock:
|
||||
if camera_id not in models:
|
||||
models[camera_id] = {}
|
||||
if modelId not in models[camera_id]:
|
||||
print(f"Downloading model from {model_url}")
|
||||
parsed_url = urlparse(model_url)
|
||||
filename = os.path.basename(parsed_url.path)
|
||||
model_filename = os.path.join("models", filename)
|
||||
# Download the model
|
||||
response = requests.get(model_url, stream=True)
|
||||
if response.status_code == 200:
|
||||
with open(model_filename, 'wb') as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
logging.info(f"Downloaded model from {model_url} to {model_filename}")
|
||||
model = YOLO(model_filename)
|
||||
if torch.cuda.is_available():
|
||||
model.to('cuda')
|
||||
models[camera_id][modelId] = model
|
||||
logging.info(f"Loaded model {modelId} for camera {camera_id}")
|
||||
else:
|
||||
logging.error(f"Failed to download model from {model_url}")
|
||||
continue
|
||||
if camera_id and rtsp_url:
|
||||
with streams_lock:
|
||||
if camera_id not in streams and len(streams) < max_streams:
|
||||
cap = cv2.VideoCapture(rtsp_url)
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||
continue
|
||||
buffer = queue.Queue(maxsize=1)
|
||||
stop_event = threading.Event()
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
streams[camera_id] = {
|
||||
'cap': cap,
|
||||
'buffer': buffer,
|
||||
'thread': thread,
|
||||
'rtsp_url': rtsp_url,
|
||||
'stop_event': stop_event,
|
||||
'modelId': modelId,
|
||||
'modelName': modelName
|
||||
}
|
||||
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
|
||||
elif camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
stream['cap'].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "unsubscribe":
|
||||
payload = data.get("payload", {})
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
logging.debug(f"Unsubscribing from camera {camera_id}")
|
||||
with streams_lock:
|
||||
if camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
stream['stop_event'].set()
|
||||
stream['thread'].join()
|
||||
stream['cap'].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "requestState":
|
||||
# Handle state request
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName'],
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
||||
state_report = {
|
||||
"type": "stateReport",
|
||||
"cpuUsage": cpu_usage,
|
||||
"memoryUsage": memory_usage,
|
||||
"gpuUsage": gpu_usage,
|
||||
"gpuMemoryUsage": gpu_memory_usage,
|
||||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
else:
|
||||
logging.error(f"Unknown message type: {msg_type}")
|
||||
except json.JSONDecodeError:
|
||||
logging.error("Received invalid JSON message")
|
||||
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
||||
logging.warning(f"WebSocket disconnected: {e}")
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error handling message: {e}")
|
||||
break
|
||||
|
||||
try:
|
||||
await websocket.accept()
|
||||
task = asyncio.create_task(process_streams())
|
||||
heartbeat_task = asyncio.create_task(send_heartbeat())
|
||||
message_task = asyncio.create_task(on_message())
|
||||
|
||||
await asyncio.gather(heartbeat_task, message_task)
|
||||
except Exception as e:
|
||||
logging.error(f"Error in detect websocket: {e}")
|
||||
finally:
|
||||
task.cancel()
|
||||
await task
|
||||
with streams_lock:
|
||||
for camera_id, stream in streams.items():
|
||||
stream['stop_event'].set()
|
||||
stream['thread'].join()
|
||||
stream['cap'].release()
|
||||
stream['buffer'].queue.clear()
|
||||
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
||||
streams.clear()
|
||||
with models_lock:
|
||||
models.clear()
|
||||
logging.info("WebSocket connection closed")
|
143
debug.py
Normal file
143
debug.py
Normal file
|
@ -0,0 +1,143 @@
|
|||
import argparse
|
||||
import os
|
||||
import cv2
|
||||
import time
|
||||
import logging
|
||||
import shutil
|
||||
import threading # added threading
|
||||
import yaml # for silencing YOLO
|
||||
|
||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
||||
|
||||
# Silence YOLO logging
|
||||
os.environ["YOLO_VERBOSE"] = "False"
|
||||
for logger_name in ["ultralytics", "ultralytics.hub", "ultralytics.yolo.utils"]:
|
||||
logging.getLogger(logger_name).setLevel(logging.WARNING)
|
||||
|
||||
# Global variables for frame sharing
|
||||
global_frame = None
|
||||
global_ret = False
|
||||
capture_running = False
|
||||
|
||||
def video_capture_loop(cap):
|
||||
global global_frame, global_ret, capture_running
|
||||
while capture_running:
|
||||
global_ret, global_frame = cap.read()
|
||||
time.sleep(0.01) # slight delay to reduce CPU usage
|
||||
|
||||
def clear_cache(cache_dir: str):
|
||||
if os.path.exists(cache_dir):
|
||||
shutil.rmtree(cache_dir)
|
||||
|
||||
def log_pipeline_flow(frame, model_tree, level=0):
|
||||
"""
|
||||
Wrapper around run_pipeline that logs the model flow and detection results.
|
||||
Returns the same output as the original run_pipeline function.
