Compare commits
No commits in common. "dev" and "camera-snapshot" have entirely different histories.
dev
...
camera-sna
26 changed files with 708 additions and 9686 deletions
|
@ -1,68 +1,13 @@
|
|||
name: Build Worker Base and Application Images
|
||||
name: Build Backend Application and Docker Image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- dev
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
force_base_build:
|
||||
description: 'Force base image build regardless of changes'
|
||||
required: false
|
||||
default: 'false'
|
||||
type: boolean
|
||||
|
||||
jobs:
|
||||
check-base-changes:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
base-changed: ${{ steps.changes.outputs.base-changed }}
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: Check for base changes
|
||||
id: changes
|
||||
run: |
|
||||
if git diff HEAD^ HEAD --name-only | grep -E "(Dockerfile\.base|requirements\.base\.txt)" > /dev/null; then
|
||||
echo "base-changed=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "base-changed=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
build-base:
|
||||
needs: check-base-changes
|
||||
if: needs.check-base-changes.outputs.base-changed == 'true' || (github.event_name == 'workflow_dispatch' && github.event.inputs.force_base_build == 'true')
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
packages: write
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
|
||||
- name: Login to GitHub Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: git.siwatsystem.com
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.RUNNER_TOKEN }}
|
||||
|
||||
- name: Build and push base Docker image
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
file: ./Dockerfile.base
|
||||
push: true
|
||||
tags: git.siwatsystem.com/adsist-cms/worker-base:latest
|
||||
|
||||
jobs:
|
||||
build-docker:
|
||||
needs: [check-base-changes, build-base]
|
||||
if: always() && (needs.build-base.result == 'success' || needs.build-base.result == 'skipped')
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
packages: write
|
||||
|
@ -86,27 +31,4 @@ jobs:
|
|||
context: .
|
||||
file: ./Dockerfile
|
||||
push: true
|
||||
tags: git.siwatsystem.com/adsist-cms/worker:${{ github.ref_name == 'main' && 'latest' || 'dev' }}
|
||||
|
||||
deploy-stack:
|
||||
needs: build-docker
|
||||
runs-on: adsist
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up SSH connection
|
||||
run: |
|
||||
mkdir -p ~/.ssh
|
||||
echo "${{ secrets.DEPLOY_KEY_CMS }}" > ~/.ssh/id_rsa
|
||||
chmod 600 ~/.ssh/id_rsa
|
||||
ssh-keyscan -H ${{ vars.DEPLOY_HOST_CMS }} >> ~/.ssh/known_hosts
|
||||
- name: Deploy stack
|
||||
run: |
|
||||
echo "Pulling and starting containers on server..."
|
||||
if [ "${{ github.ref_name }}" = "main" ]; then
|
||||
echo "Deploying production stack..."
|
||||
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.production.yml pull && docker compose -f docker-compose.production.yml up -d"
|
||||
else
|
||||
echo "Deploying staging stack..."
|
||||
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.staging.yml pull && docker compose -f docker-compose.staging.yml up -d"
|
||||
fi
|
||||
tags: git.siwatsystem.com/adsist-cms/worker:latest
|
7
.gitignore
vendored
7
.gitignore
vendored
|
@ -10,10 +10,3 @@ mptas
|
|||
detector_worker.log
|
||||
.gitignore
|
||||
no_frame_debug.log
|
||||
|
||||
feeder/
|
||||
.venv/
|
||||
.vscode/
|
||||
dist/
|
||||
websocket_comm.log
|
||||
temp_debug/
|
277
CLAUDE.md
277
CLAUDE.md
|
@ -1,277 +0,0 @@
|
|||
# Python Detector Worker - CLAUDE.md
|
||||
|
||||
## Project Overview
|
||||
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs advanced YOLO-based machine learning pipelines for multi-class object detection and parallel classification. The system features comprehensive database integration, Redis support, and hierarchical pipeline execution designed to work within a larger CMS (Content Management System) architecture.
|
||||
|
||||
### Key Features
|
||||
- **Multi-Class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
|
||||
- **Parallel Processing**: Concurrent execution of classification branches using ThreadPoolExecutor
|
||||
- **Database Integration**: Automatic PostgreSQL schema management and record updates
|
||||
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
|
||||
- **Pipeline Synchronization**: Branch coordination with `waitForBranches` functionality
|
||||
- **Dynamic Field Mapping**: Template-based field resolution for database operations
|
||||
|
||||
## Architecture & Technology Stack
|
||||
- **Framework**: FastAPI with WebSocket support
|
||||
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
|
||||
- **Containerization**: Docker (Python 3.13-bookworm base)
|
||||
- **Data Storage**: Redis integration for action handling + PostgreSQL for persistent storage
|
||||
- **Database**: Automatic schema management with gas_station_1 database
|
||||
- **Parallel Processing**: ThreadPoolExecutor for concurrent classification
|
||||
- **Communication**: WebSocket-based real-time protocol
|
||||
|
||||
## Core Components
|
||||
|
||||
### Main Application (`app.py`)
|
||||
- **FastAPI WebSocket server** for real-time communication
|
||||
- **Multi-camera stream management** with shared stream optimization
|
||||
- **HTTP REST endpoint** for image retrieval (`/camera/{camera_id}/image`)
|
||||
- **Threading-based frame readers** for RTSP streams and HTTP snapshots
|
||||
- **Model loading and inference** using MPTA (Machine Learning Pipeline Archive) format
|
||||
- **Session management** with display identifier mapping
|
||||
- **Resource monitoring** (CPU, memory, GPU usage via psutil)
|
||||
|
||||
### Pipeline System (`siwatsystem/pympta.py`)
|
||||
- **MPTA file handling** - ZIP archives containing model configurations
|
||||
- **Hierarchical pipeline execution** with detection → classification branching
|
||||
- **Multi-class detection** - Simultaneous detection of multiple classes (Car + Frontal)
|
||||
- **Parallel processing** - Concurrent classification branches with ThreadPoolExecutor
|
||||
- **Redis action system** - Image saving with region cropping and message publishing
|
||||
- **PostgreSQL integration** - Automatic table creation and combined updates
|
||||
- **Dynamic model loading** with GPU optimization
|
||||
- **Configurable trigger classes and confidence thresholds**
|
||||
- **Branch synchronization** - waitForBranches coordination for database updates
|
||||
|
||||
### Database System (`siwatsystem/database.py`)
|
||||
- **DatabaseManager class** for PostgreSQL operations
|
||||
- **Automatic table creation** with gas_station_1.car_frontal_info schema
|
||||
- **Combined update operations** with field mapping from branch results
|
||||
- **Session management** with UUID generation
|
||||
- **Error handling** and connection management
|
||||
|
||||
### Testing & Debugging
|
||||
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
|
||||
- **Pipeline webcam utility** (`pipeline_webcam.py`) for local testing with visual output
|
||||
- **RTSP streaming debug tool** (`debug/rtsp_webcam.py`) using GStreamer
|
||||
|
||||
## Code Conventions & Patterns
|
||||
|
||||
### Logging
|
||||
- **Structured logging** using Python's logging module
|
||||
- **File + console output** to `detector_worker.log`
|
||||
- **Debug level separation** for detailed troubleshooting
|
||||
- **Context-aware messages** with camera IDs and model information
|
||||
|
||||
### Error Handling
|
||||
- **Graceful failure handling** with retry mechanisms (configurable max_retries)
|
||||
- **Thread-safe operations** using locks for streams and models
|
||||
- **WebSocket disconnect handling** with proper cleanup
|
||||
- **Model loading validation** with detailed error reporting
|
||||
|
||||
### Configuration
|
||||
- **JSON configuration** (`config.json`) for runtime parameters:
|
||||
- `poll_interval_ms`: Frame processing interval
|
||||
- `max_streams`: Concurrent stream limit
|
||||
- `target_fps`: Target frame rate
|
||||
- `reconnect_interval_sec`: Stream reconnection delay
|
||||
- `max_retries`: Maximum retry attempts (-1 for unlimited)
|
||||
|
||||
### Threading Model
|
||||
- **Frame reader threads** for each camera stream (RTSP/HTTP)
|
||||
- **Shared stream optimization** - multiple subscriptions can reuse the same camera stream
|
||||
- **Async WebSocket handling** with concurrent task management
|
||||
- **Thread-safe data structures** with proper locking mechanisms
|
||||
|
||||
## WebSocket Protocol
|
||||
|
||||
### Message Types
|
||||
- **subscribe**: Start camera stream with model pipeline
|
||||
- **unsubscribe**: Stop camera stream processing
|
||||
- **requestState**: Request current worker status
|
||||
- **setSessionId**: Associate display with session identifier
|
||||
- **patchSession**: Update session data
|
||||
- **stateReport**: Periodic heartbeat with system metrics
|
||||
- **imageDetection**: Detection results with timestamp and model info
|
||||
|
||||
### Subscription Format
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"rtspUrl": "rtsp://...", // OR snapshotUrl
|
||||
"snapshotUrl": "http://...",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://...model.mpta",
|
||||
"modelId": 101,
|
||||
"modelName": "Vehicle Detection",
|
||||
"cropX1": 100, "cropY1": 200,
|
||||
"cropX2": 300, "cropY2": 400
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Model Pipeline (MPTA) Format
|
||||
|
||||
### Enhanced Structure
|
||||
- **ZIP archive** containing models and configuration
|
||||
- **pipeline.json** - Main configuration file with Redis + PostgreSQL settings
|
||||
- **Model files** - YOLO .pt files for detection/classification
|
||||
- **Multi-model support** - Detection + multiple classification models
|
||||
|
||||
### Advanced Pipeline Flow
|
||||
1. **Multi-class detection stage** - YOLO detection of Car + Frontal simultaneously
|
||||
2. **Validation stage** - Check for expected classes (flexible matching)
|
||||
3. **Database initialization** - Create initial record with session_id
|
||||
4. **Redis actions** - Save cropped frontal images with expiration
|
||||
5. **Parallel classification** - Concurrent brand and body type classification
|
||||
6. **Branch synchronization** - Wait for all classification branches to complete
|
||||
7. **Database update** - Combined update with all classification results
|
||||
|
||||
### Enhanced Branch Configuration
|
||||
```json
|
||||
{
|
||||
"modelId": "car_frontal_detection_v1",
|
||||
"modelFile": "car_frontal_detection_v1.pt",
|
||||
"multiClass": true,
|
||||
"expectedClasses": ["Car", "Frontal"],
|
||||
"triggerClasses": ["Car", "Frontal"],
|
||||
"minConfidence": 0.8,
|
||||
"actions": [
|
||||
{
|
||||
"type": "redis_save_image",
|
||||
"region": "Frontal",
|
||||
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
||||
"expire_seconds": 600
|
||||
}
|
||||
],
|
||||
"branches": [
|
||||
{
|
||||
"modelId": "car_brand_cls_v1",
|
||||
"modelFile": "car_brand_cls_v1.pt",
|
||||
"parallel": true,
|
||||
"crop": true,
|
||||
"cropClass": "Frontal",
|
||||
"triggerClasses": ["Frontal"],
|
||||
"minConfidence": 0.85
|
||||
}
|
||||
],
|
||||
"parallelActions": [
|
||||
{
|
||||
"type": "postgresql_update_combined",
|
||||
"table": "car_frontal_info",
|
||||
"key_field": "session_id",
|
||||
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
||||
"fields": {
|
||||
"car_brand": "{car_brand_cls_v1.brand}",
|
||||
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Stream Management
|
||||
|
||||
### Shared Streams
|
||||
- Multiple subscriptions can share the same camera URL
|
||||
- Reference counting prevents premature stream termination
|
||||
- Automatic cleanup when last subscription ends
|
||||
|
||||
### Frame Processing
|
||||
- **Queue-based buffering** with single frame capacity (latest frame only)
|
||||
- **Configurable polling interval** based on target FPS
|
||||
- **Automatic reconnection** with exponential backoff
|
||||
|
||||
## Development & Testing
|
||||
|
||||
### Local Development
|
||||
```bash
|
||||
# Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Run the worker
|
||||
python app.py
|
||||
|
||||
# Test protocol compliance
|
||||
python test_protocol.py
|
||||
|
||||
# Test pipeline with webcam
|
||||
python pipeline_webcam.py --mpta-file path/to/model.mpta --video 0
|
||||
```
|
||||
|
||||
### Docker Deployment
|
||||
```bash
|
||||
# Build container
|
||||
docker build -t detector-worker .
