Compare commits

..

1 commit

Author SHA1 Message Date
Pongsatorn
78cb5f53c9 update req 2025-08-11 14:28:19 +07:00
7 changed files with 182 additions and 3386 deletions

1
.gitignore vendored
View file

@ -12,4 +12,3 @@ detector_worker.log
no_frame_debug.log
feeder/
.venv/

375
app.py
View file

@ -13,13 +13,7 @@ import requests
import asyncio
import psutil
import zipfile
import ssl
import urllib3
import subprocess
import tempfile
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from urllib3.util.ssl_ import create_urllib3_context
from fastapi import FastAPI, WebSocket, HTTPException
from fastapi.websockets import WebSocketDisconnect
from fastapi.responses import Response
@ -246,14 +240,16 @@ async def detect(websocket: WebSocket):
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
start_time = time.time()
# Extract display identifier for pipeline context
# Extract display identifier for session ID lookup
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
# Create context for pipeline execution (session_id will be generated by pipeline)
# Create context for pipeline execution
pipeline_context = {
"camera_id": camera_id,
"display_id": display_identifier
"display_id": display_identifier,
"session_id": session_id
}
detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
@ -263,63 +259,57 @@ async def detect(websocket: WebSocket):
# Log the raw detection result for debugging
logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}")
# Extract session_id from pipeline result (generated during database record creation)
session_id = None
if detection_result and isinstance(detection_result, dict):
# Check if pipeline generated a session_id (happens when Car+Frontal detected together)
if "session_id" in detection_result:
session_id = detection_result["session_id"]
logger.debug(f"Extracted session_id from pipeline result: {session_id}")
# Process detection result - run_pipeline returns the primary detection directly
if detection_result and isinstance(detection_result, dict) and "class" in detection_result:
highest_confidence_detection = detection_result
else:
# No detection found
# Direct class result (no detections/classifications structure)
if detection_result and isinstance(detection_result, dict) and "class" in detection_result and "confidence" in detection_result:
highest_confidence_detection = {
"class": detection_result.get("class", "none"),
"confidence": detection_result.get("confidence", 1.0),
"box": [0, 0, 0, 0] # Empty bounding box for classifications
}
# Handle case when no detections found or result is empty
elif not detection_result or not detection_result.get("detections"):
# Check if we have classification results
if detection_result and detection_result.get("classifications"):
# Get the highest confidence classification
classifications = detection_result.get("classifications", [])
highest_confidence_class = max(classifications, key=lambda x: x.get("confidence", 0)) if classifications else None
if highest_confidence_class:
highest_confidence_detection = {
"class": highest_confidence_class.get("class", "none"),
"confidence": highest_confidence_class.get("confidence", 1.0),
"box": [0, 0, 0, 0] # Empty bounding box for classifications
}
else:
highest_confidence_detection = {
"class": "none",
"confidence": 1.0,
"box": [0, 0, 0, 0]
}
else:
highest_confidence_detection = {
"class": "none",
"confidence": 1.0,
"box": [0, 0, 0, 0]
}
else:
# Find detection with highest confidence
detections = detection_result.get("detections", [])
highest_confidence_detection = max(detections, key=lambda x: x.get("confidence", 0)) if detections else {
"class": "none",
"confidence": 1.0,
"bbox": [0, 0, 0, 0],
"branch_results": {}
"box": [0, 0, 0, 0]
}
# Convert detection format to match backend expectations exactly as in worker.md section 4.2
detection_dict = {
"carModel": None,
"carBrand": None,
"carYear": None,
"bodyType": None,
"licensePlateText": None,
"licensePlateConfidence": None
}
# Convert detection format to match protocol - flatten detection attributes
detection_dict = {}
# Extract and process branch results from parallel classification
branch_results = highest_confidence_detection.get("branch_results", {})
if branch_results:
logger.debug(f"Processing branch results: {branch_results}")
# Transform branch results into backend-expected detection attributes
for branch_id, branch_data in branch_results.items():
if isinstance(branch_data, dict):