|
||||
"""
|
||||
indent = " " * level
|
||||
model_id = model_tree.get("modelId", "unknown")
|
||||
logging.info(f"{indent}→ Running model: {model_id}")
|
||||
|
||||
detection, bbox = run_pipeline(frame, model_tree, return_bbox=True)
|
||||
|
||||
if detection:
|
||||
confidence = detection.get("confidence", 0) * 100
|
||||
class_name = detection.get("class", "unknown")
|
||||
object_id = detection.get("id", "N/A")
|
||||
|
||||
logging.info(f"{indent}✓ Detected: {class_name} (ID: {object_id}, confidence: {confidence:.1f}%)")
|
||||
|
||||
# Check if any branches were triggered
|
||||
triggered = False
|
||||
for branch in model_tree.get("branches", []):
|
||||
trigger_classes = branch.get("triggerClasses", [])
|
||||
min_conf = branch.get("minConfidence", 0)
|
||||
|
||||
if class_name in trigger_classes and detection.get("confidence", 0) >= min_conf:
|
||||
triggered = True
|
||||
if branch.get("crop", False) and bbox:
|
||||
x1, y1, x2, y2 = bbox
|
||||
cropped_frame = frame[y1:y2, x1:x2]
|
||||
logging.info(f"{indent} ⌊ Triggering branch with cropped region {x1},{y1} to {x2},{y2}")
|
||||
branch_result = log_pipeline_flow(cropped_frame, branch, level + 1)
|
||||
else:
|
||||
logging.info(f"{indent} ⌊ Triggering branch with full frame")
|
||||
branch_result = log_pipeline_flow(frame, branch, level + 1)
|
||||
|
||||
if branch_result[0]: # If branch detection successful, return it
|
||||
return branch_result
|
||||
|
||||
if not triggered and model_tree.get("branches"):
|
||||
logging.info(f"{indent} ⌊ No branches triggered")
|
||||
else:
|
||||
logging.info(f"{indent}✗ No detection for {model_id}")
|
||||
|
||||
return detection, bbox
|
||||
|
||||
def main(mpta_file: str, video_source: str):
|
||||
global capture_running
|
||||
CACHE_DIR = os.path.join(".", ".mptacache")
|
||||
clear_cache(CACHE_DIR)
|
||||
logging.info(f"Loading pipeline from local file: {mpta_file}")
|
||||
model_tree = load_pipeline_from_zip(mpta_file, CACHE_DIR)
|
||||
if model_tree is None:
|
||||
logging.error("Failed to load pipeline.")
|
||||
return
|
||||
|
||||
cap = cv2.VideoCapture(video_source)
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Cannot open video source {video_source}")
|
||||
return
|
||||
|
||||
# Start video capture in a separate thread
|
||||
capture_running = True
|
||||
capture_thread = threading.Thread(target=video_capture_loop, args=(cap,))
|
||||
capture_thread.start()
|
||||
|
||||
logging.info("Press 'q' to exit.")
|
||||
try:
|
||||
while True:
|
||||
# Use the global frame and ret updated by the thread
|
||||
if not global_ret or global_frame is None:
|
||||
continue # wait until a frame is available
|
||||
|
||||
frame = global_frame.copy() # local copy to work with
|
||||
|
||||
# Replace run_pipeline with our logging version
|
||||
detection, bbox = log_pipeline_flow(frame, model_tree)
|
||||
|
||||
# Stop if "honda" is detected
|
||||
if detection and detection.get("class", "").lower() == "toyota":
|
||||
logging.info("Detected 'toyota'. Stopping pipeline.")
|
||||
break
|
||||
|
||||
if bbox:
|
||||
x1, y1, x2, y2 = bbox
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
label = detection["class"] if detection else "Detection"
|
||||
cv2.putText(frame, label, (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
||||
|
||||
cv2.imshow("Pipeline Webcam", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
finally:
|
||||
# Stop capture thread and cleanup
|
||||
capture_running = False
|
||||
capture_thread.join()
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
clear_cache(CACHE_DIR)
|
||||
logging.info("Cleaned up .mptacache directory on shutdown.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run pipeline webcam utility.")
|
||||
parser.add_argument("--mpta-file", type=str, required=True, help="Path to the local pipeline mpta (ZIP) file.")
|
||||
parser.add_argument("--video", type=str, default="0", help="Video source (default webcam index 0).")
|
||||
args = parser.parse_args()
|
||||
video_source = int(args.video) if args.video.isdigit() else args.video
|
||||
main(args.mpta_file, video_source)
|
BIN
demoa.mpta
Normal file
BIN
demoa.mpta
Normal file
Binary file not shown.
23
pipeline.log
Normal file
23
pipeline.log
Normal file
|
@ -0,0 +1,23 @@
|
|||
2025-05-12 18:10:04,590 [INFO] Loading pipeline from local file: demoa.mpta
|
||||
2025-05-12 18:10:04,610 [INFO] Copied local .mpta file from demoa.mpta to .\.mptacache\pipeline.mpta
|
||||
2025-05-12 18:10:04,901 [INFO] Extracted .mpta file to .\.mptacache
|
||||
2025-05-12 18:10:04,905 [INFO] Loading model for node DetectionDraft from .\.mptacache\demoa\DetectionDraft.pt
|
||||
2025-05-12 18:10:05,083 [INFO] Loading model for node ClassificationDraft from .\.mptacache\demoa\ClassificationDraft.pt
|
||||
2025-05-12 18:10:08,035 [INFO] Press 'q' to exit.
|
||||
2025-05-12 18:10:12,217 [INFO] Cleaned up .mptacache directory on shutdown.
|
||||
2025-05-12 18:13:08,465 [INFO] Loading pipeline from local file: demoa.mpta
|
||||
2025-05-12 18:13:08,512 [INFO] Copied local .mpta file from demoa.mpta to .\.mptacache\pipeline.mpta
|
||||
2025-05-12 18:13:08,769 [INFO] Extracted .mpta file to .\.mptacache
|
||||
2025-05-12 18:13:08,773 [INFO] Loading model for node DetectionDraft from .\.mptacache\demoa\DetectionDraft.pt
|
||||
2025-05-12 18:13:09,083 [INFO] Loading model for node ClassificationDraft from .\.mptacache\demoa\ClassificationDraft.pt
|
||||
2025-05-12 18:13:12,187 [INFO] Press 'q' to exit.
|
||||
2025-05-12 18:13:14,146 [INFO] → Running model: DetectionDraft
|
||||
2025-05-12 18:13:17,119 [INFO] Cleaned up .mptacache directory on shutdown.
|
||||
2025-05-12 18:14:25,665 [INFO] Loading pipeline from local file: demoa.mpta
|
||||
2025-05-12 18:14:25,687 [INFO] Copied local .mpta file from demoa.mpta to .\.mptacache\pipeline.mpta
|
||||
2025-05-12 18:14:25,953 [INFO] Extracted .mpta file to .\.mptacache
|
||||
2025-05-12 18:14:25,957 [INFO] Loading model for node DetectionDraft from .\.mptacache\demoa\DetectionDraft.pt
|
||||
2025-05-12 18:14:26,138 [INFO] Loading model for node ClassificationDraft from .\.mptacache\demoa\ClassificationDraft.pt
|
||||
2025-05-12 18:14:29,171 [INFO] Press 'q' to exit.