|
||||
|
||||
# Run with volume mounts for models
|
||||
docker run -p 8000:8000 -v ./models:/app/models detector-worker
|
||||
```
|
||||
|
||||
### Testing Commands
|
||||
- **Protocol testing**: `python test_protocol.py`
|
||||
- **Pipeline validation**: `python pipeline_webcam.py --mpta-file <path> --video 0`
|
||||
- **RTSP debugging**: `python debug/rtsp_webcam.py`
|
||||
|
||||
## Dependencies
|
||||
- **fastapi[standard]**: Web framework with WebSocket support
|
||||
- **uvicorn**: ASGI server
|
||||
- **torch, torchvision**: PyTorch for ML inference
|
||||
- **ultralytics**: YOLO implementation
|
||||
- **opencv-python**: Computer vision operations
|
||||
- **websockets**: WebSocket client/server
|
||||
- **redis**: Redis client for action execution
|
||||
- **psycopg2-binary**: PostgreSQL database adapter
|
||||
- **scipy**: Scientific computing for advanced algorithms
|
||||
- **filterpy**: Kalman filtering and state estimation
|
||||
|
||||
## Security Considerations
|
||||
- Model files are loaded from trusted sources only
|
||||
- Redis connections use authentication when configured
|
||||
- WebSocket connections handle disconnects gracefully
|
||||
- Resource usage is monitored to prevent DoS
|
||||
|
||||
## Database Integration
|
||||
|
||||
### Schema Management
|
||||
The system automatically creates and manages PostgreSQL tables:
|
||||
|
||||
```sql
|
||||
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||
display_id VARCHAR(255),
|
||||
captured_timestamp VARCHAR(255),
|
||||
session_id VARCHAR(255) PRIMARY KEY,
|
||||
license_character VARCHAR(255) DEFAULT NULL,
|
||||
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||
car_brand VARCHAR(255) DEFAULT NULL,
|
||||
car_model VARCHAR(255) DEFAULT NULL,
|
||||
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||
created_at TIMESTAMP DEFAULT NOW(),
|
||||
updated_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
```
|
||||
|
||||
### Workflow
|
||||
1. **Detection**: When both "Car" and "Frontal" are detected, create initial database record with UUID session_id
|
||||
2. **Redis Storage**: Save cropped frontal image to Redis with session_id in key
|
||||
3. **Parallel Processing**: Run brand and body type classification concurrently
|
||||
4. **Synchronization**: Wait for all branches to complete using `waitForBranches`
|
||||
5. **Database Update**: Update record with combined classification results using field mapping
|
||||
|
||||
### Field Mapping
|
||||
Templates like `{car_brand_cls_v1.brand}` are resolved to actual classification results:
|
||||
- `car_brand_cls_v1.brand` → "Honda"
|
||||
- `car_bodytype_cls_v1.body_type` → "Sedan"
|
||||
|
||||
## Performance Optimizations
|
||||
- GPU acceleration when CUDA is available
|
||||
- Shared camera streams reduce resource usage
|
||||
- Frame queue optimization (single latest frame)
|
||||
- Model caching across subscriptions
|
||||
- Trigger class filtering for faster inference
|
||||
- Parallel processing with ThreadPoolExecutor for classification branches
|
||||
- Multi-class detection reduces inference passes
|
||||
- Region-based cropping minimizes processing overhead
|
||||
- Database connection pooling and prepared statements
|
||||
- Redis image storage with automatic expiration
|
16
Dockerfile
16
Dockerfile
|
@ -1,11 +1,19 @@
|
|||
# Use our pre-built base image with ML dependencies
|
||||
FROM git.siwatsystem.com/adsist-cms/worker-base:latest
|
||||
# Use the official Python image from the Docker Hub
|
||||
FROM python:3.13-bookworm
|
||||
|
||||
# Copy and install application requirements (frequently changing dependencies)
|
||||
# Set the working directory in the container
|
||||
WORKDIR /app
|
||||
|
||||
# Copy the requirements file into the container at /app
|
||||
COPY requirements.txt .
|
||||
|
||||
# Update apt, install libgl1, and clear apt cache
|
||||
RUN apt update && apt install -y libgl1 && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install any dependencies specified in requirements.txt
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the application code
|
||||
# Copy the rest of the application code into the container at /app
|
||||
COPY . .
|
||||
|
||||
# Run the application
|
||||
|
|
|
@ -1,24 +0,0 @@
|
|||
# Base image with all ML dependencies
|
||||
FROM pytorch/pytorch:2.8.0-cuda12.6-cudnn9-runtime
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt update && apt install -y \
|
||||
libgl1 \
|
||||
libglib2.0-0 \
|
||||
libgstreamer1.0-0 \
|
||||
libgtk-3-0 \
|
||||
libavcodec58 \
|
||||
libavformat58 \
|
||||
libswscale5 \
|
||||
libgomp1 \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy and install base requirements (ML dependencies that rarely change)
|
||||
COPY requirements.base.txt .
|
||||
RUN pip install --no-cache-dir -r requirements.base.txt
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# This base image will be reused for all worker builds
|
||||
CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
|
366
app_single.py
Normal file
366
app_single.py
Normal file
|
@ -0,0 +1,366 @@
|
|||
from typing import List
|
||||
from fastapi import FastAPI, WebSocket
|
||||
from fastapi.websockets import WebSocketDisconnect
|
||||
from websockets.exceptions import ConnectionClosedError
|
||||
from ultralytics import YOLO
|
||||
import torch
|
||||
import cv2
|
||||
import base64
|
||||
import numpy as np
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import queue
|
||||
import os
|
||||
import requests
|
||||
from urllib.parse import urlparse
|
||||
import asyncio
|
||||
import psutil
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
models = {}
|
||||
|
||||
with open("config.json", "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
poll_interval = config.get("poll_interval_ms", 100)
|
||||
reconnect_interval = config.get("reconnect_interval_sec", 5)
|
||||
TARGET_FPS = config.get("target_fps", 10)
|
||||
poll_interval = 1000 / TARGET_FPS
|
||||
logging.info(f"Poll interval: {poll_interval}ms")
|
||||
max_streams = config.get("max_streams", 5)
|
||||
max_retries = config.get("max_retries", 3)
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG,
|
||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
||||
handlers=[
|
||||
logging.FileHandler("app.log"),
|
||||
logging.StreamHandler()
|
||||
]
|
||||
)
|
||||
|
||||
# Ensure the models directory exists
|
||||
os.makedirs("models", exist_ok=True)
|
||||
|
||||
# Add constants for heartbeat
|
||||
HEARTBEAT_INTERVAL = 2 # seconds
|
||||
WORKER_TIMEOUT_MS = 10000
|
||||
|
||||
# Add a lock for thread-safe operations on shared resources
|
||||
streams_lock = threading.Lock()
|
||||
models_lock = threading.Lock()
|
||||
|
||||
@app.websocket("/")
|
||||
async def detect(websocket: WebSocket):
|
||||
import asyncio
|
||||
import time
|
||||
|
||||
logging.info("WebSocket connection accepted")
|
||||
|
||||
streams = {}
|
||||
|
||||
# This function is user-modifiable
|
||||
# Save data you want to persist across frames in the persistent_data dictionary
|
||||
async def handle_detection(camera_id, stream, frame, websocket, model: YOLO, persistent_data):
|
||||
try:
|
||||
highest_conf_box = None
|
||||
max_conf = -1
|
||||
|
||||
for r in model.track(frame, stream=False, persist=True):
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
highest_conf_box = {
|
||||
"class": model.names[int(box_cpu.cls[0])],
|
||||
"confidence": conf,
|
||||
"id": box.id.item(),
|
||||
}
|
||||
|
||||
# Broadcast to all subscribers of this URL
|
||||
detection_data = {
|
||||
"type": "imageDetection",
|
||||
"cameraIdentifier": camera_id,
|
||||
"timestamp": time.time(),
|
||||
"data": {
|
||||
"detections": highest_conf_box if highest_conf_box else None,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName']
|
||||
}
|
||||
}
|
||||
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
||||
await websocket.send_json(detection_data)
|
||||
return persistent_data
|
||||
except Exception as e:
|
||||
logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
|
||||
return persistent_data
|
||||
|
||||
def frame_reader(camera_id, cap, buffer, stop_event):
|
||||
import time
|
||||
retries = 0
|
||||
try:
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logging.error(f"Max retries reached for camera: {camera_id}")
|
||||
break
|
||||
# Re-open the VideoCapture
|
||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
||||
continue
|
||||
continue
|
||||
retries = 0 # Reset on success
|
||||
if not buffer.empty():
|
||||
try:
|
||||
buffer.get_nowait() # Discard the old frame
|
||||
except queue.Empty:
|
||||
pass
|
||||
buffer.put(frame)
|
||||
except cv2.error as e:
|
||||
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
|
||||
break
|
||||
# Re-open the VideoCapture
|
||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
||||
continue
|
||||
except Exception as e:
|
||||
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
|
||||
|
||||
async def process_streams():
|
||||
global models
|
||||
logging.info("Started processing streams")
|
||||
persistent_data_dict = {}
|
||||
try:
|
||||
while True:
|
||||
start_time = time.time()
|
||||
# Round-robin processing
|
||||
with streams_lock:
|
||||
current_streams = list(streams.items())
|
||||
for camera_id, stream in current_streams:
|
||||
buffer = stream['buffer']
|
||||
if not buffer.empty():
|
||||
frame = buffer.get()
|
||||
with models_lock:
|
||||
model = models.get(camera_id, {}).get(stream['modelId'])
|
||||
key = (camera_id, stream['modelId'])
|
||||
persistent_data = persistent_data_dict.get(key, {})
|
||||
updated_persistent_data = await handle_detection(camera_id, stream, frame, websocket, model, persistent_data)
|
||||
persistent_data_dict[key] = updated_persistent_data
|
||||
elapsed_time = (time.time() - start_time) * 1000 # in ms
|
||||
sleep_time = max(poll_interval - elapsed_time, 0)
|
||||
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
||||
await asyncio.sleep(sleep_time / 1000.0)
|
||||
except asyncio.CancelledError:
|
||||
logging.info("Stream processing task cancelled")
|
||||
except Exception as e:
|
||||
logging.error(f"Error in process_streams: {e}")
|
||||
|
||||
async def send_heartbeat():
|
||||
while True:
|
||||
try:
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName'],
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
||||
state_report = {
|
||||
"type": "stateReport",
|
||||
"cpuUsage": cpu_usage,
|
||||
"memoryUsage": memory_usage,
|
||||
"gpuUsage": gpu_usage,
|
||||
"gpuMemoryUsage": gpu_memory_usage,
|
||||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
logging.debug("Sent stateReport as heartbeat")
|
||||
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
||||
except Exception as e:
|
||||
logging.error(f"Error sending stateReport heartbeat: {e}")
|
||||
break
|
||||
|
||||
async def on_message():
|
||||
global models
|
||||
while True:
|
||||
try:
|
||||
msg = await websocket.receive_text()
|
||||
logging.debug(f"Received message: {msg}")
|
||||
print(f"Received message: {msg}")
|
||||
data = json.loads(msg)
|
||||
msg_type = data.get("type")
|
||||
|
||||
if msg_type == "subscribe":
|
||||
payload = data.get("payload", {})
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
rtsp_url = payload.get("rtspUrl")
|
||||
model_url = payload.get("modelUrl")
|
||||
modelId = payload.get("modelId")
|
||||
modelName = payload.get("modelName")
|
||||
|
||||
if model_url:
|
||||
with models_lock:
|
||||
if camera_id not in models:
|
||||
models[camera_id] = {}
|
||||
if modelId not in models[camera_id]:
|
||||
print(f"Downloading model from {model_url}")
|
||||
parsed_url = urlparse(model_url)
|
||||
filename = os.path.basename(parsed_url.path)
|
||||
model_filename = os.path.join("models", filename)
|
||||
# Download the model
|
||||
response = requests.get(model_url, stream=True)
|
||||
if response.status_code == 200:
|
||||
with open(model_filename, 'wb') as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
logging.info(f"Downloaded model from {model_url} to {model_filename}")
|
||||
model = YOLO(model_filename)
|
||||
if torch.cuda.is_available():
|
||||
model.to('cuda')
|
||||
models[camera_id][modelId] = model
|
||||
logging.info(f"Loaded model {modelId} for camera {camera_id}")
|
||||
else:
|
||||
logging.error(f"Failed to download model from {model_url}")
|
||||
continue
|
||||
if camera_id and rtsp_url:
|
||||
with streams_lock:
|
||||
if camera_id not in streams and len(streams) < max_streams:
|
||||
cap = cv2.VideoCapture(rtsp_url)
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||
continue
|
||||
buffer = queue.Queue(maxsize=1)
|
||||
stop_event = threading.Event()
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
streams[camera_id] = {
|
||||
'cap': cap,
|
||||
'buffer': buffer,
|
||||
'thread': thread,
|
||||
'rtsp_url': rtsp_url,
|
||||
'stop_event': stop_event,
|
||||
'modelId': modelId,