logger.debug(f"Processing branch {branch_id}: {branch_data}")
# Map common classification fields to backend-expected names
if "brand" in branch_data:
detection_dict["carBrand"] = branch_data["brand"]
if "body_type" in branch_data:
detection_dict["bodyType"] = branch_data["body_type"]
if "class" in branch_data:
class_name = branch_data["class"]
# Map based on branch/model type
if "brand" in branch_id.lower():
detection_dict["carBrand"] = class_name
elif "bodytype" in branch_id.lower() or "body" in branch_id.lower():
detection_dict["bodyType"] = class_name
logger.info(f"Detection payload after branch processing: {detection_dict}")
else:
logger.debug("No branch results found in detection result")
# Handle different detection result formats
if isinstance(highest_confidence_detection, dict):
# Copy all fields from the detection result
for key, value in highest_confidence_detection.items():
if key not in ["box", "id"]: # Skip internal fields
detection_dict[key] = value
detection_data = {
"type": "imageDetection",
@ -332,14 +322,12 @@ async def detect(websocket: WebSocket):
}
}
# Add session ID if available (generated by pipeline when Car+Frontal detected)
# Add session ID if available
if session_id is not None:
detection_data["sessionId"] = session_id
logger.debug(f"Added session_id to WebSocket response: {session_id}")
if highest_confidence_detection.get("class") != "none":
confidence = highest_confidence_detection.get("confidence", 0.0)
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {confidence:.2f} using model {stream['modelName']}")
if highest_confidence_detection["class"] != "none":
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
# Log session ID if available
if session_id:
@ -347,7 +335,6 @@ async def detect(websocket: WebSocket):
await websocket.send_json(detection_data)
logger.debug(f"Sent detection data to client for camera {camera_id}")
logger.debug(f"Sent this detection data: {detection_data}")
return persistent_data
except Exception as e:
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
@ -513,199 +500,6 @@ async def detect(websocket: WebSocket):
finally:
logger.info(f"Snapshot reader thread for camera {camera_id} is exiting")
async def reconcile_subscriptions(desired_subscriptions, websocket):
"""
Declarative reconciliation: Compare desired vs current subscriptions and make changes
"""
logger.info(f"Reconciling subscriptions: {len(desired_subscriptions)} desired")
with streams_lock:
# Get current subscriptions
current_subscription_ids = set(streams.keys())
desired_subscription_ids = set(sub["subscriptionIdentifier"] for sub in desired_subscriptions)
# Find what to add and remove
to_add = desired_subscription_ids - current_subscription_ids
to_remove = current_subscription_ids - desired_subscription_ids
to_check_for_changes = current_subscription_ids & desired_subscription_ids
logger.info(f"Reconciliation: {len(to_add)} to add, {len(to_remove)} to remove, {len(to_check_for_changes)} to check for changes")
# Remove subscriptions that are no longer wanted
for subscription_id in to_remove:
await unsubscribe_internal(subscription_id)
# Check existing subscriptions for parameter changes
for subscription_id in to_check_for_changes:
desired_sub = next(sub for sub in desired_subscriptions if sub["subscriptionIdentifier"] == subscription_id)
current_stream = streams[subscription_id]
# Check if parameters changed
if has_subscription_changed(desired_sub, current_stream):
logger.info(f"Parameters changed for {subscription_id}, resubscribing")
await unsubscribe_internal(subscription_id)
await subscribe_internal(desired_sub, websocket)
# Add new subscriptions
for subscription_id in to_add:
desired_sub = next(sub for sub in desired_subscriptions if sub["subscriptionIdentifier"] == subscription_id)
await subscribe_internal(desired_sub, websocket)
def has_subscription_changed(desired_sub, current_stream):
"""Check if subscription parameters have changed"""
return (
desired_sub.get("rtspUrl") != current_stream.get("rtsp_url") or
desired_sub.get("snapshotUrl") != current_stream.get("snapshot_url") or
desired_sub.get("snapshotInterval") != current_stream.get("snapshot_interval") or
desired_sub.get("cropX1") != current_stream.get("cropX1") or
desired_sub.get("cropY1") != current_stream.get("cropY1") or
desired_sub.get("cropX2") != current_stream.get("cropX2") or
desired_sub.get("cropY2") != current_stream.get("cropY2") or