|
||||
2025-05-12 18:14:30,146 [INFO] → Running model: DetectionDraft
|
||||
2025-05-12 18:14:32,080 [INFO] Cleaned up .mptacache directory on shutdown.
|
204
pympta.md
204
pympta.md
|
@ -1,204 +0,0 @@
|
|||
# pympta: Modular Pipeline Task Executor
|
||||
|
||||
`pympta` is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (`.mpta`). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.
|
||||
|
||||
## Core Concepts
|
||||
|
||||
### 1. MPTA Package (`.mpta`)
|
||||
|
||||
An `.mpta` file is a standard `.zip` archive with a different extension. It bundles all the necessary components for a pipeline to run.
|
||||
|
||||
A typical `.mpta` file has the following structure:
|
||||
|
||||
```
|
||||
my_pipeline.mpta/
|
||||
├── pipeline.json
|
||||
├── model1.pt
|
||||
├── model2.pt
|
||||
└── ...
|
||||
```
|
||||
|
||||
- **`pipeline.json`**: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
|
||||
- **Model Files (`.pt`, etc.)**: The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses `ultralytics.YOLO` models.
|
||||
|
||||
### 2. Pipeline Structure
|
||||
|
||||
A pipeline is a tree-like structure of "nodes," defined in `pipeline.json`.
|
||||
|
||||
- **Root Node**: The entry point of the pipeline. It processes the initial, full-frame image.
|
||||
- **Branch Nodes**: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.
|
||||
|
||||
This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.
|
||||
|
||||
## `pipeline.json` Specification
|
||||
|
||||
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition and an optional `redis` key for Redis configuration.
|
||||
|
||||
### Top-Level Object Structure
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||
| `pipeline` | Object | Yes | The root node object of the pipeline. |
|
||||
| `redis` | Object | No | Configuration for connecting to a Redis server. |
|
||||
|
||||
### Redis Configuration (`redis`)
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||
| `host` | String | Yes | The hostname or IP address of the Redis server. |
|
||||
| `port` | Number | Yes | The port number of the Redis server. |
|
||||
| `password` | String | No | The password for Redis authentication. |
|
||||
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
|
||||
|
||||
### Node Object Structure
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ------------------- | ------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `modelId` | String | Yes | A unique identifier for this model node (e.g., "vehicle-detector"). |
|
||||
| `modelFile` | String | Yes | The path to the model file within the `.mpta` archive (e.g., "yolov8n.pt"). |
|
||||
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
|
||||
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
|
||||
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
|
||||
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
|
||||
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
|
||||
|
||||
### Action Object Structure
|
||||
|
||||
Actions allow the pipeline to interact with Redis. They are executed sequentially for a given detection.
|
||||
|
||||
#### Action Context & Dynamic Keys
|
||||
|
||||
All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:
|
||||
|
||||
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
|
||||
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
|
||||
- `{uuid}`: A unique identifier (UUID4) for the detection event.
|
||||
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
|
||||
|
||||
#### `redis_save_image`
|
||||
|
||||
Saves the current image frame (or cropped sub-image) to a Redis key.
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `type` | String | Yes | Must be `"redis_save_image"`. |
|
||||
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
|
||||
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
|
||||
|
||||
#### `redis_publish`
|
||||
|
||||
Publishes a message to a Redis channel.
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| --------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `type` | String | Yes | Must be `"redis_publish"`. |
|
||||
| `channel` | String | Yes | The Redis channel to publish the message to. |
|
||||
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
|
||||
|
||||
### Example `pipeline.json` with Redis
|
||||
|
||||
This example demonstrates a pipeline that detects vehicles, saves a uniquely named image of each detection that expires in one hour, and then publishes a notification with the image key.
|
||||
|
||||
```json
|
||||
{
|
||||
"redis": {
|
||||
"host": "redis.local",
|
||||
"port": 6379,
|
||||
"password": "your-super-secret-password"
|
||||
},
|
||||
"pipeline": {
|
||||
"modelId": "vehicle-detector",
|
||||
"modelFile": "vehicle_model.pt",
|
||||
"minConfidence": 0.6,
|
||||
"triggerClasses": ["car", "truck"],
|
||||
"actions": [
|
||||
{
|
||||
"type": "redis_save_image",
|
||||
"key": "detections:{class}:{timestamp_ms}:{uuid}",
|
||||
"expire_seconds": 3600
|
||||
},
|
||||
{
|
||||
"type": "redis_publish",
|
||||
"channel": "vehicle_events",
|
||||
"message": "{\"event\":\"new_detection\",\"class\":\"{class}\",\"confidence\":{confidence},\"image_key\":\"{image_key}\"}"
|
||||
}
|
||||
],
|
||||
"branches": []
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## API Reference
|
||||
|
||||
The `pympta` module exposes two main functions.
|
||||
|
||||
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
|
||||
|
||||
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes a Redis connection if configured in `pipeline.json`.
|
||||
|
||||
- **Parameters:**
|
||||
- `zip_source` (str): The file path to the local `.mpta` zip archive.
|
||||
- `target_dir` (str): A directory path where the archive's contents will be extracted.
|
||||
- **Returns:**
|
||||
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
|
||||
|
||||
### `run_pipeline(frame, node: dict, return_bbox: bool = False)`
|
||||
|
||||
Executes the inference pipeline on a single image frame.
|
||||
|
||||
- **Parameters:**
|
||||
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
|
||||
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
|
||||
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
|
||||
- **Returns:**
|
||||
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
|
||||
|
||||
## Usage Example
|
||||
|
||||
This snippet, inspired by `pipeline_webcam.py`, shows how to use `pympta` to load a pipeline and process an image from a webcam.
|
||||
|
||||
```python
|
||||
import cv2
|
||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
||||
|
||||
# 1. Define paths
|
||||
MPTA_FILE = "path/to/your/pipeline.mpta"
|
||||
CACHE_DIR = ".mptacache"
|
||||
|
||||
# 2. Load the pipeline from the .mpta file
|
||||
# This reads pipeline.json and loads the YOLO models into memory.
|
||||
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)
|
||||
|
||||
if not model_tree:
|
||||
print("Failed to load pipeline.")