|
||||
'modelName': modelName
|
||||
}
|
||||
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
|
||||
elif camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
stream['cap'].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "unsubscribe":
|
||||
payload = data.get("payload", {})
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
logging.debug(f"Unsubscribing from camera {camera_id}")
|
||||
with streams_lock:
|
||||
if camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
stream['stop_event'].set()
|
||||
stream['thread'].join()
|
||||
stream['cap'].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "requestState":
|
||||
# Handle state request
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName'],
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
||||
state_report = {
|
||||
"type": "stateReport",
|
||||
"cpuUsage": cpu_usage,
|
||||
"memoryUsage": memory_usage,
|
||||
"gpuUsage": gpu_usage,
|
||||
"gpuMemoryUsage": gpu_memory_usage,
|
||||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
else:
|
||||
logging.error(f"Unknown message type: {msg_type}")
|
||||
except json.JSONDecodeError:
|
||||
logging.error("Received invalid JSON message")
|
||||
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
||||
logging.warning(f"WebSocket disconnected: {e}")
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error handling message: {e}")
|
||||
break
|
||||
|
||||
try:
|
||||
await websocket.accept()
|
||||
task = asyncio.create_task(process_streams())
|
||||
heartbeat_task = asyncio.create_task(send_heartbeat())
|
||||
message_task = asyncio.create_task(on_message())
|
||||
|
||||
await asyncio.gather(heartbeat_task, message_task)
|
||||
except Exception as e:
|
||||
logging.error(f"Error in detect websocket: {e}")
|
||||
finally:
|
||||
task.cancel()
|
||||
await task
|
||||
with streams_lock:
|
||||
for camera_id, stream in streams.items():
|
||||
stream['stop_event'].set()
|
||||
stream['thread'].join()
|
||||
stream['cap'].release()
|
||||
stream['buffer'].queue.clear()
|
||||
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
||||
streams.clear()
|
||||
with models_lock:
|
||||
models.clear()
|
||||
logging.info("WebSocket connection closed")
|
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"poll_interval_ms": 100,
|
||||
"max_streams": 999,
|
||||
"max_streams": 5,
|
||||
"target_fps": 2,
|
||||
"reconnect_interval_sec": 5,
|
||||
"max_retries": -1
|
||||
|
|
|
@ -1,142 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to check available camera indices
|
||||
"""
|
||||
|
||||
import cv2
|
||||
import logging
|
||||
import sys
|
||||
import subprocess
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s"
|
||||
)
|
||||
logger = logging.getLogger("camera_index_test")
|
||||
|
||||
def test_camera_index(index):
|
||||
"""Test if a camera index is available"""
|
||||
try:
|
||||
cap = cv2.VideoCapture(index)
|
||||
if cap.isOpened():
|
||||
ret, frame = cap.read()
|
||||
if ret and frame is not None:
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
|
||||
cap.release()
|
||||
return True, f"{width}x{height} @ {fps}fps"
|
||||
else:
|
||||
cap.release()
|
||||
return False, "Can open but cannot read frames"
|
||||
else:
|
||||
cap.release()
|
||||
return False, "Cannot open camera"
|
||||
except Exception as e:
|
||||
return False, f"Error: {str(e)}"
|
||||
|
||||
def get_windows_cameras_ffmpeg():
|
||||
"""Get available cameras on Windows using FFmpeg"""
|
||||
try:
|
||||
result = subprocess.run(['ffmpeg', '-f', 'dshow', '-list_devices', 'true', '-i', 'dummy'],
|
||||
capture_output=True, text=True, timeout=10, encoding='utf-8', errors='ignore')
|
||||
output = result.stderr
|
||||
|
||||
lines = output.split('\n')
|
||||
video_devices = []
|
||||
|
||||
# Parse the output - look for lines with (video) that contain device names in quotes
|
||||
for line in lines:
|
||||
if '[dshow @' in line and '(video)' in line and '"' in line:
|
||||
# Extract device name between first pair of quotes
|
||||
start = line.find('"') + 1
|
||||
end = line.find('"', start)
|
||||
if start > 0 and end > start:
|
||||
device_name = line[start:end]
|
||||
video_devices.append(device_name)
|
||||
|
||||
logger.info(f"FFmpeg detected video devices: {video_devices}")
|
||||
return video_devices
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get Windows camera names: {e}")
|
||||
return []
|
||||
|
||||
def main():
|
||||
logger.info("=== Camera Index Test ===")
|
||||
|
||||
# Check FFmpeg availability for Windows device detection
|
||||
ffmpeg_available = False
|
||||
try:
|
||||
result = subprocess.run(['ffmpeg', '-version'], capture_output=True, text=True, timeout=5)
|
||||
if result.returncode == 0:
|
||||
ffmpeg_available = True
|
||||
logger.info("FFmpeg is available")
|
||||
except:
|
||||
logger.info("FFmpeg not available")
|
||||
|
||||
# Get Windows camera names if possible
|
||||
if sys.platform.startswith('win') and ffmpeg_available:
|
||||
logger.info("\n=== Windows Camera Devices (FFmpeg) ===")
|
||||
cameras = get_windows_cameras_ffmpeg()
|
||||
if cameras:
|
||||
for i, camera in enumerate(cameras):
|
||||
logger.info(f"Device {i}: {camera}")
|
||||
else:
|
||||
logger.info("No cameras detected via FFmpeg")
|
||||
|
||||
# Test camera indices 0-9
|
||||
logger.info("\n=== Testing Camera Indices ===")
|
||||
available_cameras = []
|
||||
|
||||
for index in range(10):
|
||||
logger.info(f"Testing camera index {index}...")
|
||||
is_available, info = test_camera_index(index)
|
||||
|
||||
if is_available:
|
||||
logger.info(f"✓ Camera {index}: AVAILABLE - {info}")
|
||||
available_cameras.append(index)
|
||||
else:
|
||||
logger.info(f"✗ Camera {index}: NOT AVAILABLE - {info}")
|
||||
|
||||
# Summary
|
||||
logger.info("\n=== Summary ===")
|
||||
if available_cameras:
|
||||
logger.info(f"Available camera indices: {available_cameras}")
|
||||
logger.info(f"Default camera index to use: {available_cameras[0]}")
|
||||
|
||||
# Test the first available camera more thoroughly
|
||||
logger.info(f"\n=== Detailed Test for Camera {available_cameras[0]} ===")
|
||||
cap = cv2.VideoCapture(available_cameras[0])
|
||||
if cap.isOpened():
|
||||
# Get properties
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
backend = cap.getBackendName()
|
||||
|
||||
logger.info(f"Resolution: {width}x{height}")
|
||||
logger.info(f"FPS: {fps}")
|
||||
logger.info(f"Backend: {backend}")
|
||||
|
||||
# Test frame capture
|
||||
ret, frame = cap.read()
|
||||
if ret and frame is not None:
|
||||
logger.info(f"Frame capture: SUCCESS")
|
||||
logger.info(f"Frame shape: {frame.shape}")
|
||||
logger.info(f"Frame dtype: {frame.dtype}")
|
||||
else:
|
||||
logger.info(f"Frame capture: FAILED")
|
||||
|
||||
cap.release()
|
||||
else:
|
||||
logger.error("No cameras available!")
|
||||
logger.info("Possible solutions:")
|
||||
logger.info("1. Check if camera is connected and not used by another application")
|
||||
logger.info("2. Check camera permissions")
|
||||
logger.info("3. Try different camera indices")
|
||||
logger.info("4. Install camera drivers")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
327
pympta.md
327
pympta.md
|
@ -1,327 +0,0 @@
|
|||
# pympta: Modular Pipeline Task Executor
|
||||
|
||||
`pympta` is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (`.mpta`). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.
|
||||
|
||||
## Core Concepts
|
||||
|
||||
### 1. MPTA Package (`.mpta`)
|
||||
|
||||
An `.mpta` file is a standard `.zip` archive with a different extension. It bundles all the necessary components for a pipeline to run.
|
||||
|
||||
A typical `.mpta` file has the following structure:
|
||||
|
||||
```
|
||||
my_pipeline.mpta/
|
||||
├── pipeline.json
|
||||
├── model1.pt
|
||||
├── model2.pt
|
||||
└── ...
|
||||
```
|
||||
|
||||
- **`pipeline.json`**: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
|
||||
- **Model Files (`.pt`, etc.)**: The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses `ultralytics.YOLO` models.
|
||||
|
||||
### 2. Pipeline Structure
|
||||
|
||||
A pipeline is a tree-like structure of "nodes," defined in `pipeline.json`.
|
||||
|
||||
- **Root Node**: The entry point of the pipeline. It processes the initial, full-frame image.
|
||||
- **Branch Nodes**: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.
|
||||
|
||||
This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.
|
||||
|
||||
## `pipeline.json` Specification
|
||||
|
||||
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition, optional `redis` key for Redis configuration, and optional `postgresql` key for database integration.
|
||||
|
||||
### Top-Level Object Structure
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ------------ | ------ | -------- | ------------------------------------------------------- |
|
||||
| `pipeline` | Object | Yes | The root node object of the pipeline. |
|
||||
| `redis` | Object | No | Configuration for connecting to a Redis server. |
|
||||
| `postgresql` | Object | No | Configuration for connecting to a PostgreSQL database. |
|
||||
|
||||
### Redis Configuration (`redis`)
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||
| `host` | String | Yes | The hostname or IP address of the Redis server. |
|
||||
| `port` | Number | Yes | The port number of the Redis server. |
|
||||
| `password` | String | No | The password for Redis authentication. |
|
||||
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
|
||||
|
||||
### PostgreSQL Configuration (`postgresql`)
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||
| `host` | String | Yes | The hostname or IP address of the PostgreSQL server. |
|
||||
| `port` | Number | Yes | The port number of the PostgreSQL server. |
|
||||
| `database` | String | Yes | The database name to connect to. |
|
||||
| `username` | String | Yes | The username for database authentication. |
|
||||
| `password` | String | Yes | The password for database authentication. |
|
||||
|
||||
### Node Object Structure
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ------------------- | ------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `modelId` | String | Yes | A unique identifier for this model node (e.g., "vehicle-detector"). |
|
||||
| `modelFile` | String | Yes | The path to the model file within the `.mpta` archive (e.g., "yolov8n.pt"). |
|
||||
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
|
||||
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
|
||||
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
|
||||
| `cropClass` | String | No | The specific class to use for cropping (e.g., "Frontal" for frontal view cropping). |
|
||||
| `multiClass` | Boolean | No | If `true`, enables multi-class detection mode where multiple classes can be detected simultaneously. |
|
||||
| `expectedClasses` | Array<String> | No | When `multiClass` is true, defines which classes are expected. At least one must be detected for processing to continue. |
|
||||
| `parallel` | Boolean | No | If `true`, this branch will be processed in parallel with other parallel branches. |
|
||||
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
|
||||
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
|
||||
| `parallelActions` | Array<Action> | No | A list of actions to execute after all specified branches have completed. |
|
||||
|
||||
### Action Object Structure
|
||||
|
||||
Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.
|
||||
|
||||
#### Action Context & Dynamic Keys
|
||||
|
||||
All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:
|
||||
|
||||
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
|
||||
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
|
||||
- `{timestamp}`: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
|
||||
- `{uuid}`: A unique identifier (UUID4) for the detection event.
|
||||
- `{filename}`: Generated filename with UUID.
|
||||
- `{camera_id}`: Full camera subscription identifier.
|
||||
- `{display_id}`: Display identifier extracted from subscription.
|
||||
- `{session_id}`: Session ID for database operations.
|
||||
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
|
||||
|
||||
#### `redis_save_image`
|
||||
|
||||
Saves the current image frame (or cropped sub-image) to a Redis key.
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `type` | String | Yes | Must be `"redis_save_image"`. |
|
||||
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
|
||||
| `region` | String | No | Specific detected region to crop and save (e.g., "Frontal"). |
|
||||
| `format` | String | No | Image format: "jpeg" or "png". Defaults to "jpeg". |
|
||||
| `quality` | Number | No | JPEG quality (1-100). Defaults to 90. |
|
||||
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
|
||||
|
||||
#### `redis_publish`
|
||||
|
||||
Publishes a message to a Redis channel.