desired_sub.get("modelId") != current_stream.get("modelId") or
desired_sub.get("modelName") != current_stream.get("modelName")
)
async def subscribe_internal(subscription, websocket):
"""Internal subscription logic extracted from original subscribe handler"""
subscriptionIdentifier = subscription.get("subscriptionIdentifier")
rtsp_url = subscription.get("rtspUrl")
snapshot_url = subscription.get("snapshotUrl")
snapshot_interval = subscription.get("snapshotInterval")
model_url = subscription.get("modelUrl")
modelId = subscription.get("modelId")
modelName = subscription.get("modelName")
cropX1 = subscription.get("cropX1")
cropY1 = subscription.get("cropY1")
cropX2 = subscription.get("cropX2")
cropY2 = subscription.get("cropY2")
# Extract camera_id from subscriptionIdentifier
parts = subscriptionIdentifier.split(';')
if len(parts) != 2:
logger.error(f"Invalid subscriptionIdentifier format: {subscriptionIdentifier}")
return
display_identifier, camera_identifier = parts
camera_id = subscriptionIdentifier
# Load model if needed
if model_url:
with models_lock:
if (camera_id not in models) or (modelId not in models[camera_id]):
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
extraction_dir = os.path.join("models", camera_identifier, str(modelId))
os.makedirs(extraction_dir, exist_ok=True)
# Handle model loading (same as original)
parsed = urlparse(model_url)
if parsed.scheme in ("http", "https"):
filename = os.path.basename(parsed.path) or f"model_{modelId}.mpta"
local_mpta = os.path.join(extraction_dir, filename)
local_path = download_mpta(model_url, local_mpta)
if not local_path:
logger.error(f"Failed to download model from {model_url}")
return
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
else:
if not os.path.exists(model_url):
logger.error(f"Model file not found: {model_url}")
return
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
if model_tree is None:
logger.error(f"Failed to load model {modelId}")
return
if camera_id not in models:
models[camera_id] = {}
models[camera_id][modelId] = model_tree
# Create stream (same logic as original)
if camera_id and (rtsp_url or snapshot_url) and len(streams) < max_streams:
camera_url = snapshot_url if snapshot_url else rtsp_url
# Check if we already have a stream for this camera URL
shared_stream = camera_streams.get(camera_url)
if shared_stream:
# Reuse existing stream
buffer = shared_stream["buffer"]
stop_event = shared_stream["stop_event"]
thread = shared_stream["thread"]
mode = shared_stream["mode"]
shared_stream["ref_count"] = shared_stream.get("ref_count", 0) + 1
else:
# Create new stream
buffer = queue.Queue(maxsize=1)
stop_event = threading.Event()
if snapshot_url and snapshot_interval:
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
thread.daemon = True
thread.start()
mode = "snapshot"
shared_stream = {
"buffer": buffer, "thread": thread, "stop_event": stop_event,
"mode": mode, "url": snapshot_url, "snapshot_interval": snapshot_interval, "ref_count": 1
}
camera_streams[camera_url] = shared_stream
elif rtsp_url:
cap = cv2.VideoCapture(rtsp_url)
if not cap.isOpened():
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
return
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
thread.daemon = True
thread.start()
mode = "rtsp"
shared_stream = {
"buffer": buffer, "thread": thread, "stop_event": stop_event,
"mode": mode, "url": rtsp_url, "cap": cap, "ref_count": 1
}
camera_streams[camera_url] = shared_stream
else:
logger.error(f"No valid URL provided for camera {camera_id}")
return
# Create stream info
stream_info = {
"buffer": buffer, "thread": thread, "stop_event": stop_event,
"modelId": modelId, "modelName": modelName, "subscriptionIdentifier": subscriptionIdentifier,
"cropX1": cropX1, "cropY1": cropY1, "cropX2": cropX2, "cropY2": cropY2,
"mode": mode, "camera_url": camera_url, "modelUrl": model_url
}
if mode == "snapshot":
stream_info["snapshot_url"] = snapshot_url
stream_info["snapshot_interval"] = snapshot_interval
elif mode == "rtsp":
stream_info["rtsp_url"] = rtsp_url
stream_info["cap"] = shared_stream["cap"]
streams[camera_id] = stream_info
subscription_to_camera[camera_id] = camera_url
logger.info(f"Subscribed to camera {camera_id}")
async def unsubscribe_internal(subscription_id):
"""Internal unsubscription logic"""
if subscription_id in streams:
stream = streams.pop(subscription_id)
camera_url = subscription_to_camera.pop(subscription_id, None)
if camera_url and camera_url in camera_streams:
shared_stream = camera_streams[camera_url]
shared_stream["ref_count"] -= 1
if shared_stream["ref_count"] <= 0:
shared_stream["stop_event"].set()
shared_stream["thread"].join()
if "cap" in shared_stream:
shared_stream["cap"].release()
del camera_streams[camera_url]
latest_frames.pop(subscription_id, None)
logger.info(f"Unsubscribed from camera {subscription_id}")
async def process_streams():
logger.info("Started processing streams")
try:
@ -773,10 +567,6 @@ async def detect(websocket: WebSocket):
"modelId": stream["modelId"],
"modelName": stream["modelName"],
"online": True,
# Include all subscription parameters for proper change detection
"rtspUrl": stream.get("rtsp_url"),
"snapshotUrl": stream.get("snapshot_url"),
"snapshotInterval": stream.get("snapshot_interval"),
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
}
for camera_id, stream in streams.items()
@ -805,44 +595,29 @@ async def detect(websocket: WebSocket):
data = json.loads(msg)
msg_type = data.get("type")
if msg_type == "setSubscriptionList":
# Declarative approach: Backend sends list of subscriptions this worker should have
desired_subscriptions = data.get("subscriptions", [])
logger.info(f"Received subscription list with {len(desired_subscriptions)} subscriptions")
await reconcile_subscriptions(desired_subscriptions, websocket)
elif msg_type == "subscribe":
# Legacy support - convert single subscription to list
payload = data.get("payload", {})
await reconcile_subscriptions([payload], websocket)
elif msg_type == "unsubscribe":
# Legacy support - remove subscription
if msg_type == "subscribe":
payload = data.get("payload", {})
subscriptionIdentifier = payload.get("subscriptionIdentifier")
# Remove from current subscriptions and reconcile
current_subs = []
with streams_lock:
for camera_id, stream in streams.items():
if stream["subscriptionIdentifier"] != subscriptionIdentifier:
# Convert stream back to subscription format
current_subs.append({
"subscriptionIdentifier": stream["subscriptionIdentifier"],
"rtspUrl": stream.get("rtsp_url"),
"snapshotUrl": stream.get("snapshot_url"),
"snapshotInterval": stream.get("snapshot_interval"),
"modelId": stream["modelId"],
"modelName": stream["modelName"],
"modelUrl": stream.get("modelUrl", ""),
"cropX1": stream.get("cropX1"),
"cropY1": stream.get("cropY1"),
"cropX2": stream.get("cropX2"),
"cropY2": stream.get("cropY2")
})
await reconcile_subscriptions(current_subs, websocket)
rtsp_url = payload.get("rtspUrl")
snapshot_url = payload.get("snapshotUrl")
snapshot_interval = payload.get("snapshotInterval")
model_url = payload.get("modelUrl")
modelId = payload.get("modelId")
modelName = payload.get("modelName")
cropX1 = payload.get("cropX1")
cropY1 = payload.get("cropY1")
cropX2 = payload.get("cropX2")
cropY2 = payload.get("cropY2")
# Extract camera_id from subscriptionIdentifier (format: displayIdentifier;cameraIdentifier)
parts = subscriptionIdentifier.split(';')
if len(parts) != 2:
logger.error(f"Invalid subscriptionIdentifier format: {subscriptionIdentifier}")
continue
display_identifier, camera_identifier = parts
camera_id = subscriptionIdentifier # Use full subscriptionIdentifier as camera_id for mapping
elif msg_type == "old_subscribe_logic_removed":
if model_url:
with models_lock:
if (camera_id not in models) or (modelId not in models[camera_id]):
@ -1038,10 +813,6 @@ async def detect(websocket: WebSocket):
"modelId": stream["modelId"],
"modelName": stream["modelName"],
"online": True,
# Include all subscription parameters for proper change detection
"rtspUrl": stream.get("rtsp_url"),
"snapshotUrl": stream.get("snapshot_url"),
"snapshotInterval": stream.get("snapshot_interval"),
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
}
for camera_id, stream in streams.items()

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,7 +1,7 @@
torch
torchvision
ultralytics
opencv-python
scipy
filterpy
psycopg2-binary
torch>=1.12.0,<2.1.0
torchvision>=0.13.0,<0.16.0
ultralytics>=8.0.0,<8.1.0
opencv-python>=4.6.0,<4.9.0
scipy>=1.9.0,<1.12.0
filterpy>=1.4.0,<1.5.0
psycopg2-binary>=2.9.0,<2.10.0

View file

@ -514,65 +514,6 @@ def resolve_field_mapping(value_template, branch_results, action_context):
logger.error(f"Error resolving field mapping '{value_template}': {e}")
return None
def validate_pipeline_execution(node, regions_dict):
"""
Pre-validate that all required branches will execute successfully before
committing to Redis actions and database records.