|
||||
exit()
|
||||
|
||||
# 3. Open a video source
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# 4. Run the pipeline on the current frame
|
||||
# The function will handle the entire logic tree (e.g., find a car, then find its license plate).
|
||||
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True)
|
||||
|
||||
# 5. Display the results
|
||||
if detection_result:
|
||||
print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
|
||||
if bounding_box:
|
||||
x1, y1, x2, y2 = bounding_box
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
||||
|
||||
cv2.imshow("Pipeline Output", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
|
@ -5,5 +5,4 @@ torchvision
|
|||
ultralytics
|
||||
opencv-python
|
||||
websockets
|
||||
fastapi[standard]
|
||||
redis
|
||||
fastapi[standard]
|
|
@ -3,228 +3,69 @@ import json
|
|||
import logging
|
||||
import torch
|
||||
import cv2
|
||||
import requests
|
||||
import zipfile
|
||||
import shutil
|
||||
import traceback
|
||||
import redis
|
||||
import time
|
||||
import uuid
|
||||
from ultralytics import YOLO
|
||||
from urllib.parse import urlparse
|
||||
|
||||
# Create a logger specifically for this module
|
||||
logger = logging.getLogger("detector_worker.pympta")
|
||||
|
||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
|
||||
# Recursively load a model node from configuration.
|
||||
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
|
||||
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
||||
if not os.path.exists(model_path):
|
||||
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
|
||||
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
|
||||
logging.error(f"Model file {model_path} not found.")
|
||||
raise FileNotFoundError(f"Model file {model_path} not found.")
|
||||
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
||||
logging.info(f"Loading model {node_config['modelId']} from {model_path}")
|
||||
model = YOLO(model_path)
|
||||
if torch.cuda.is_available():
|
||||
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU")
|
||||
model.to("cuda")
|
||||
else:
|
||||
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
|
||||
|
||||
# Prepare trigger class indices for optimization
|
||||
trigger_classes = node_config.get("triggerClasses", [])
|
||||
trigger_class_indices = None
|
||||
if trigger_classes and hasattr(model, "names"):
|
||||
# Convert class names to indices for the model
|
||||
trigger_class_indices = [i for i, name in model.names.items()
|
||||
if name in trigger_classes]
|
||||
logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
|
||||
# map triggerClasses names → indices for YOLO
|
||||
names = model.names # idx -> class name
|
||||
trigger_names = node_config.get("triggerClasses", [])
|
||||
trigger_inds = [i for i, nm in names.items() if nm in trigger_names]
|
||||
|
||||
node = {
|
||||
return {
|
||||
"modelId": node_config["modelId"],
|
||||
"modelFile": node_config["modelFile"],
|
||||
"triggerClasses": trigger_classes,
|
||||
"triggerClassIndices": trigger_class_indices,
|
||||
"triggerClasses": trigger_names,
|
||||
"triggerClassIndices": trigger_inds,
|
||||
"crop": node_config.get("crop", False),
|
||||
"minConfidence": node_config.get("minConfidence", None),
|
||||
"actions": node_config.get("actions", []),
|
||||
"minConfidence": node_config.get("minConfidence", 0.0),
|
||||
"model": model,
|
||||
"branches": [],
|
||||
"redis_client": redis_client
|
||||
"branches": [
|
||||
load_pipeline_node(child, mpta_dir)
|
||||
for child in node_config.get("branches", [])
|
||||
]
|
||||
}
|
||||
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
||||
for child in node_config.get("branches", []):
|
||||
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
||||
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
|
||||
return node
|
||||
|
||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
|
||||
os.makedirs(target_dir, exist_ok=True)
|
||||
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
||||
|
||||
# Parse the source; only local files are supported here.
|
||||
parsed = urlparse(zip_source)
|
||||
if parsed.scheme in ("", "file"):
|
||||
local_path = parsed.path if parsed.scheme == "file" else zip_source
|
||||
logger.debug(f"Checking if local file exists: {local_path}")
|
||||
if os.path.exists(local_path):
|
||||
try:
|
||||
shutil.copy(local_path, zip_path)
|
||||
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
|
||||
return None
|
||||
else:
|
||||
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
|
||||
# List all subdirectories of models directory to help debugging
|
||||
if os.path.exists("models"):
|
||||
logger.error(f"Content of models directory: {os.listdir('models')}")
|
||||
for root, dirs, files in os.walk("models"):
|
||||
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
|
||||
else:
|
||||
logger.error("The models directory doesn't exist")
|
||||
local = parsed.path if parsed.scheme == "file" else zip_source
|
||||
if not os.path.exists(local):
|
||||
logging.error(f"Local file {local} does not exist.")
|
||||
return None
|
||||
shutil.copy(local, zip_path)
|
||||
else:
|
||||
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
|
||||
logging.error("HTTP download not supported; use local file.")