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| --------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `type` | String | Yes | Must be `"redis_publish"`. |
|
||||
| `channel` | String | Yes | The Redis channel to publish the message to. |
|
||||
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
|
||||
|
||||
#### `postgresql_update_combined`
|
||||
|
||||
Updates PostgreSQL database with results from multiple branches after they complete.
|
||||
|
||||
| Key | Type | Required | Description |
|
||||
| ------------------ | ------------- | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `type` | String | Yes | Must be `"postgresql_update_combined"`. |
|
||||
| `table` | String | Yes | The database table name (will be prefixed with `gas_station_1.` schema). |
|
||||
| `key_field` | String | Yes | The field to use as the update key (typically "session_id"). |
|
||||
| `key_value` | String | Yes | Template for the key value (e.g., "{session_id}"). |
|
||||
| `waitForBranches` | Array<String> | Yes | List of branch model IDs to wait for completion before executing update. |
|
||||
| `fields` | Object | Yes | Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").|
|
||||
|
||||
### Complete Example `pipeline.json`
|
||||
|
||||
This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:
|
||||
|
||||
```json
|
||||
{
|
||||
"redis": {
|
||||
"host": "10.100.1.3",
|
||||
"port": 6379,
|
||||
"password": "your-redis-password",
|
||||
"db": 0
|
||||
},
|
||||
"postgresql": {
|
||||
"host": "10.100.1.3",
|
||||
"port": 5432,
|
||||
"database": "inference",
|
||||
"username": "root",
|
||||
"password": "your-db-password"
|
||||
},
|
||||
"pipeline": {
|
||||
"modelId": "car_frontal_detection_v1",
|
||||
"modelFile": "car_frontal_detection_v1.pt",
|
||||
"crop": false,
|
||||
"triggerClasses": ["Car", "Frontal"],
|
||||
"minConfidence": 0.8,
|
||||
"multiClass": true,
|
||||
"expectedClasses": ["Car", "Frontal"],
|
||||
"actions": [
|
||||
{
|
||||
"type": "redis_save_image",
|
||||
"region": "Frontal",
|
||||
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
||||
"expire_seconds": 600,
|
||||
"format": "jpeg",
|
||||
"quality": 90
|
||||
},
|
||||
{
|
||||
"type": "redis_publish",
|
||||
"channel": "car_detections",
|
||||
"message": "{\"event\":\"frontal_detected\"}"
|
||||
}
|
||||
],
|
||||
"branches": [
|
||||
{
|
||||
"modelId": "car_brand_cls_v1",
|
||||
"modelFile": "car_brand_cls_v1.pt",
|
||||
"crop": true,
|
||||
"cropClass": "Frontal",
|
||||
"resizeTarget": [224, 224],
|
||||
"triggerClasses": ["Frontal"],
|
||||
"minConfidence": 0.85,
|
||||
"parallel": true,
|
||||
"branches": []
|
||||
},
|
||||
{
|
||||
"modelId": "car_bodytype_cls_v1",
|
||||
"modelFile": "car_bodytype_cls_v1.pt",
|
||||
"crop": true,
|
||||
"cropClass": "Car",
|
||||
"resizeTarget": [224, 224],
|
||||
"triggerClasses": ["Car"],
|
||||
"minConfidence": 0.85,
|
||||
"parallel": true,
|
||||
"branches": []
|
||||
}
|
||||
],
|
||||
"parallelActions": [
|
||||
{
|
||||
"type": "postgresql_update_combined",
|
||||
"table": "car_frontal_info",
|
||||
"key_field": "session_id",
|
||||
"key_value": "{session_id}",
|
||||
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
||||
"fields": {
|
||||
"car_brand": "{car_brand_cls_v1.brand}",
|
||||
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## API Reference
|
||||
|
||||
The `pympta` module exposes two main functions.
|
||||
|
||||
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
|
||||
|
||||
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in `pipeline.json`.
|
||||
|
||||
- **Parameters:**
|
||||
- `zip_source` (str): The file path to the local `.mpta` zip archive.
|
||||
- `target_dir` (str): A directory path where the archive's contents will be extracted.
|
||||
- **Returns:**
|
||||
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
|
||||
|
||||
### `run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)`
|
||||
|
||||
Executes the inference pipeline on a single image frame.
|
||||
|
||||
- **Parameters:**
|
||||
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
|
||||
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
|
||||
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
|
||||
- `context` (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
|
||||
- **Returns:**
|
||||
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
|
||||
|
||||
## Database Integration
|
||||
|
||||
The pipeline system includes automatic PostgreSQL database management:
|
||||
|
||||
### Table Schema (`gas_station_1.car_frontal_info`)
|
||||
|
||||
The system automatically creates and manages the following table structure:
|
||||
|
||||
```sql
|
||||
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||
display_id VARCHAR(255),
|
||||
captured_timestamp VARCHAR(255),
|
||||
session_id VARCHAR(255) PRIMARY KEY,
|
||||
license_character VARCHAR(255) DEFAULT NULL,
|
||||
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||
car_brand VARCHAR(255) DEFAULT NULL,
|
||||
car_model VARCHAR(255) DEFAULT NULL,
|
||||
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||
created_at TIMESTAMP DEFAULT NOW(),
|
||||
updated_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
```
|
||||
|
||||
### Workflow
|
||||
|
||||
1. **Initial Record Creation**: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
|
||||
2. **Redis Storage**: Vehicle images are stored in Redis with keys containing the session_id.
|
||||
3. **Parallel Classification**: Brand and body type classification run concurrently.
|
||||
4. **Database Update**: After all branches complete, the database record is updated with classification results.
|
||||
|
||||
## Usage Example
|
||||
|
||||
This snippet shows how to use `pympta` with the enhanced features:
|
||||
|
||||
```python
|
||||
import cv2
|
||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
||||
|
||||
# 1. Define paths
|
||||
MPTA_FILE = "path/to/your/pipeline.mpta"
|
||||
CACHE_DIR = ".mptacache"
|
||||
|
||||
# 2. Load the pipeline from the .mpta file
|
||||
# This reads pipeline.json and loads the YOLO models into memory.
|
||||
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)
|
||||
|
||||
if not model_tree:
|
||||
print("Failed to load pipeline.")
|
||||
exit()
|
||||
|
||||
# 3. Open a video source
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# 4. Run the pipeline on the current frame with context
|
||||
context = {
|
||||
"camera_id": "display-001;cam-001",
|
||||
"display_id": "display-001",
|
||||
"session_id": None # Will be generated automatically
|
||||
}
|
||||
|
||||
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)
|
||||
|
||||
# 5. Display the results
|
||||
if detection_result:
|
||||
print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
|
||||
if bounding_box:
|
||||
x1, y1, x2, y2 = bounding_box
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
||||
|
||||
cv2.imshow("Pipeline Output", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
|
@ -1,12 +0,0 @@
|
|||
ultralytics>=8.3.0
|
||||
opencv-python>=4.6.0
|
||||
scipy>=1.9.0
|
||||
filterpy>=1.4.0
|
||||
psycopg2-binary>=2.9.0
|
||||
easydict
|
||||
loguru
|
||||
pyzmq
|
||||
gitpython
|
||||
gdown
|
||||
lap
|
||||
pynvml
|
|
@ -1,5 +1,8 @@
|
|||
fastapi[standard]
|
||||
fastapi
|
||||
uvicorn
|
||||
torch
|
||||
torchvision
|
||||
ultralytics
|
||||
opencv-python
|
||||
websockets
|
||||
redis
|
||||
urllib3<2.0.0
|
||||
fastapi[standard]
|
|
@ -1,224 +0,0 @@
|
|||
import psycopg2
|
||||
import psycopg2.extras
|
||||
from typing import Optional, Dict, Any
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class DatabaseManager:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.config = config
|
||||
self.connection: Optional[psycopg2.extensions.connection] = None
|
||||
|
||||
def connect(self) -> bool:
|
||||
try:
|
||||
self.connection = psycopg2.connect(
|
||||
host=self.config['host'],
|
||||
port=self.config['port'],
|
||||
database=self.config['database'],
|
||||
user=self.config['username'],
|
||||
password=self.config['password']
|
||||
)
|
||||
logger.info("PostgreSQL connection established successfully")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to connect to PostgreSQL: {e}")
|
||||
return False
|
||||
|
||||
def disconnect(self):
|
||||
if self.connection:
|
||||
self.connection.close()
|
||||
self.connection = None
|
||||
logger.info("PostgreSQL connection closed")
|
||||
|
||||
def is_connected(self) -> bool:
|
||||
try:
|
||||
if self.connection and not self.connection.closed:
|
||||
cur = self.connection.cursor()
|
||||
cur.execute("SELECT 1")
|
||||
cur.fetchone()
|
||||
cur.close()
|
||||
return True
|
||||
except:
|
||||
pass
|
||||
return False
|
||||
|
||||
def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return False
|
||||
|
||||
try:
|
||||
cur = self.connection.cursor()
|
||||
query = """
|
||||
INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
|
||||
VALUES (%s, %s, %s, %s, NOW())
|
||||
ON CONFLICT (session_id)
|
||||
DO UPDATE SET
|
||||
car_brand = EXCLUDED.car_brand,
|
||||
car_model = EXCLUDED.car_model,
|
||||
car_body_type = EXCLUDED.car_body_type,
|
||||
updated_at = NOW()
|
||||
"""
|
||||
cur.execute(query, (session_id, brand, model, body_type))
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update car info: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return False
|
||||
|
||||
def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return False
|
||||
|
||||
try:
|
||||
cur = self.connection.cursor()
|
||||
|
||||
# Build the INSERT and UPDATE query dynamically
|
||||
insert_placeholders = []
|
||||
insert_values = [key_value] # Start with key_value
|
||||
|
||||
set_clauses = []
|
||||
update_values = []
|
||||
|
||||
for field, value in fields.items():
|
||||
if value == "NOW()":
|
||||
# Special handling for NOW()
|
||||
insert_placeholders.append("NOW()")
|
||||
set_clauses.append(f"{field} = NOW()")
|
||||
else:
|
||||
insert_placeholders.append("%s")
|
||||
insert_values.append(value)
|
||||
set_clauses.append(f"{field} = %s")
|
||||
update_values.append(value)
|
||||
|
||||
# Add schema prefix if table doesn't already have it
|
||||
full_table_name = table if '.' in table else f"gas_station_1.{table}"
|
||||
|
||||
# Build the complete query
|
||||
query = f"""
|
||||
INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
|
||||
VALUES (%s, {', '.join(insert_placeholders)})
|
||||
ON CONFLICT ({key_field})
|
||||
DO UPDATE SET {', '.join(set_clauses)}
|
||||
"""
|
||||
|
||||
# Combine values for the query: insert_values + update_values
|
||||
all_values = insert_values + update_values
|
||||
|
||||
logger.debug(f"SQL Query: {query}")
|
||||
logger.debug(f"Values: {all_values}")
|
||||
|
||||
cur.execute(query, all_values)
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info(f"✅ Updated {table} for {key_field}={key_value} with fields: {fields}")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Failed to execute update on {table}: {e}")
|
||||
logger.debug(f"Query: {query if 'query' in locals() else 'Query not built'}")
|
||||
logger.debug(f"Values: {all_values if 'all_values' in locals() else 'Values not prepared'}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return False
|
||||
|
||||
def create_car_frontal_info_table(self) -> bool:
|
||||
"""Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return False
|
||||
|
||||
try:
|
||||
cur = self.connection.cursor()
|
||||
|
||||
# Create schema if it doesn't exist
|
||||
cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
|
||||
|
||||
# Create table if it doesn't exist
|
||||
create_table_query = """
|
||||
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||
display_id VARCHAR(255),
|
||||
captured_timestamp VARCHAR(255),
|
||||
session_id VARCHAR(255) PRIMARY KEY,
|
||||
license_character VARCHAR(255) DEFAULT NULL,
|
||||
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||
car_brand VARCHAR(255) DEFAULT NULL,
|
||||
car_model VARCHAR(255) DEFAULT NULL,
|
||||
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||
updated_at TIMESTAMP DEFAULT NOW()
|
||||
)
|
||||
"""
|
||||
|
||||
cur.execute(create_table_query)
|
||||
|
||||
# Add columns if they don't exist (for existing tables)
|
||||
alter_queries = [
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL",
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
|
||||
]
|
||||
|
||||
for alter_query in alter_queries:
|
||||
try:
|
||||
cur.execute(alter_query)
|
||||
logger.debug(f"Executed: {alter_query}")
|
||||
except Exception as e:
|
||||
# Ignore errors if column already exists (for older PostgreSQL versions)
|
||||
if "already exists" in str(e).lower():
|
||||
logger.debug(f"Column already exists, skipping: {alter_query}")
|
||||
else:
|
||||
logger.warning(f"Error in ALTER TABLE: {e}")
|
||||
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info("Successfully created/verified car_frontal_info table with all required columns")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to create car_frontal_info table: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return False
|
||||
|
||||
def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
|
||||
"""Insert initial detection record and return the session_id."""