Returns:
- (True, []) if pipeline can execute completely
- (False, missing_branches) if some required branches won't execute
"""
# Get all branches that parallel actions are waiting for
required_branches = set()
for action in node.get("parallelActions", []):
if action.get("type") == "postgresql_update_combined":
wait_for_branches = action.get("waitForBranches", [])
required_branches.update(wait_for_branches)
if not required_branches:
# No parallel actions requiring specific branches
logger.debug("No parallel actions with waitForBranches - validation passes")
return True, []
logger.debug(f"Pre-validation: checking if required branches {list(required_branches)} will execute")
# Check each required branch
missing_branches = []
for branch in node.get("branches", []):
branch_id = branch["modelId"]
if branch_id not in required_branches:
continue # This branch is not required by parallel actions
# Check if this branch would be triggered
trigger_classes = branch.get("triggerClasses", [])
min_conf = branch.get("minConfidence", 0)
branch_triggered = False
for det_class in regions_dict:
det_confidence = regions_dict[det_class]["confidence"]
if (det_class in trigger_classes and det_confidence >= min_conf):
branch_triggered = True
logger.debug(f"Pre-validation: branch {branch_id} WILL be triggered by {det_class} (conf={det_confidence:.3f} >= {min_conf})")
break
if not branch_triggered:
missing_branches.append(branch_id)
logger.warning(f"Pre-validation: branch {branch_id} will NOT be triggered - no matching classes or insufficient confidence")
logger.debug(f" Required: {trigger_classes} with min_conf={min_conf}")
logger.debug(f" Available: {[(cls, regions_dict[cls]['confidence']) for cls in regions_dict]}")
if missing_branches:
logger.error(f"Pipeline pre-validation FAILED: required branches {missing_branches} will not execute")
return False, missing_branches
else:
logger.info(f"Pipeline pre-validation PASSED: all required branches {list(required_branches)} will execute")
return True, []
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
"""
Enhanced pipeline that supports:
@ -705,14 +646,6 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
else:
logger.debug("No multi-class validation - proceeding with all detections")
# ─── Pre-validate pipeline execution ────────────────────────
pipeline_valid, missing_branches = validate_pipeline_execution(node, regions_dict)
if not pipeline_valid:
logger.error(f"Pipeline execution validation FAILED - required branches {missing_branches} cannot execute")
logger.error("Aborting pipeline: no Redis actions or database records will be created")
return (None, None) if return_bbox else None
# ─── Execute actions with region information ────────────────
detection_result = {
"detections": all_detections,
@ -853,11 +786,9 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
primary_detection = max(all_detections, key=lambda x: x["confidence"])
primary_bbox = primary_detection["bbox"]
# Add branch results and session_id to primary detection for compatibility
# Add branch results to primary detection for compatibility
if "branch_results" in detection_result:
primary_detection["branch_results"] = detection_result["branch_results"]
if "session_id" in detection_result:
primary_detection["session_id"] = detection_result["session_id"]
return (primary_detection, primary_bbox) if return_bbox else primary_detection

160
worker.md
View file

@ -2,6 +2,12 @@
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
The current Python Detector Worker implementation supports advanced computer vision pipelines with:
- Multi-class YOLO detection with parallel processing
- PostgreSQL database integration with automatic schema management
- Redis integration for image storage and pub/sub messaging
- Hierarchical pipeline execution with detection → classification branching
## 1. Connection
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
@ -25,14 +31,34 @@ To enable modularity and dynamic configuration, the backend will send you a URL
2. Extracting its contents.
3. Interpreting the contents to configure its internal pipeline.
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
**The current implementation supports comprehensive pipeline configurations including:**
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
- Scripts: Custom Python scripts for pre-processing or post-processing.