|
||||
return None
|
||||
|
||||
try:
|
||||
if not os.path.exists(zip_path):
|
||||
logger.error(f"Zip file not found at expected location: {zip_path}")
|
||||
return None
|
||||
|
||||
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
|
||||
# Extract contents and track the directories created
|
||||
extracted_dirs = []
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
file_list = zip_ref.namelist()
|
||||
logger.debug(f"Files in .mpta archive: {file_list}")
|
||||
|
||||
# Extract and track the top-level directories
|
||||
for file_path in file_list:
|
||||
parts = file_path.split('/')
|
||||
if len(parts) > 1:
|
||||
top_dir = parts[0]
|
||||
if top_dir and top_dir not in extracted_dirs:
|
||||
extracted_dirs.append(top_dir)
|
||||
|
||||
# Now extract the files
|
||||
zip_ref.extractall(target_dir)
|
||||
|
||||
logger.info(f"Successfully extracted .mpta file to {target_dir}")
|
||||
logger.debug(f"Extracted directories: {extracted_dirs}")
|
||||
|
||||
# Check what was actually created after extraction
|
||||
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
|
||||
logger.debug(f"Actual directories created: {actual_dirs}")
|
||||
except zipfile.BadZipFile as e:
|
||||
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
|
||||
return None
|
||||
finally:
|
||||
if os.path.exists(zip_path):
|
||||
os.remove(zip_path)
|
||||
logger.debug(f"Removed temporary zip file: {zip_path}")
|
||||
with zipfile.ZipFile(zip_path, "r") as z:
|
||||
z.extractall(target_dir)
|
||||
os.remove(zip_path)
|
||||
|
||||
# Use the first extracted directory if it exists, otherwise use the expected name
|
||||
pipeline_name = os.path.basename(zip_source)
|
||||
pipeline_name = os.path.splitext(pipeline_name)[0]
|
||||
|
||||
# Find the directory with pipeline.json
|
||||
mpta_dir = None
|
||||
# First try the expected directory name
|
||||
expected_dir = os.path.join(target_dir, pipeline_name)
|
||||
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
|
||||
mpta_dir = expected_dir
|
||||
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
|
||||
else:
|
||||
# Look through all subdirectories for pipeline.json
|
||||
for subdir in actual_dirs:
|
||||
potential_dir = os.path.join(target_dir, subdir)
|
||||
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
|
||||
mpta_dir = potential_dir
|
||||
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
|
||||
break
|
||||
|
||||
if not mpta_dir:
|
||||
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
|
||||
return None
|
||||
|
||||
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
|
||||
if not os.path.exists(pipeline_json_path):
|
||||
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
|
||||
base = os.path.splitext(os.path.basename(zip_source))[0]
|
||||
mpta_dir = os.path.join(target_dir, base)
|
||||
cfg = os.path.join(mpta_dir, "pipeline.json")
|
||||
if not os.path.exists(cfg):
|
||||
logging.error("pipeline.json not found in archive.")
|
||||
return None
|
||||
|
||||
try:
|
||||
with open(pipeline_json_path, "r") as f:
|
||||
pipeline_config = json.load(f)
|
||||
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
|
||||
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
|
||||
|
||||
# Establish Redis connection if configured
|
||||
redis_client = None
|
||||
if "redis" in pipeline_config:
|
||||
redis_config = pipeline_config["redis"]
|
||||
try:
|
||||
redis_client = redis.Redis(
|
||||
host=redis_config["host"],
|
||||
port=redis_config["port"],
|
||||
password=redis_config.get("password"),
|
||||
db=redis_config.get("db", 0),
|
||||
decode_responses=True
|
||||
)
|
||||
redis_client.ping()
|
||||
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
|
||||
except redis.exceptions.ConnectionError as e:
|
||||
logger.error(f"Failed to connect to Redis: {e}")
|
||||
redis_client = None
|
||||
|
||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
except KeyError as e:
|
||||
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
with open(cfg) as f:
|
||||
pipeline_config = json.load(f)
|
||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
|
||||
|
||||
def execute_actions(node, frame, detection_result):
|
||||
if not node["redis_client"] or not node["actions"]:
|
||||
return
|
||||
|
||||
# Create a dynamic context for this detection event
|
||||
action_context = {
|
||||
**detection_result,
|
||||
"timestamp_ms": int(time.time() * 1000),
|
||||
"uuid": str(uuid.uuid4()),
|
||||
}
|
||||
|
||||
for action in node["actions"]:
|
||||
try:
|
||||
if action["type"] == "redis_save_image":
|
||||
key = action["key"].format(**action_context)
|
||||
_, buffer = cv2.imencode('.jpg', frame)
|
||||
expire_seconds = action.get("expire_seconds")
|
||||
if expire_seconds:
|
||||
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
||||
logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
|
||||
else:
|
||||
node["redis_client"].set(key, buffer.tobytes())
|
||||
logger.info(f"Saved image to Redis with key: {key}")
|
||||
# Add the generated key to the context for subsequent actions
|
||||
action_context["image_key"] = key
|
||||
elif action["type"] == "redis_publish":
|
||||
channel = action["channel"]
|
||||
message = action["message"].format(**action_context)
|
||||
node["redis_client"].publish(channel, message)
|
||||
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing action {action['type']}: {e}")
|
||||
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
||||
"""
|
||||
|
@ -241,6 +82,26 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
|||
task = getattr(node["model"], "task", None)
|
||||
|
||||
# ─── Classification stage ───────────────────────────────────
|
||||
# if task == "classify":
|
||||
# results = node["model"].predict(frame, stream=False)
|
||||
# dets = []
|
||||
# for r in results:
|
||||
# probs = r.probs
|
||||
# if probs is not None:
|
||||
# # sort descending
|
||||
# idxs = probs.argsort(descending=True)
|
||||
# for cid in idxs:
|
||||
# dets.append({
|
||||
# "class": node["model"].names[int(cid)],
|
||||
# "confidence": float(probs[int(cid)]),
|
||||
# "id": None
|
||||
# })
|
||||
# if not dets:
|
||||
# return (None, None) if return_bbox else None
|
||||
|
||||
# best = dets[0]
|
||||
# return (best, None) if return_bbox else best
|
||||
|
||||
if task == "classify":
|
||||
# run the classifier and grab its top-1 directly via the Probs API
|
||||
results = node["model"].predict(frame, stream=False)
|
||||
|
@ -263,7 +124,6 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
|||
"confidence": top1_conf,
|
||||
"id": None
|
||||
}
|
||||
execute_actions(node, frame, det)
|
||||
return (det, None) if return_bbox else det
|
||||
|
||||
|
||||
|
@ -312,11 +172,9 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
|||
det2, _ = run_pipeline(sub, br, return_bbox=True)
|
||||
if det2:
|
||||
# return classification result + original bbox
|
||||
execute_actions(br, sub, det2)
|
||||
return (det2, best_box) if return_bbox else det2
|
||||
|
||||
# ─── No branch matched → return this detection ─────────────
|
||||
execute_actions(node, frame, best_det)
|
||||
return (best_det, best_box) if return_bbox else best_det
|
||||
|
||||
except Exception as e:
|
||||
|
|
125
test_protocol.py
125
test_protocol.py
|
@ -1,125 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to verify the worker implementation follows the protocol
|
||||
"""
|
||||
import json
|
||||
import asyncio
|
||||
import websockets
|
||||
import time
|
||||
|
||||
async def test_protocol():
|
||||
"""Test the worker protocol implementation"""
|
||||
uri = "ws://localhost:8000"
|
||||
|
||||
try:
|
||||
async with websockets.connect(uri) as websocket:
|
||||
print("✓ Connected to worker")
|
||||
|
||||
# Test 1: Check if we receive heartbeat (stateReport)
|
||||
print("\n1. Testing heartbeat...")