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return None
|
||||
|
||||
# Generate session_id if not provided
|
||||
if not session_id:
|
||||
session_id = str(uuid.uuid4())
|
||||
|
||||
try:
|
||||
# Ensure table exists
|
||||
if not self.create_car_frontal_info_table():
|
||||
logger.error("Failed to create/verify table before insertion")
|
||||
return None
|
||||
|
||||
cur = self.connection.cursor()
|
||||
insert_query = """
|
||||
INSERT INTO gas_station_1.car_frontal_info
|
||||
(display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
|
||||
VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
|
||||
ON CONFLICT (session_id) DO NOTHING
|
||||
"""
|
||||
|
||||
cur.execute(insert_query, (display_id, captured_timestamp, session_id))
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info(f"Inserted initial detection record with session_id: {session_id}")
|
||||
return session_id
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to insert initial detection record: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return None
|
|
@ -1,242 +0,0 @@
|
|||
"""
|
||||
Shared Model Registry for Memory Optimization
|
||||
|
||||
This module implements a global shared model registry to prevent duplicate model loading
|
||||
in memory when multiple cameras use the same model. This significantly reduces RAM and
|
||||
GPU VRAM usage by ensuring only one instance of each unique model is loaded.
|
||||
|
||||
Key Features:
|
||||
- Thread-safe model loading and access
|
||||
- Reference counting for proper cleanup
|
||||
- Automatic model lifecycle management
|
||||
- Maintains compatibility with existing pipeline system
|
||||
"""
|
||||
|
||||
import os
|
||||
import threading
|
||||
import logging
|
||||
from typing import Dict, Any, Optional, Set
|
||||
import torch
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Create a logger for this module
|
||||
logger = logging.getLogger("detector_worker.model_registry")
|
||||
|
||||
class ModelRegistry:
|
||||
"""
|
||||
Singleton class for managing shared YOLO models across multiple cameras.
|
||||
|
||||
This registry ensures that each unique model is loaded only once in memory,
|
||||
dramatically reducing RAM and GPU VRAM usage when multiple cameras use the
|
||||
same model.
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
cls._instance = super(ModelRegistry, cls).__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
self._initialized = True
|
||||
|
||||
# Thread-safe storage for loaded models
|
||||
self._models: Dict[str, YOLO] = {} # modelId -> YOLO model instance
|
||||
self._model_files: Dict[str, str] = {} # modelId -> file path
|
||||
self._reference_counts: Dict[str, int] = {} # modelId -> reference count
|
||||
self._model_lock = threading.RLock() # Reentrant lock for nested calls
|
||||
|
||||
logger.info("🏭 Shared Model Registry initialized - ready for memory-optimized model loading")
|
||||
|
||||
def get_model(self, model_id: str, model_file_path: str) -> YOLO:
|
||||
"""
|
||||
Get or load a YOLO model. Returns shared instance if already loaded.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model
|
||||
model_file_path: Path to the model file
|
||||
|
||||
Returns:
|
||||
YOLO model instance (shared across all callers)
|
||||
"""
|
||||
with self._model_lock:
|
||||
if model_id in self._models:
|
||||
# Model already loaded - increment reference count and return
|
||||
self._reference_counts[model_id] += 1
|
||||
logger.info(f"📖 Model '{model_id}' reused (ref_count: {self._reference_counts[model_id]}) - SAVED MEMORY!")
|
||||
return self._models[model_id]
|
||||
|
||||
# Model not loaded yet - load it
|
||||
logger.info(f"🔄 Loading NEW model '{model_id}' from {model_file_path}")
|
||||
|
||||
if not os.path.exists(model_file_path):
|
||||
raise FileNotFoundError(f"Model file {model_file_path} not found")
|
||||
|
||||
try:
|
||||
# Load the YOLO model
|
||||
model = YOLO(model_file_path)
|
||||
|
||||
# Move to GPU if available
|
||||
if torch.cuda.is_available():
|
||||
logger.info(f"🚀 CUDA available. Moving model '{model_id}' to GPU VRAM")
|
||||
model.to("cuda")
|
||||
else:
|
||||
logger.info(f"💻 CUDA not available. Using CPU for model '{model_id}'")
|
||||
|
||||
# Store in registry
|
||||
self._models[model_id] = model
|
||||
self._model_files[model_id] = model_file_path
|
||||
self._reference_counts[model_id] = 1
|
||||
|
||||
logger.info(f"✅ Model '{model_id}' loaded and registered (ref_count: 1)")
|
||||
self._log_registry_status()
|
||||
|
||||
return model
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Failed to load model '{model_id}' from {model_file_path}: {e}")
|
||||
raise
|
||||
|
||||
def release_model(self, model_id: str) -> None:
|
||||
"""
|
||||
Release a reference to a model. If reference count reaches zero,
|
||||
the model may be unloaded to free memory.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model to release
|
||||
"""
|
||||
with self._model_lock:
|
||||
if model_id not in self._reference_counts:
|
||||
logger.warning(f"⚠️ Attempted to release unknown model '{model_id}'")
|
||||
return
|
||||
|
||||
self._reference_counts[model_id] -= 1
|
||||
logger.info(f"📉 Model '{model_id}' reference count decreased to {self._reference_counts[model_id]}")
|
||||
|
||||
# For now, keep models in memory even when ref count reaches 0
|
||||
# This prevents reload overhead if the same model is needed again soon
|
||||
# In the future, we could implement LRU eviction policy
|
||||
# if self._reference_counts[model_id] <= 0:
|
||||
# logger.info(f"💤 Model '{model_id}' has 0 references but keeping in memory for reuse")
|
||||
# Optionally: self._unload_model(model_id)
|
||||
|
||||
def _unload_model(self, model_id: str) -> None:
|
||||
"""
|
||||
Internal method to unload a model from memory.
|
||||
Currently not used to prevent reload overhead.
|
||||
"""
|
||||
with self._model_lock:
|
||||
if model_id in self._models:
|
||||
logger.info(f"🗑️ Unloading model '{model_id}' from memory")
|
||||
|
||||
# Clear GPU memory if model was on GPU
|
||||
model = self._models[model_id]
|
||||
if hasattr(model, 'model') and hasattr(model.model, 'cuda'):
|
||||
try:
|
||||
# Move model to CPU before deletion to free GPU memory
|
||||
model.to('cpu')
|
||||
except Exception as e:
|
||||
logger.warning(f"⚠️ Failed to move model '{model_id}' to CPU: {e}")
|
||||
|
||||
# Remove from registry
|
||||
del self._models[model_id]
|
||||
del self._model_files[model_id]
|
||||
del self._reference_counts[model_id]
|
||||
|
||||
# Force garbage collection
|
||||
import gc
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
logger.info(f"✅ Model '{model_id}' unloaded and memory freed")
|
||||
self._log_registry_status()
|
||||
|
||||
def get_registry_status(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Get current status of the model registry.
|
||||
|
||||
Returns:
|
||||
Dictionary with registry statistics
|
||||
"""
|
||||
with self._model_lock:
|
||||
return {
|
||||
"total_models": len(self._models),
|
||||
"models": {
|
||||
model_id: {
|
||||
"file_path": self._model_files[model_id],
|
||||
"reference_count": self._reference_counts[model_id]
|
||||
}
|
||||
for model_id in self._models
|
||||
},
|
||||
"total_references": sum(self._reference_counts.values())
|
||||
}
|
||||
|
||||
def _log_registry_status(self) -> None:
|
||||
"""Log current registry status for debugging."""
|
||||
status = self.get_registry_status()
|
||||
logger.info(f"📊 Model Registry Status: {status['total_models']} unique models, {status['total_references']} total references")
|
||||
for model_id, info in status['models'].items():
|
||||
logger.debug(f" 📋 '{model_id}': refs={info['reference_count']}, file={os.path.basename(info['file_path'])}")
|
||||
|
||||
def cleanup_all(self) -> None:
|
||||
"""
|
||||
Clean up all models from the registry. Used during shutdown.
|
||||
"""
|
||||
with self._model_lock:
|
||||
model_ids = list(self._models.keys())
|
||||
logger.info(f"🧹 Cleaning up {len(model_ids)} models from registry")
|
||||
|
||||
for model_id in model_ids:
|
||||
self._unload_model(model_id)
|
||||
|
||||
logger.info("✅ Model registry cleanup complete")
|
||||
|
||||
|
||||
# Global singleton instance
|
||||
_registry = ModelRegistry()
|
||||
|
||||
def get_shared_model(model_id: str, model_file_path: str) -> YOLO:
|
||||
"""
|
||||
Convenience function to get a shared model instance.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model
|
||||
model_file_path: Path to the model file
|
||||
|
||||
Returns:
|
||||
YOLO model instance (shared across all callers)
|
||||
"""
|
||||
return _registry.get_model(model_id, model_file_path)
|
||||
|
||||
def release_shared_model(model_id: str) -> None:
|
||||
"""
|
||||
Convenience function to release a shared model reference.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model to release
|
||||
"""
|
||||
_registry.release_model(model_id)
|
||||
|
||||
def get_registry_status() -> Dict[str, Any]:
|
||||
"""
|
||||
Convenience function to get registry status.
|
||||
|
||||
Returns:
|
||||
Dictionary with registry statistics
|
||||
"""
|
||||
return _registry.get_registry_status()
|
||||
|
||||
def cleanup_registry() -> None:
|
||||
"""
|
||||
Convenience function to cleanup the entire registry.
|
||||
"""
|
||||
_registry.cleanup_all()
|
|
@ -1,375 +0,0 @@
|
|||
"""
|
||||
Shared MPTA Manager for Disk Space Optimization
|
||||
|
||||
This module implements shared MPTA file management to prevent duplicate downloads
|
||||
and extractions when multiple cameras use the same model. MPTA files are stored
|
||||
in modelId-based directories and shared across all cameras using that model.
|
||||
|
||||
Key Features:
|
||||
- Thread-safe MPTA downloading and extraction
|
||||
- ModelId-based directory structure: models/{modelId}/
|
||||
- Reference counting for proper cleanup
|
||||
- Eliminates duplicate MPTA downloads
|
||||
- Maintains compatibility with existing pipeline system
|
||||
"""
|
||||
|
||||
import os
|
||||
import threading
|
||||
import logging
|
||||
import shutil
|
||||
import requests
|
||||
from typing import Dict, Set, Optional
|
||||
from urllib.parse import urlparse
|
||||
from .pympta import load_pipeline_from_zip
|
||||
|
||||
# Create a logger for this module
|
||||
logger = logging.getLogger("detector_worker.mpta_manager")
|
||||
|
||||
class MPTAManager:
|
||||
"""
|
||||
Singleton class for managing shared MPTA files across multiple cameras.
|
||||
|
||||
This manager ensures that each unique modelId is downloaded and extracted
|
||||
only once, dramatically reducing disk usage and download time when multiple
|
||||
cameras use the same model.
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
cls._instance = super(MPTAManager, cls).__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
self._initialized = True
|
||||
|
||||
# Thread-safe storage for MPTA management
|
||||
self._model_paths: Dict[int, str] = {} # modelId -> shared_extraction_path
|
||||
self._mpta_file_paths: Dict[int, str] = {} # modelId -> local_mpta_file_path
|
||||
self._reference_counts: Dict[int, int] = {} # modelId -> reference count
|
||||
self._download_locks: Dict[int, threading.Lock] = {} # modelId -> download lock
|
||||
self._cameras_using_model: Dict[int, Set[str]] = {} # modelId -> set of camera_ids
|
||||
self._manager_lock = threading.RLock() # Reentrant lock for nested calls
|
||||
|
||||
logger.info("🏭 Shared MPTA Manager initialized - ready for disk-optimized MPTA management")
|
||||
|
||||
def get_or_download_mpta(self, model_id: int, model_url: str, camera_id: str) -> Optional[tuple[str, str]]:
|
||||
"""
|
||||
Get or download an MPTA file. Returns (extraction_path, mpta_file_path) if successful.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model
|
||||
model_url: URL to download the MPTA file from
|
||||
camera_id: Identifier for the requesting camera
|
||||
|
||||
Returns:
|
||||
Tuple of (extraction_path, mpta_file_path), or None if failed
|
||||
"""
|
||||
with self._manager_lock:
|
||||
# Track camera usage
|
||||
if model_id not in self._cameras_using_model:
|
||||
self._cameras_using_model[model_id] = set()
|
||||
self._cameras_using_model[model_id].add(camera_id)
|
||||
|
||||
# Check if model directory already exists on disk (from previous sessions)
|
||||
if model_id not in self._model_paths:
|
||||
potential_path = f"models/{model_id}"
|
||||
if os.path.exists(potential_path) and os.path.isdir(potential_path):
|
||||
# Directory exists from previous session, find the MPTA file
|
||||
mpta_files = [f for f in os.listdir(potential_path) if f.endswith('.mpta')]
|
||||
if mpta_files:
|
||||
# Use the first .mpta file found
|
||||
mpta_file_path = os.path.join(potential_path, mpta_files[0])
|
||||
self._model_paths[model_id] = potential_path
|
||||
self._mpta_file_paths[model_id] = mpta_file_path
|
||||
self._reference_counts[model_id] = 0 # Will be incremented below
|
||||
logger.info(f"📂 Found existing MPTA modelId {model_id} from previous session")
|
||||
|
||||
# Check if already available
|
||||
if model_id in self._model_paths:
|
||||
shared_path = self._model_paths[model_id]
|
||||
mpta_file_path = self._mpta_file_paths.get(model_id)
|
||||
if os.path.exists(shared_path) and mpta_file_path and os.path.exists(mpta_file_path):
|
||||
self._reference_counts[model_id] += 1
|
||||
logger.info(f"📂 MPTA modelId {model_id} reused for camera {camera_id} (ref_count: {self._reference_counts[model_id]}) - SAVED DOWNLOAD!")