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
- **AI/ML Models**: YOLO models (.pt files) for detection and classification
- **Pipeline Configuration**: `pipeline.json` defining hierarchical detection→classification workflows
- **Multi-class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
- **Parallel Processing**: Concurrent execution of classification branches with ThreadPoolExecutor
- **Database Integration**: PostgreSQL configuration for automatic table creation and updates
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
- **Dynamic Field Mapping**: Template-based field resolution for database operations
Essentially, the `.mpta` file is a self-contained package that tells your worker _how_ to process the video stream for a given subscription.
**Enhanced MPTA Structure:**
```
pipeline.mpta/
├── pipeline.json # Main configuration with redis/postgresql settings
├── car_detection.pt # Primary YOLO detection model
├── brand_classifier.pt # Classification model for car brands
├── bodytype_classifier.pt # Classification model for body types
└── ...
```
The `pipeline.json` now supports advanced features like:
- Multi-class detection with `expectedClasses` validation
- Parallel branch processing with `parallel: true`
- Database actions with `postgresql_update_combined`
- Redis actions with region-specific image cropping
- Branch synchronization with `waitForBranches`
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription, including complex multi-stage AI pipelines with database persistence.
## 4. Messages from Worker to Backend
@ -79,6 +105,15 @@ Sent when the worker detects a relevant object. The `detection` object should be
- **Type:** `imageDetection`
**Enhanced Detection Capabilities:**
The current implementation supports multi-class detection with parallel classification processing. When a vehicle is detected, the system:
1. **Multi-Class Detection**: Simultaneously detects "Car" and "Frontal" classes
2. **Parallel Processing**: Runs brand and body type classification concurrently
3. **Database Integration**: Automatically creates and updates PostgreSQL records
4. **Redis Storage**: Saves cropped frontal images with expiration
**Payload Example:**
```json
@ -88,19 +123,38 @@ Sent when the worker detects a relevant object. The `detection` object should be
"timestamp": "2025-07-14T12:34:56.789Z",
"data": {
"detection": {
"carModel": "Civic",
"class": "Car",
"confidence": 0.92,
"carBrand": "Honda",
"carYear": 2023,
"carModel": "Civic",
"bodyType": "Sedan",
"licensePlateText": "ABCD1234",
"licensePlateConfidence": 0.95
"branch_results": {
"car_brand_cls_v1": {
"class": "Honda",
"confidence": 0.89,
"brand": "Honda"
},
"car_bodytype_cls_v1": {
"class": "Sedan",
"confidence": 0.85,
"body_type": "Sedan"
}
}
},
"modelId": 101,
"modelName": "US-LPR-and-Vehicle-ID"
"modelName": "Car Frontal Detection V1"
}
}
```
**Database Integration:**
Each detection automatically:
- Creates a record in `gas_station_1.car_frontal_info` table
- Generates a unique `session_id` for tracking
- Updates the record with classification results after parallel processing completes
- Stores cropped frontal images in Redis with the session_id as key
### 4.3. Patch Session
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
@ -117,9 +171,9 @@ Allows the worker to request a modification to an active session's data. The `da
"sessionId": 12345,
"data": {
"currentCar": {
"carModel": "Civic",
"carBrand": "Honda",
"licensePlateText": "ABCD1234"
"carModel": "Civic",
"carBrand": "Honda",
"licensePlateText": "ABCD1234"
}
}
}
@ -133,33 +187,24 @@ The `data` object in the `patchSession` message is merged with the existing `Dis
```typescript
interface DisplayPersistentData {
progressionStage:
| 'welcome'
| 'car_fueling'
| 'car_waitpayment'
| 'car_postpayment'
| null;
qrCode: string | null;
adsPlayback: {
playlistSlotOrder: number; // The 'order' of the current slot
adsId: number | null;