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||
data = json.loads(message)
|
||||
if data.get("type") == "stateReport":
|
||||
print("✓ Received stateReport heartbeat")
|
||||
print(f" - CPU Usage: {data.get('cpuUsage', 'N/A')}%")
|
||||
print(f" - Memory Usage: {data.get('memoryUsage', 'N/A')}%")
|
||||
print(f" - Camera Connections: {len(data.get('cameraConnections', []))}")
|
||||
else:
|
||||
print(f"✗ Expected stateReport, got {data.get('type')}")
|
||||
except asyncio.TimeoutError:
|
||||
print("✗ No heartbeat received within 5 seconds")
|
||||
|
||||
# Test 2: Request state
|
||||
print("\n2. Testing requestState...")
|
||||
await websocket.send(json.dumps({"type": "requestState"}))
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||
data = json.loads(message)
|
||||
if data.get("type") == "stateReport":
|
||||
print("✓ Received stateReport response")
|
||||
else:
|
||||
print(f"✗ Expected stateReport, got {data.get('type')}")
|
||||
except asyncio.TimeoutError:
|
||||
print("✗ No response to requestState within 5 seconds")
|
||||
|
||||
# Test 3: Set session ID
|
||||
print("\n3. Testing setSessionId...")
|
||||
session_message = {
|
||||
"type": "setSessionId",
|
||||
"payload": {
|
||||
"displayIdentifier": "display-001",
|
||||
"sessionId": 12345
|
||||
}
|
||||
}
|
||||
await websocket.send(json.dumps(session_message))
|
||||
print("✓ Sent setSessionId message")
|
||||
|
||||
# Test 4: Test patchSession
|
||||
print("\n4. Testing patchSession...")
|
||||
patch_message = {
|
||||
"type": "patchSession",
|
||||
"sessionId": 12345,
|
||||
"data": {
|
||||
"currentCar": {
|
||||
"carModel": "Civic",
|
||||
"carBrand": "Honda"
|
||||
}
|
||||
}
|
||||
}
|
||||
await websocket.send(json.dumps(patch_message))
|
||||
|
||||
# Wait for patchSessionResult
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||
data = json.loads(message)
|
||||
if data.get("type") == "patchSessionResult":
|
||||
print("✓ Received patchSessionResult")
|
||||
print(f" - Success: {data.get('payload', {}).get('success')}")
|
||||
print(f" - Message: {data.get('payload', {}).get('message')}")
|
||||
else:
|
||||
print(f"✗ Expected patchSessionResult, got {data.get('type')}")
|
||||
except asyncio.TimeoutError:
|
||||
print("✗ No patchSessionResult received within 5 seconds")
|
||||
|
||||
# Test 5: Test subscribe message format (without actual camera)
|
||||
print("\n5. Testing subscribe message format...")
|
||||
subscribe_message = {
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"snapshotUrl": "http://example.com/snapshot.jpg",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://example.com/model.mpta",
|
||||
"modelName": "Test Model",
|
||||
"modelId": 101,
|
||||
"cropX1": 100,
|
||||
"cropY1": 200,
|
||||
"cropX2": 300,
|
||||
"cropY2": 400
|
||||
}
|
||||
}
|
||||
await websocket.send(json.dumps(subscribe_message))
|
||||
print("✓ Sent subscribe message (will fail without actual camera/model)")
|
||||
|
||||
# Listen for a few more messages to catch any errors
|
||||
print("\n6. Listening for additional messages...")
|
||||
for i in range(3):
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=2)
|
||||
data = json.loads(message)
|
||||
msg_type = data.get("type")
|
||||
print(f" - Received {msg_type}")
|
||||
if msg_type == "error":
|
||||
print(f" Error: {data.get('error')}")
|
||||
except asyncio.TimeoutError:
|
||||
break
|
||||
|
||||
print("\n✓ Protocol test completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Connection failed: {e}")
|
||||
print("Make sure the worker is running on localhost:8000")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(test_protocol())
|
483
worker.md
483
worker.md
|
@ -1,483 +0,0 @@
|
|||
# Worker Communication Protocol
|
||||
|
||||
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
|
||||
|
||||
## 1. Connection
|
||||
|
||||
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
|
||||
|
||||
Upon a successful connection from the backend, you should begin sending `stateReport` messages as heartbeats.
|
||||
|
||||
## 2. Communication Overview
|
||||
|
||||
Communication is bidirectional and asynchronous. All messages are JSON objects with a `type` field that indicates the message's purpose, and an optional `payload` field containing the data.
|
||||
|
||||
- **Worker -> Backend:** You will send messages to the backend to report status, forward detection events, or request changes to session data.
|
||||
- **Backend -> Worker:** The backend will send commands to you to manage camera subscriptions.
|
||||
|
||||
## 3. Dynamic Configuration via MPTA File
|
||||
|
||||
To enable modularity and dynamic configuration, the backend will send you a URL to a `.mpta` file when it issues a `subscribe` command. This file is a renamed `.zip` archive that contains everything your worker needs to perform its task.
|
||||
|
||||
**Your worker is responsible for:**
|
||||
|
||||
1. Fetching this file from the provided URL.
|
||||
2. Extracting its contents.
|
||||
3. Interpreting the contents to configure its internal pipeline.
|
||||
|
||||
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
|
||||
|
||||
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
|
||||
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
|
||||
- Scripts: Custom Python scripts for pre-processing or post-processing.
|
||||
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
|
||||
|
||||
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription.
|
||||
|
||||
## 4. Messages from Worker to Backend
|
||||
|
||||
These are the messages your worker is expected to send to the backend.
|
||||
|
||||
### 4.1. State Report (Heartbeat)
|
||||
|
||||
This message is crucial for the backend to monitor your worker's health and status, including GPU usage.
|
||||
|
||||
- **Type:** `stateReport`
|
||||
- **When to Send:** Periodically (e.g., every 2 seconds) after a connection is established.