|
||||
return (shared_path, mpta_file_path)
|
||||
else:
|
||||
# Path was deleted externally, clean up our records
|
||||
logger.warning(f"⚠️ MPTA path for modelId {model_id} was deleted externally, will re-download")
|
||||
del self._model_paths[model_id]
|
||||
self._mpta_file_paths.pop(model_id, None)
|
||||
self._reference_counts.pop(model_id, 0)
|
||||
|
||||
# Need to download - get or create download lock for this modelId
|
||||
if model_id not in self._download_locks:
|
||||
self._download_locks[model_id] = threading.Lock()
|
||||
|
||||
# Download with model-specific lock (released _manager_lock to allow other models)
|
||||
download_lock = self._download_locks[model_id]
|
||||
with download_lock:
|
||||
# Double-check after acquiring download lock
|
||||
with self._manager_lock:
|
||||
if model_id in self._model_paths and os.path.exists(self._model_paths[model_id]):
|
||||
mpta_file_path = self._mpta_file_paths.get(model_id)
|
||||
if mpta_file_path and os.path.exists(mpta_file_path):
|
||||
self._reference_counts[model_id] += 1
|
||||
logger.info(f"📂 MPTA modelId {model_id} became available during wait (ref_count: {self._reference_counts[model_id]})")
|
||||
return (self._model_paths[model_id], mpta_file_path)
|
||||
|
||||
# Actually download and extract
|
||||
shared_path = f"models/{model_id}"
|
||||
logger.info(f"🔄 Downloading NEW MPTA for modelId {model_id} from {model_url}")
|
||||
|
||||
try:
|
||||
# Ensure directory exists
|
||||
os.makedirs(shared_path, exist_ok=True)
|
||||
|
||||
# Download MPTA file
|
||||
mpta_filename = self._extract_filename_from_url(model_url) or f"model_{model_id}.mpta"
|
||||
local_mpta_path = os.path.join(shared_path, mpta_filename)
|
||||
|
||||
if not self._download_file(model_url, local_mpta_path):
|
||||
logger.error(f"❌ Failed to download MPTA for modelId {model_id}")
|
||||
return None
|
||||
|
||||
# Extract MPTA
|
||||
pipeline_tree = load_pipeline_from_zip(local_mpta_path, shared_path)
|
||||
if pipeline_tree is None:
|
||||
logger.error(f"❌ Failed to extract MPTA for modelId {model_id}")
|
||||
return None
|
||||
|
||||
# Success - register in manager
|
||||
with self._manager_lock:
|
||||
self._model_paths[model_id] = shared_path
|
||||
self._mpta_file_paths[model_id] = local_mpta_path
|
||||
self._reference_counts[model_id] = 1
|
||||
|
||||
logger.info(f"✅ MPTA modelId {model_id} downloaded and registered (ref_count: 1)")
|
||||
self._log_manager_status()
|
||||
|
||||
return (shared_path, local_mpta_path)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error downloading/extracting MPTA for modelId {model_id}: {e}")
|
||||
# Clean up partial download
|
||||
if os.path.exists(shared_path):
|
||||
shutil.rmtree(shared_path, ignore_errors=True)
|
||||
return None
|
||||
|
||||
def release_mpta(self, model_id: int, camera_id: str) -> None:
|
||||
"""
|
||||
Release a reference to an MPTA. If reference count reaches zero,
|
||||
the MPTA directory may be cleaned up to free disk space.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model to release
|
||||
camera_id: Identifier for the camera releasing the reference
|
||||
"""
|
||||
with self._manager_lock:
|
||||
if model_id not in self._reference_counts:
|
||||
logger.warning(f"⚠️ Attempted to release unknown MPTA modelId {model_id} for camera {camera_id}")
|
||||
return
|
||||
|
||||
# Remove camera from usage tracking
|
||||
if model_id in self._cameras_using_model:
|
||||
self._cameras_using_model[model_id].discard(camera_id)
|
||||
|
||||
self._reference_counts[model_id] -= 1
|
||||
logger.info(f"📉 MPTA modelId {model_id} reference count decreased to {self._reference_counts[model_id]} (released by {camera_id})")
|
||||
|
||||
# Clean up if no more references
|
||||
# if self._reference_counts[model_id] <= 0:
|
||||
# self._cleanup_mpta(model_id)
|
||||
|
||||
def _cleanup_mpta(self, model_id: int) -> None:
|
||||
"""
|
||||
Internal method to clean up an MPTA directory and free disk space.
|
||||
"""
|
||||
if model_id in self._model_paths:
|
||||
shared_path = self._model_paths[model_id]
|
||||
|
||||
try:
|
||||
if os.path.exists(shared_path):
|
||||
shutil.rmtree(shared_path)
|
||||
logger.info(f"🗑️ Cleaned up MPTA directory: {shared_path}")
|
||||
|
||||
# Remove from tracking
|
||||
del self._model_paths[model_id]
|
||||
self._mpta_file_paths.pop(model_id, None)
|
||||
del self._reference_counts[model_id]
|
||||
self._cameras_using_model.pop(model_id, None)
|
||||
|
||||
# Clean up download lock (optional, could keep for future use)
|
||||
self._download_locks.pop(model_id, None)
|
||||
|
||||
logger.info(f"✅ MPTA modelId {model_id} fully cleaned up and disk space freed")
|
||||
self._log_manager_status()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error cleaning up MPTA modelId {model_id}: {e}")
|
||||
|
||||
def get_shared_path(self, model_id: int) -> Optional[str]:
|
||||
"""
|
||||
Get the shared extraction path for a modelId without downloading.
|
||||
|
||||
Args:
|
||||
model_id: Model identifier to look up
|
||||
|
||||
Returns:
|
||||
Shared path if available, None otherwise
|
||||
"""
|
||||
with self._manager_lock:
|
||||
return self._model_paths.get(model_id)
|
||||
|
||||
def get_manager_status(self) -> Dict:
|
||||
"""
|
||||
Get current status of the MPTA manager.
|
||||
|
||||
Returns:
|
||||
Dictionary with manager statistics
|
||||
"""
|
||||
with self._manager_lock:
|
||||
return {
|
||||
"total_mpta_models": len(self._model_paths),
|
||||
"models": {
|
||||
str(model_id): {
|
||||
"shared_path": path,
|
||||
"reference_count": self._reference_counts.get(model_id, 0),
|
||||
"cameras_using": list(self._cameras_using_model.get(model_id, set()))
|
||||
}
|
||||
for model_id, path in self._model_paths.items()
|
||||
},
|
||||
"total_references": sum(self._reference_counts.values()),
|
||||
"active_downloads": len(self._download_locks)
|
||||
}
|
||||
|
||||
def _log_manager_status(self) -> None:
|
||||
"""Log current manager status for debugging."""
|
||||
status = self.get_manager_status()
|
||||
logger.info(f"📊 MPTA Manager Status: {status['total_mpta_models']} unique models, {status['total_references']} total references")
|
||||
for model_id, info in status['models'].items():
|
||||
cameras_str = ','.join(info['cameras_using'][:3]) # Show first 3 cameras
|
||||
if len(info['cameras_using']) > 3:
|
||||
cameras_str += f"+{len(info['cameras_using'])-3} more"
|
||||
logger.debug(f" 📋 ModelId {model_id}: refs={info['reference_count']}, cameras=[{cameras_str}]")
|
||||
|
||||
def cleanup_all(self) -> None:
|
||||
"""
|
||||
Clean up all MPTA directories. Used during shutdown.
|
||||
"""
|
||||
with self._manager_lock:
|
||||
model_ids = list(self._model_paths.keys())
|
||||
logger.info(f"🧹 Cleaning up {len(model_ids)} MPTA directories")
|
||||
|
||||
for model_id in model_ids:
|
||||
self._cleanup_mpta(model_id)
|
||||
|
||||
# Clear all tracking data
|
||||
self._download_locks.clear()
|
||||
logger.info("✅ MPTA manager cleanup complete")
|
||||
|
||||
def _download_file(self, url: str, local_path: str) -> bool:
|
||||
"""
|
||||
Download a file from URL to local path with progress logging.
|
||||
|
||||
Args:
|
||||
url: URL to download from
|
||||
local_path: Local path to save to
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
logger.info(f"⬇️ Starting download from {url}")
|
||||
|
||||
response = requests.get(url, stream=True)
|
||||
response.raise_for_status()
|
||||
|
||||
total_size = int(response.headers.get('content-length', 0))
|
||||
if total_size > 0:
|
||||
logger.info(f"📦 File size: {total_size / 1024 / 1024:.2f} MB")
|
||||
|
||||
downloaded = 0
|
||||
last_logged_progress = 0
|
||||
with open(local_path, 'wb') as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
downloaded += len(chunk)
|
||||
|
||||
if total_size > 0:
|
||||
progress = int((downloaded / total_size) * 100)
|
||||
# Log at 10% intervals (10%, 20%, 30%, etc.)
|
||||
if progress >= last_logged_progress + 10 and progress <= 100:
|
||||
logger.debug(f"Download progress: {progress}%")
|
||||
last_logged_progress = progress
|
||||
|
||||
logger.info(f"✅ Successfully downloaded to {local_path}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Download failed: {e}")
|
||||
# Clean up partial file
|
||||
if os.path.exists(local_path):
|
||||
os.remove(local_path)
|
||||
return False
|
||||
|
||||
def _extract_filename_from_url(self, url: str) -> Optional[str]:
|
||||
"""Extract filename from URL."""
|
||||
try:
|
||||
parsed = urlparse(url)
|
||||
filename = os.path.basename(parsed.path)
|
||||
return filename if filename else None
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
# Global singleton instance
|
||||
_mpta_manager = MPTAManager()
|
||||
|
||||
def get_or_download_mpta(model_id: int, model_url: str, camera_id: str) -> Optional[tuple[str, str]]:
|
||||
"""
|
||||
Convenience function to get or download a shared MPTA.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model
|
||||
model_url: URL to download the MPTA file from
|
||||
camera_id: Identifier for the requesting camera
|
||||
|
||||
Returns:
|
||||
Tuple of (extraction_path, mpta_file_path), or None if failed
|
||||
"""
|
||||
return _mpta_manager.get_or_download_mpta(model_id, model_url, camera_id)
|
||||
|
||||
def release_mpta(model_id: int, camera_id: str) -> None:
|
||||
"""
|
||||
Convenience function to release a shared MPTA reference.
|
||||
|
||||
Args:
|
||||
model_id: Unique identifier for the model to release
|
||||
camera_id: Identifier for the camera releasing the reference
|
||||
"""
|
||||
_mpta_manager.release_mpta(model_id, camera_id)
|
||||
|
||||
def get_mpta_manager_status() -> Dict:
|
||||
"""
|
||||
Convenience function to get MPTA manager status.
|
||||
|
||||
Returns:
|
||||
Dictionary with manager statistics
|
||||
"""
|
||||
return _mpta_manager.get_manager_status()
|
||||
|
||||
def cleanup_mpta_manager() -> None:
|
||||
"""
|
||||
Convenience function to cleanup the entire MPTA manager.
|
||||
"""
|
||||
_mpta_manager.cleanup_all()
|
File diff suppressed because it is too large
Load diff
BIN
test/sample.png
BIN
test/sample.png
Binary file not shown.
Before Width: | Height: | Size: 2.8 MiB |
BIN
test/sample2.png
BIN
test/sample2.png
Binary file not shown.