adsUrl: string | null;
} | null;
currentCar: {
carModel?: string;
carBrand?: string;
carYear?: number;
bodyType?: string;
licensePlateText?: string;
licensePlateType?: string;
} | null;
fuelPump: {
/* FuelPumpData structure */
} | null;
weatherData: {
/* WeatherResponse structure */
} | null;
sessionId: number | null;
progressionStage: "welcome" | "car_fueling" | "car_waitpayment" | "car_postpayment" | null;
qrCode: string | null;
adsPlayback: {
playlistSlotOrder: number; // The 'order' of the current slot
adsId: number | null;
adsUrl: string | null;
} | null;
currentCar: {
carModel?: string;
carBrand?: string;
carYear?: number;
bodyType?: string;
licensePlateText?: string;
licensePlateType?: string;
} | null;
fuelPump: { /* FuelPumpData structure */ } | null;
weatherData: { /* WeatherResponse structure */ } | null;
sessionId: number | null;
}
```
@ -212,7 +257,7 @@ Instructs the worker to process a camera's RTSP stream using the configuration f
> - Capture each snapshot only once per cycle, and reuse it for all display subscriptions sharing that camera.
> - Capture each frame/image only once per cycle.
> - Reuse the same captured image and snapshot for all display subscriptions that share the camera, processing and routing detection results separately for each display as needed.
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
### 5.2. Unsubscribe from Camera
@ -324,7 +369,7 @@ This section shows a typical sequence of messages between the backend and the wo
> **Note:** Unsubscribe is triggered when a user removes a camera or when the node is too heavily loaded and needs rebalancing.
1. **Connection Established** & **Heartbeat**
- **Worker -> Backend**
* **Worker -> Backend**
```json
{
"type": "stateReport",
@ -336,7 +381,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
```
2. **Backend Subscribes Camera**
- **Backend -> Worker**
* **Backend -> Worker**
```json
{
"type": "subscribe",
@ -350,7 +395,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
```
3. **Worker Acknowledges in Heartbeat**
- **Worker -> Backend**
* **Worker -> Backend**
```json
{
"type": "stateReport",
@ -369,7 +414,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
```
4. **Worker Detects a Car**
- **Worker -> Backend**
* **Worker -> Backend**
```json
{
"type": "imageDetection",
@ -388,7 +433,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
}
```
- **Worker -> Backend**
* **Worker -> Backend**
```json
{
"type": "imageDetection",
@ -407,7 +452,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
}
```
- **Worker -> Backend**
* **Worker -> Backend**
```json
{
"type": "imageDetection",
@ -427,7 +472,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
```
5. **Backend Unsubscribes Camera**
- **Backend -> Worker**
* **Backend -> Worker**
```json
{
"type": "unsubscribe",
@ -437,7 +482,7 @@ This section shows a typical sequence of messages between the backend and the wo
}
```
6. **Worker Acknowledges Unsubscription**
- **Worker -> Backend**
* **Worker -> Backend**
```json
{
"type": "stateReport",
@ -448,7 +493,6 @@ This section shows a typical sequence of messages between the backend and the wo
"cameraConnections": []
}
```
## 7. HTTP API: Image Retrieval
In addition to the WebSocket protocol, the worker exposes an HTTP endpoint for retrieving the latest image frame from a camera.
@ -464,13 +508,11 @@ GET /camera/{camera_id}/image
### Response
- **Success (200):** Returns the latest JPEG image from the camera stream.
- `Content-Type: image/jpeg`
- Binary JPEG data.
- `Content-Type: image/jpeg`
- Binary JPEG data.
- **Error (404):** If the camera is not found or no frame is available.
- JSON error response.
- JSON error response.
- **Error (500):** Internal server error.
@ -483,9 +525,9 @@ GET /camera/display-001;cam-001/image
### Example Response
- **Headers:**
```
Content-Type: image/jpeg
```
```
Content-Type: image/jpeg
```
- **Body:** Binary JPEG image.
### Notes