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 75.5,
|
||||
"memoryUsage": 40.2,
|
||||
"gpuUsage": 60.0,
|
||||
"gpuMemoryUsage": 25.1,
|
||||
"cameraConnections": [
|
||||
{
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"modelId": 101,
|
||||
"modelName": "General Object Detection",
|
||||
"online": true,
|
||||
"cropX1": 100,
|
||||
"cropY1": 200,
|
||||
"cropX2": 300,
|
||||
"cropY2": 400
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
>
|
||||
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) should be included in each camera connection to indicate the crop coordinates for that subscription.
|
||||
|
||||
### 4.2. Image Detection
|
||||
|
||||
Sent when the worker detects a relevant object. The `detection` object should be flat and contain key-value pairs corresponding to the detected attributes.
|
||||
|
||||
- **Type:** `imageDetection`
|
||||
|
||||
**Payload Example:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"timestamp": "2025-07-14T12:34:56.789Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carModel": "Civic",
|
||||
"carBrand": "Honda",
|
||||
"carYear": 2023,
|
||||
"bodyType": "Sedan",
|
||||
"licensePlateText": "ABCD1234",
|
||||
"licensePlateConfidence": 0.95
|
||||
},
|
||||
"modelId": 101,
|
||||
"modelName": "US-LPR-and-Vehicle-ID"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 4.3. Patch Session
|
||||
|
||||
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
|
||||
|
||||
Allows the worker to request a modification to an active session's data. The `data` payload must be a partial object of the `DisplayPersistentData` structure.
|
||||
|
||||
- **Type:** `patchSession`
|
||||
|
||||
**Payload Example:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "patchSession",
|
||||
"sessionId": 12345,
|
||||
"data": {
|
||||
"currentCar": {
|
||||
"carModel": "Civic",
|
||||
"carBrand": "Honda",
|
||||
"licensePlateText": "ABCD1234"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The backend will respond with a `patchSessionResult` command.
|
||||
|
||||
#### `DisplayPersistentData` Structure
|
||||
|
||||
The `data` object in the `patchSession` message is merged with the existing `DisplayPersistentData` on the backend. Here is its structure:
|
||||
|
||||
```typescript
|
||||
interface DisplayPersistentData {
|
||||
progressionStage: "welcome" | "car_fueling" | "car_waitpayment" | "car_postpayment" | null;
|
||||
qrCode: string | null;
|
||||
adsPlayback: {
|
||||
playlistSlotOrder: number; // The 'order' of the current slot
|
||||
adsId: number | null;
|
||||
adsUrl: string | null;
|
||||
} | null;
|
||||
currentCar: {
|
||||
carModel?: string;
|
||||
carBrand?: string;
|
||||
carYear?: number;
|
||||
bodyType?: string;
|
||||
licensePlateText?: string;
|
||||
licensePlateType?: string;
|
||||
} | null;
|
||||
fuelPump: { /* FuelPumpData structure */ } | null;
|
||||
weatherData: { /* WeatherResponse structure */ } | null;
|
||||
sessionId: number | null;
|
||||
}
|
||||
```
|
||||
|
||||
#### Patching Behavior
|
||||
|
||||
- The patch is a **deep merge**.
|
||||
- **`undefined`** values are ignored.
|
||||
- **`null`** values will set the corresponding field to `null`.
|
||||
- Nested objects are merged recursively.
|
||||
|
||||
## 5. Commands from Backend to Worker
|
||||
|
||||
These are the commands your worker will receive from the backend.
|
||||
|
||||
### 5.1. Subscribe to Camera
|
||||
|
||||
Instructs the worker to process a camera's RTSP stream using the configuration from the specified `.mpta` file.
|
||||
|
||||
- **Type:** `subscribe`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-002",
|
||||
"rtspUrl": "rtsp://user:pass@host:port/stream",
|
||||
"snapshotUrl": "http://go2rtc/snapshot/1",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://storage/models/us-lpr.mpta",
|
||||
"modelName": "US-LPR-and-Vehicle-ID",
|
||||
"modelId": 102,
|
||||
"cropX1": 100,
|
||||
"cropY1": 200,
|
||||
"cropX2": 300,
|
||||
"cropY2": 400
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
>
|
||||
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) specify the crop coordinates for the camera stream. These values are configured per display and passed in the subscription payload. If not provided, the worker should process the full frame.
|
||||
>
|
||||
> **Important:**
|
||||
> If multiple displays are bound to the same camera, your worker must ensure that only **one stream** is opened per camera. When you receive multiple subscriptions for the same camera (with different `subscriptionIdentifier` values), you should:
|
||||
>
|
||||
> - Open the RTSP stream **once** for that camera if using RTSP.
|
||||
> - Capture each snapshot only once per cycle, and reuse it for all display subscriptions sharing that camera.
|
||||
> - Capture each frame/image only once per cycle.
|
||||
> - Reuse the same captured image and snapshot for all display subscriptions that share the camera, processing and routing detection results separately for each display as needed.
|
||||
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
|
||||
|
||||
### 5.2. Unsubscribe from Camera
|
||||
|
||||
Instructs the worker to stop processing a camera's stream.
|
||||
|
||||
- **Type:** `unsubscribe`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "unsubscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-002"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 5.3. Request State
|
||||
|
||||
Direct request for the worker's current state. Respond with a `stateReport` message.
|
||||
|
||||
- **Type:** `requestState`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "requestState"
|
||||
}
|
||||
```
|
||||
|
||||
### 5.4. Patch Session Result
|
||||
|
||||
Backend's response to a `patchSession` message.
|
||||
|
||||
- **Type:** `patchSessionResult`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "patchSessionResult",
|
||||
"payload": {
|
||||
"sessionId": 12345,
|
||||
"success": true,
|
||||
"message": "Session updated successfully."