Before Width: | Height: | Size: 3.1 MiB |
60
test/test.py
60
test/test.py
|
@ -1,60 +0,0 @@
|
|||
from ultralytics import YOLO
|
||||
import cv2
|
||||
import os
|
||||
|
||||
# Load the model
|
||||
# model = YOLO('../models/webcam-local-01/4/bangchak_poc/yolo11n.pt')
|
||||
model = YOLO('yolo11m.pt')
|
||||
|
||||
def test_image(image_path):
|
||||
"""Test a single image with YOLO model"""
|
||||
if not os.path.exists(image_path):
|
||||
print(f"Image not found: {image_path}")
|
||||
return
|
||||
|
||||
# Run inference - filter for car class only (class 2 in COCO)
|
||||
results = model(image_path, classes=[2, 5, 7]) # 2, 5, 7 = car, bus, truck in COCO dataset
|
||||
|
||||
# Display results
|
||||
for r in results:
|
||||
im_array = r.plot() # plot a BGR numpy array of predictions
|
||||
|
||||
# Resize image for display (max width/height 800px)
|
||||
height, width = im_array.shape[:2]
|
||||
max_dimension = 800
|
||||
if width > max_dimension or height > max_dimension:
|
||||
if width > height:
|
||||
new_width = max_dimension
|
||||
new_height = int(height * (max_dimension / width))
|
||||
else:
|
||||
new_height = max_dimension
|
||||
new_width = int(width * (max_dimension / height))
|
||||
im_array = cv2.resize(im_array, (new_width, new_height))
|
||||
|
||||
# Show image with predictions
|
||||
cv2.imshow('YOLO Test - Car Detection Only', im_array)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# Print detection info
|
||||
print(f"\nDetections for {image_path}:")
|
||||
if r.boxes is not None and len(r.boxes) > 0:
|
||||
for i, box in enumerate(r.boxes):
|
||||
cls = int(box.cls[0])
|
||||
conf = float(box.conf[0])
|
||||
original_class = model.names[cls] # Original class name (car/bus/truck)
|
||||
# Get bounding box coordinates
|
||||
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
||||
# Rename all vehicle types to "car"
|
||||
print(f"Detection {i+1}: car (was: {original_class}) - Confidence: {conf:.3f} - BBox: ({x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f})")
|
||||
print(f"Total cars detected: {len(r.boxes)}")
|
||||
else:
|
||||
print("No cars detected in the image")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Test with an image file
|
||||
image_path = input("Enter image path (or press Enter for default test): ")
|
||||
if not image_path:
|
||||
image_path = "sample.png" # Default test image
|
||||
|
||||
test_image(image_path)
|
|
@ -1,352 +0,0 @@
|
|||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from ultralytics import YOLO
|
||||
|
||||
def point_in_polygon(point, polygon):
|
||||
"""Check if a point is inside a polygon using ray casting algorithm"""
|
||||
x, y = point
|
||||
n = len(polygon)
|
||||
inside = False
|
||||
|
||||
p1x, p1y = polygon[0]
|
||||
for i in range(1, n + 1):
|
||||
p2x, p2y = polygon[i % n]
|
||||
if y > min(p1y, p2y):
|
||||
if y <= max(p1y, p2y):
|
||||
if x <= max(p1x, p2x):
|
||||
if p1y != p2y:
|
||||
xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
|
||||
if p1x == p2x or x <= xinters:
|
||||
inside = not inside
|
||||
p1x, p1y = p2x, p2y
|
||||
|
||||
return inside
|
||||
|
||||
def draw_zone(frame, zone_polygon, color=(255, 0, 0), thickness=3):
|
||||
"""Draw tracking zone on frame"""
|
||||
pts = np.array(zone_polygon, np.int32)
|
||||
pts = pts.reshape((-1, 1, 2))
|
||||
cv2.polylines(frame, [pts], True, color, thickness)
|
||||
|
||||
# Add semi-transparent fill
|
||||
overlay = frame.copy()
|
||||
cv2.fillPoly(overlay, [pts], color)
|
||||
cv2.addWeighted(overlay, 0.2, frame, 0.8, 0, frame)
|
||||
|
||||
def setup_video_writer(output_path, fps, width, height):
|
||||
"""Setup video writer for output"""
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||
return cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
||||
|
||||
def write_frame_to_video(video_writer, frame, repeat_count):
|
||||
"""Write frame to video with specified repeat count"""
|
||||
for _ in range(repeat_count):
|
||||
video_writer.write(frame)
|
||||
|
||||
def finalize_video(video_writer):
|
||||
"""Release video writer"""
|
||||
video_writer.release()
|
||||
|
||||
def main():
|
||||
video_path = "sample2.mp4"
|
||||
yolo_model = "bangchakv2/yolov8n.pt"
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print(f"Using device: {device}")
|
||||
|
||||
print("Loading YOLO model...")
|
||||
model = YOLO(yolo_model)
|
||||
|
||||
print("Opening video...")
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
|
||||
print(f"Video info: {width}x{height}, {fps} FPS, {total_frames} frames")
|
||||
|
||||
# Define tracking zone - Gas station floor area (trapezoidal shape)
|
||||
# Based on the perspective of the gas station floor from your image
|
||||
# width 2560, height 1440
|
||||
|
||||
tracking_zone = [
|
||||
(423, 974), # Point 1
|
||||
(1540, 1407), # Point 2
|
||||
(1976, 806), # Point 3
|
||||
(1364, 749) # Point 4
|
||||
]
|
||||
|
||||
print(f"🎯 Tracking zone defined: {tracking_zone}")
|
||||
|
||||
# CONTINUOUS TRACKING: Process every 118 frames (~2.0s intervals)
|
||||
frame_skip = 118
|
||||
|
||||
print(f"🎯 CONTINUOUS MODE: Processing every {frame_skip} frames ({frame_skip/fps:.2f}s intervals)")
|
||||
print(f"🎬 Output video will have same duration as input (each processed frame shown for 2 seconds)")
|
||||
print("🔥 ZONE-FIRST TRACKING: Only cars entering the zone will be tracked!")
|
||||
print("Requires 5 consecutive detections IN ZONE for verification")
|
||||
print("🕐 24/7 MODE: Memory reset every hour to prevent overflow")
|
||||
print("Press 'q' to quit")
|
||||
|
||||
# Setup video writer for output (same fps as input for normal playback speed)
|
||||
output_path = "tracking_output_botsort_zone_track.mp4"
|
||||
output_fps = fps # Use same fps as input video
|
||||
out = setup_video_writer(output_path, output_fps, width, height)
|
||||
|
||||
# Track car IDs and their consecutive detections
|
||||
car_id_counts = defaultdict(int)
|
||||
successful_cars = set()
|
||||
last_positions = {}
|
||||
processed_count = 0
|
||||
|
||||
# ID remapping for clean sequential zone IDs
|
||||
tracker_to_zone_id = {} # Maps tracker IDs to clean zone IDs
|
||||
next_zone_id = 1 # Next clean zone ID to assign
|
||||
|
||||
# Store previous frame detections to filter tracking inputs
|
||||
previous_zone_cars = set()
|
||||
|
||||
# 24/7 operation: Reset every hour (1800 snapshots at 2-sec intervals = 1 hour)
|
||||
RESET_INTERVAL = 1800 # Reset every 1800 processed frames (1 hour)
|
||||
|
||||
frame_idx = 0
|
||||
|
||||
while True:
|
||||
# Skip frames to maintain interval
|
||||
for _ in range(frame_skip):
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("\nNo more frames to read")
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
return
|
||||
frame_idx += 1
|
||||
|
||||
processed_count += 1
|
||||
current_time = frame_idx / fps
|
||||
|
||||
print(f"\n🎬 Frame {frame_idx} at {current_time:.2f}s (processed #{processed_count})")
|
||||
|
||||
# 24/7 Memory Management: Reset every hour
|
||||
if processed_count % RESET_INTERVAL == 0:
|
||||
print(f"🕐 HOURLY RESET: Clearing all tracking data (processed {processed_count} frames)")
|
||||
print(f" 📊 Before reset: {len(tracker_to_zone_id)} tracked cars, next Zone ID was {next_zone_id}")
|
||||
|
||||
# Clear all tracking data
|
||||
tracker_to_zone_id.clear()
|
||||
car_id_counts.clear()
|
||||
successful_cars.clear()
|
||||
last_positions.clear()
|
||||
next_zone_id = 1 # Reset to 1
|
||||
|
||||
# Reset BoT-SORT tracker state
|
||||
try:
|
||||
model.reset()
|
||||
print(f" ✅ BoT-SORT tracker reset successfully")
|
||||
except:
|
||||
print(f" ⚠️ BoT-SORT reset not available (continuing without reset)")
|
||||
|
||||
print(f" 🆕 Zone IDs will start from 1 again")
|
||||
|
||||
# Draw tracking zone on frame
|
||||
draw_zone(frame, tracking_zone, color=(0, 255, 255), thickness=3) # Yellow zone
|
||||
|
||||
# First run YOLO detection (without tracking) to find cars in zone
|
||||
detection_results = model(frame, verbose=False, conf=0.7, classes=[2])
|
||||
|
||||
# Find cars currently in the tracking zone
|
||||
current_zone_cars = []
|
||||
total_detections = 0
|
||||
|
||||
if detection_results[0].boxes is not None:
|
||||
boxes = detection_results[0].boxes.xyxy.cpu()
|
||||
scores = detection_results[0].boxes.conf.cpu()
|
||||
|
||||
total_detections = len(boxes)
|
||||
print(f" 🔍 Total car detections: {total_detections}")
|
||||
|
||||
for i in range(len(boxes)):
|
||||
x1, y1, x2, y2 = boxes[i]
|
||||
conf = float(scores[i])
|
||||
|
||||
# Check if detection is in zone (using bottom center)
|
||||
box_bottom = ((x1 + x2) / 2, y2)
|
||||
if point_in_polygon(box_bottom, tracking_zone):
|
||||
current_zone_cars.append({
|
||||
'bbox': [float(x1), float(y1), float(x2), float(y2)],
|
||||
'conf': conf,
|
||||
'center': ((x1 + x2) / 2, (y1 + y2) / 2),
|
||||
'bottom': box_bottom
|
||||
})
|
||||
|
||||
print(f" 🎯 Cars in zone: {len(current_zone_cars)}")
|
||||
|
||||
# Only run tracking if there are cars in the zone
|
||||
detected_car_ids = set()
|
||||
|
||||
if current_zone_cars:
|
||||
# Run tracking on the full frame (let tracker handle associations)
|
||||
# But we'll filter results to only zone cars afterward
|
||||
results = model.track(
|
||||
frame,
|
||||
persist=True,
|
||||
verbose=False,
|
||||
conf=0.7,
|
||||
classes=[2],
|
||||
tracker="botsort_reid.yaml"
|
||||
)
|
||||
|
||||
if results[0].boxes is not None and results[0].boxes.id is not None:
|
||||
boxes = results[0].boxes.xyxy.cpu()
|
||||
scores = results[0].boxes.conf.cpu()
|
||||
track_ids = results[0].boxes.id.cpu().int()
|
||||
|
||||
print(f" 📊 Total tracked objects: {len(track_ids)}")
|
||||
|
||||
# Filter tracked objects to only those in zone
|
||||
zone_tracks = []
|
||||
for i, track_id in enumerate(track_ids):
|
||||
x1, y1, x2, y2 = boxes[i]
|
||||
conf = float(scores[i])
|
||||
|
||||
# Check if this tracked object is in our zone
|
||||
box_bottom = ((x1 + x2) / 2, y2)
|
||||
if point_in_polygon(box_bottom, tracking_zone):
|
||||
zone_tracks.append({
|
||||
'id': int(track_id),
|
||||
'bbox': [int(x1), int(y1), int(x2), int(y2)],
|
||||
'conf': conf,
|
||||
'center': ((x1 + x2) / 2, (y1 + y2) / 2),
|
||||
'bottom': box_bottom
|
||||
})
|
||||
|
||||
print(f" ✅ Zone tracks: {len(zone_tracks)}")
|
||||
|
||||
# Process each zone track
|
||||
for track in zone_tracks:
|
||||
tracker_id = track['id'] # Original tracker ID
|
||||
x1, y1, x2, y2 = track['bbox']
|
||||
conf = track['conf']
|
||||
box_center = track['center']
|
||||
|
||||
# Map tracker ID to clean zone ID
|
||||
if tracker_id not in tracker_to_zone_id:
|
||||
tracker_to_zone_id[tracker_id] = next_zone_id
|
||||
print(f" 🆕 New car: Tracker ID {tracker_id} → Zone ID {next_zone_id}")
|
||||
next_zone_id += 1
|
||||
|
||||
zone_id = tracker_to_zone_id[tracker_id] # Clean sequential ID
|
||||
|
||||
# Validate track continuity (use tracker_id for internal logic)
|
||||
is_valid = True
|
||||
|
||||
# Check for suspicious jumps
|
||||
if tracker_id in last_positions:
|
||||
last_center = last_positions[tracker_id]
|
||||
distance = np.sqrt((box_center[0] - last_center[0])**2 +
|
||||
(box_center[1] - last_center[1])**2)
|
||||
|
||||
if distance > 400: # pixels in ~2.0s
|
||||
is_valid = False
|
||||
print(f" ⚠️ Zone ID {zone_id} (Tracker {tracker_id}): suspicious jump {distance:.0f}px")
|
||||
|
||||
# Skip already successful cars (use zone_id for user logic)
|
||||
if zone_id in successful_cars:
|
||||
is_valid = False
|
||||
print(f" ✅ Zone ID {zone_id}: already successful, skipping")
|
||||
|
||||
# Only process valid, high-confidence zone tracks
|
||||
if is_valid and conf > 0.7:
|
||||
detected_car_ids.add(zone_id) # Use zone_id for display
|
||||
car_id_counts[zone_id] += 1
|
||||
last_positions[tracker_id] = box_center # Track by tracker_id internally
|
||||
|
||||
# Draw tracking results with clean zone ID
|
||||
zone_color = (0, 255, 0) # Green for zone cars
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), zone_color, 2)
|
||||
cv2.putText(frame, f'ZONE ID:{zone_id}',
|
||||
(x1, y1-30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, zone_color, 2)
|
||||
cv2.putText(frame, f'#{car_id_counts[zone_id]} {conf:.2f}',
|
||||
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, zone_color, 2)
|
||||
|
||||
# Draw center point
|
||||
cv2.circle(frame, (int(track['bottom'][0]), int(track['bottom'][1])), 5, zone_color, -1)
|
||||
|
||||
print(f" ✅ Zone ID {zone_id} (Tracker {tracker_id}): ZONE detection #{car_id_counts[zone_id]} (conf: {conf:.2f})")
|
||||
|
||||
# Check for success (5 consecutive detections IN ZONE)
|
||||
if car_id_counts[zone_id] == 5:
|
||||
print(f"🏆 SUCCESS: Zone ID {zone_id} achieved 5 continuous ZONE detections - TRIGGER NEXT MODEL!")