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 5.5. Set Session ID
|
||||
|
||||
Allows the backend to instruct the worker to associate a session ID with a subscription. This is useful for linking detection events to a specific session. The session ID can be `null` to indicate no active session.
|
||||
|
||||
- **Type:** `setSessionId`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "setSessionId",
|
||||
"payload": {
|
||||
"displayIdentifier": "display-001",
|
||||
"sessionId": 12345
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Or to clear the session:
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "setSessionId",
|
||||
"payload": {
|
||||
"displayIdentifier": "display-001",
|
||||
"sessionId": null
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
>
|
||||
> - The worker should store the session ID for the given subscription and use it in subsequent detection or patch messages as appropriate. If `sessionId` is `null`, the worker should treat the subscription as having no active session.
|
||||
|
||||
## Subscription Identifier Format
|
||||
|
||||
The `subscriptionIdentifier` used in all messages is constructed as:
|
||||
|
||||
```
|
||||
displayIdentifier;cameraIdentifier
|
||||
```
|
||||
|
||||
This uniquely identifies a camera subscription for a specific display.
|
||||
|
||||
### Session ID Association
|
||||
|
||||
When the backend sends a `setSessionId` command, it will only provide the `displayIdentifier` (not the full `subscriptionIdentifier`).
|
||||
|
||||
**Worker Responsibility:**
|
||||
|
||||
- The worker must match the `displayIdentifier` to all active subscriptions for that display (i.e., all `subscriptionIdentifier` values that start with `displayIdentifier;`).
|
||||
- The worker should set or clear the session ID for all matching subscriptions.
|
||||
|
||||
## 6. Example Communication Log
|
||||
|
||||
This section shows a typical sequence of messages between the backend and the worker. Patch messages are not included, as they are only used when the worker cannot keep up.
|
||||
|
||||
> **Note:** Unsubscribe is triggered when a user removes a camera or when the node is too heavily loaded and needs rebalancing.
|
||||
|
||||
1. **Connection Established** & **Heartbeat**
|
||||
* **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 70.2,
|
||||
"memoryUsage": 38.1,
|
||||
"gpuUsage": 55.0,
|
||||
"gpuMemoryUsage": 20.0,
|
||||
"cameraConnections": []
|
||||
}
|
||||
```
|
||||
2. **Backend Subscribes Camera**
|
||||
* **Backend -> Worker**
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"rtspUrl": "rtsp://192.168.1.100/stream1",
|
||||
"modelUrl": "http://storage/models/vehicle-id.mpta",
|
||||
"modelName": "Vehicle Identification",
|
||||
"modelId": 201
|
||||
}
|
||||
}
|
||||
```
|
||||
3. **Worker Acknowledges in Heartbeat**
|
||||
* **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 72.5,
|
||||
"memoryUsage": 39.0,
|
||||
"gpuUsage": 57.0,
|
||||
"gpuMemoryUsage": 21.0,
|
||||
"cameraConnections": [
|
||||
{
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification",
|
||||
"online": true
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
4. **Worker Detects a Car**
|
||||
* **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"timestamp": "2025-07-15T10:00:00.000Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carBrand": "Honda",
|
||||
"carModel": "CR-V",
|
||||
"bodyType": "SUV",
|
||||
"licensePlateText": "GEMINI-AI",
|
||||
"licensePlateConfidence": 0.98
|
||||
},
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification"
|
||||
}
|
||||
}
|
||||
```
|
||||
* **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"timestamp": "2025-07-15T10:00:01.000Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carBrand": "Toyota",
|
||||
"carModel": "Corolla",
|
||||
"bodyType": "Sedan",
|
||||
"licensePlateText": "CMS-1234",
|
||||
"licensePlateConfidence": 0.97
|
||||
},
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification"
|
||||
}
|
||||
}
|
||||
```
|
||||
* **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"timestamp": "2025-07-15T10:00:02.000Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carBrand": "Ford",
|
||||
"carModel": "Focus",
|
||||
"bodyType": "Hatchback",
|
||||
"licensePlateText": "CMS-5678",
|
||||
"licensePlateConfidence": 0.96
|
||||
},
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification"
|
||||
}
|
||||
}
|
||||
```
|
||||
5. **Backend Unsubscribes Camera**
|
||||
* **Backend -> Worker**
|
||||
```json
|
||||
{
|
||||
"type": "unsubscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01"
|
||||
}
|
||||
}
|
||||
```
|
||||
6. **Worker Acknowledges Unsubscription**
|
||||
* **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 68.0,
|
||||
"memoryUsage": 37.0,
|
||||
"gpuUsage": 50.0,
|
||||
"gpuMemoryUsage": 18.0,
|
||||
"cameraConnections": []
|
||||
}
|
||||
```
|
||||
## 7. HTTP API: Image Retrieval
|
||||
|
||||
In addition to the WebSocket protocol, the worker exposes an HTTP endpoint for retrieving the latest image frame from a camera.
|
||||
|
||||
### Endpoint
|
||||
|
||||
```
|
||||
GET /camera/{camera_id}/image
|
||||
```
|
||||
|
||||
- **`camera_id`**: The full `subscriptionIdentifier` (e.g., `display-001;cam-001`).
|
||||
|
||||
### Response
|
||||
|
||||
- **Success (200):** Returns the latest JPEG image from the camera stream.
|
||||
- `Content-Type: image/jpeg`
|
||||
- Binary JPEG data.
|
||||
|
||||
- **Error (404):** If the camera is not found or no frame is available.
|
||||
- JSON error response.
|
||||
|
||||
- **Error (500):** Internal server error.
|
||||
|
||||
### Example Request
|
||||
|
||||
```
|
||||
GET /camera/display-001;cam-001/image
|
||||
```
|
||||
|
||||
### Example Response
|
||||
|
||||
- **Headers:**
|
||||
```
|
||||
Content-Type: image/jpeg
|
||||
```
|
||||
- **Body:** Binary JPEG image.
|
||||
|
||||
### Notes
|
||||
|
||||
- The endpoint returns the most recent frame available for the specified camera subscription.
|
||||
- If multiple displays share the same camera, each subscription has its own buffer; the endpoint uses the buffer for the given `camera_id`.
|
||||
- This API is useful for debugging, monitoring, or integrating with external systems that require direct image access.
|
Loading…
Add table
Add a link
Reference in a new issue