|
||||
successful_cars.add(zone_id)
|
||||
|
||||
# Add success indicator to frame
|
||||
cv2.putText(frame, f"SUCCESS: Zone Car {zone_id}!",
|
||||
(50, height-50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)
|
||||
else:
|
||||
print(" 📋 No cars in zone - no tracking performed")
|
||||
|
||||
# Draw any cars outside the zone in red (for reference)
|
||||
if detection_results[0].boxes is not None:
|
||||
boxes = detection_results[0].boxes.xyxy.cpu()
|
||||
scores = detection_results[0].boxes.conf.cpu()
|
||||
|
||||
for i in range(len(boxes)):
|
||||
x1, y1, x2, y2 = boxes[i]
|
||||
conf = float(scores[i])
|
||||
|
||||
box_bottom = ((x1 + x2) / 2, y2)
|
||||
if not point_in_polygon(box_bottom, tracking_zone):
|
||||
# Draw cars outside zone in red (not tracked)
|
||||
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 1)
|
||||
cv2.putText(frame, f'OUT {conf:.2f}',
|
||||
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
|
||||
|
||||
# Display results
|
||||
if detected_car_ids:
|
||||
print(f" 📋 Active Zone IDs: {sorted(detected_car_ids)} (Clean sequential IDs)")
|
||||
|
||||
# Show ID mapping for debugging
|
||||
if tracker_to_zone_id:
|
||||
mapping_str = ", ".join([f"Tracker{k}→Zone{v}" for k, v in tracker_to_zone_id.items()])
|
||||
print(f" 🔄 ID Mapping: {mapping_str}")
|
||||
|
||||
# Add annotations to frame
|
||||
cv2.putText(frame, f"BoT-SORT Zone-First Tracking | Frame: {frame_idx} | {current_time:.2f}s",
|
||||
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
||||
cv2.putText(frame, f"Zone Cars: {len(current_zone_cars)} | Active Tracks: {len(detected_car_ids)}",
|
||||
(10, 65), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
cv2.putText(frame, f"Successful Cars: {len(successful_cars)}",
|
||||
(10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
||||
cv2.putText(frame, "TRACKING ZONE",
|
||||
(tracking_zone[0][0], tracking_zone[0][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
|
||||
|
||||
# Write annotated frame to output video (repeat for 2 seconds duration)
|
||||
write_frame_to_video(out, frame, frame_skip)
|
||||
|
||||
# Show video with zone tracking info
|
||||
display_frame = cv2.resize(frame, (960, 540))
|
||||
cv2.imshow('BoT-SORT Zone-First Tracking', display_frame)
|
||||
|
||||
# Quick check for quit
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
if key == ord('q'):
|
||||
break
|
||||
|
||||
# Small delay to see results
|
||||
time.sleep(0.1)
|
||||
|
||||
cap.release()
|
||||
finalize_video(out)
|
||||
cv2.destroyAllWindows()
|
||||
print(f"\n🎯 BoT-SORT zone-first tracking completed!")
|
||||
print(f"📊 Processed {processed_count} frames with {frame_skip/fps:.2f}s intervals")
|
||||
print(f"🏆 Successfully tracked {len(successful_cars)} unique cars IN ZONE")
|
||||
print(f"💾 Annotated video saved to: {output_path}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
125
test_protocol.py
125
test_protocol.py
|
@ -1,125 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to verify the worker implementation follows the protocol
|
||||
"""
|
||||
import json
|
||||
import asyncio
|
||||
import websockets
|
||||
import time
|
||||
|
||||
async def test_protocol():
|
||||
"""Test the worker protocol implementation"""
|
||||
uri = "ws://localhost:8000"
|
||||
|
||||
try:
|
||||
async with websockets.connect(uri) as websocket:
|
||||
print("✓ Connected to worker")
|
||||
|
||||
# Test 1: Check if we receive heartbeat (stateReport)
|
||||
print("\n1. Testing heartbeat...")
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||
data = json.loads(message)
|
||||
if data.get("type") == "stateReport":
|
||||
print("✓ Received stateReport heartbeat")
|
||||
print(f" - CPU Usage: {data.get('cpuUsage', 'N/A')}%")
|
||||
print(f" - Memory Usage: {data.get('memoryUsage', 'N/A')}%")
|
||||
print(f" - Camera Connections: {len(data.get('cameraConnections', []))}")
|
||||
else:
|
||||
print(f"✗ Expected stateReport, got {data.get('type')}")
|
||||
except asyncio.TimeoutError:
|
||||
print("✗ No heartbeat received within 5 seconds")
|
||||
|
||||
# Test 2: Request state
|
||||
print("\n2. Testing requestState...")
|
||||
await websocket.send(json.dumps({"type": "requestState"}))
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||
data = json.loads(message)
|
||||
if data.get("type") == "stateReport":
|
||||
print("✓ Received stateReport response")
|
||||
else:
|
||||
print(f"✗ Expected stateReport, got {data.get('type')}")
|
||||
except asyncio.TimeoutError:
|
||||
print("✗ No response to requestState within 5 seconds")
|
||||
|
||||
# Test 3: Set session ID
|
||||
print("\n3. Testing setSessionId...")
|
||||
session_message = {
|
||||
"type": "setSessionId",
|
||||
"payload": {
|
||||
"displayIdentifier": "display-001",
|
||||
"sessionId": 12345
|
||||
}
|
||||
}
|
||||
await websocket.send(json.dumps(session_message))
|
||||
print("✓ Sent setSessionId message")
|
||||
|
||||
# Test 4: Test patchSession
|
||||
print("\n4. Testing patchSession...")
|
||||
patch_message = {
|
||||
"type": "patchSession",
|
||||
"sessionId": 12345,
|
||||
"data": {
|
||||
"currentCar": {
|
||||
"carModel": "Civic",
|
||||
"carBrand": "Honda"
|
||||
}
|
||||
}
|
||||
}
|
||||
await websocket.send(json.dumps(patch_message))
|
||||
|
||||
# Wait for patchSessionResult
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||
data = json.loads(message)
|
||||
if data.get("type") == "patchSessionResult":
|
||||
print("✓ Received patchSessionResult")
|
||||
print(f" - Success: {data.get('payload', {}).get('success')}")
|
||||
print(f" - Message: {data.get('payload', {}).get('message')}")
|
||||
else:
|
||||
print(f"✗ Expected patchSessionResult, got {data.get('type')}")
|
||||
except asyncio.TimeoutError:
|
||||
print("✗ No patchSessionResult received within 5 seconds")
|
||||
|
||||
# Test 5: Test subscribe message format (without actual camera)
|
||||
print("\n5. Testing subscribe message format...")
|
||||
subscribe_message = {
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"snapshotUrl": "http://example.com/snapshot.jpg",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://example.com/model.mpta",
|
||||
"modelName": "Test Model",
|
||||
"modelId": 101,
|
||||
"cropX1": 100,
|
||||
"cropY1": 200,
|
||||
"cropX2": 300,
|
||||
"cropY2": 400
|
||||
}
|
||||
}
|
||||
await websocket.send(json.dumps(subscribe_message))
|
||||
print("✓ Sent subscribe message (will fail without actual camera/model)")
|
||||
|
||||
# Listen for a few more messages to catch any errors
|
||||
print("\n6. Listening for additional messages...")
|
||||
for i in range(3):
|
||||
try:
|
||||
message = await asyncio.wait_for(websocket.recv(), timeout=2)
|
||||
data = json.loads(message)
|
||||
msg_type = data.get("type")
|
||||
print(f" - Received {msg_type}")
|
||||
if msg_type == "error":
|
||||
print(f" Error: {data.get('error')}")
|
||||
except asyncio.TimeoutError:
|
||||
break
|
||||
|
||||
print("\n✓ Protocol test completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Connection failed: {e}")
|
||||
print("Make sure the worker is running on localhost:8000")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(test_protocol())
|
|
@ -1,162 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Script to view frontal images saved in Redis
|
||||
"""
|
||||
import redis
|
||||
import cv2
|
||||
import numpy as np
|
||||
import sys
|
||||
from datetime import datetime
|
||||
|
||||
# Redis connection config (from pipeline.json)
|
||||
REDIS_CONFIG = {
|
||||
"host": "10.100.1.3",
|
||||
"port": 6379,
|
||||
"password": "FBQgi0i5RevAAMO5Hh66",
|
||||
"db": 0
|
||||
}
|
||||
|
||||
def connect_redis():
|
||||
"""Connect to Redis server."""
|
||||
try:
|
||||
client = redis.Redis(
|
||||
host=REDIS_CONFIG["host"],
|
||||
port=REDIS_CONFIG["port"],
|
||||
password=REDIS_CONFIG["password"],
|
||||
db=REDIS_CONFIG["db"],
|
||||
decode_responses=False # Keep bytes for images
|
||||
)
|
||||
client.ping()
|
||||
print(f"✅ Connected to Redis at {REDIS_CONFIG['host']}:{REDIS_CONFIG['port']}")
|
||||
return client
|
||||
except redis.exceptions.ConnectionError as e:
|
||||
print(f"❌ Failed to connect to Redis: {e}")
|
||||
return None
|
||||
|
||||
def list_image_keys(client):
|
||||
"""List all image keys in Redis."""
|
||||
try:
|
||||
# Look for keys matching the inference pattern
|
||||
keys = client.keys("inference:*")
|
||||
print(f"\n📋 Found {len(keys)} image keys:")
|
||||
for i, key in enumerate(keys):
|
||||
key_str = key.decode() if isinstance(key, bytes) else key
|
||||
print(f"{i+1}. {key_str}")
|
||||
return keys
|
||||
except Exception as e:
|
||||
print(f"❌ Error listing keys: {e}")
|
||||
return []
|
||||
|
||||
def view_image(client, key):
|
||||
"""View a specific image from Redis."""
|
||||
try:
|
||||
# Get image data from Redis
|
||||
image_data = client.get(key)
|
||||
if image_data is None:
|
||||
print(f"❌ No data found for key: {key}")
|
||||
return
|
||||
|
||||
print(f"📸 Image size: {len(image_data)} bytes")
|
||||
|
||||
# Convert bytes to numpy array
|
||||
nparr = np.frombuffer(image_data, np.uint8)
|
||||
|
||||
# Decode image
|
||||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
if img is None:
|
||||
print("❌ Failed to decode image data")
|
||||
return
|
||||
|
||||
print(f"🖼️ Image dimensions: {img.shape[1]}x{img.shape[0]} pixels")
|
||||
|
||||
# Display image
|
||||
key_str = key.decode() if isinstance(key, bytes) else key
|
||||
cv2.imshow(f'Redis Image: {key_str}', img)
|
||||
print("👁️ Image displayed. Press any key to close...")
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# Ask if user wants to save the image
|
||||
save = input("💾 Save image to file? (y/n): ").lower().strip()
|
||||
if save == 'y':
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"redis_image_{timestamp}.jpg"
|
||||
cv2.imwrite(filename, img)
|
||||
print(f"💾 Image saved as: {filename}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error viewing image: {e}")
|
||||
|
||||
def monitor_new_images(client):
|
||||
"""Monitor for new images being added to Redis."""
|
||||
print("👀 Monitoring for new images... (Press Ctrl+C to stop)")
|
||||
try:
|
||||
# Subscribe to Redis pub/sub for car detections
|
||||
pubsub = client.pubsub()
|
||||
pubsub.subscribe('car_detections')
|
||||
|
||||
for message in pubsub.listen():
|
||||
if message['type'] == 'message':
|
||||
data = message['data'].decode()
|
||||
print(f"🚨 New detection: {data}")
|
||||
|
||||
# Try to extract image key from message
|
||||
import json
|
||||
try:
|
||||
detection_data = json.loads(data)
|
||||
image_key = detection_data.get('image_key')
|
||||
if image_key:
|
||||
print(f"🖼️ New image available: {image_key}")
|
||||
view_choice = input("View this image now? (y/n): ").lower().strip()
|
||||
if view_choice == 'y':
|
||||
view_image(client, image_key)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n👋 Stopping monitor...")
|
||||
except Exception as e:
|
||||
print(f"❌ Monitor error: {e}")
|
||||
|
||||
def main():
|
||||
"""Main function."""
|
||||
print("🔍 Redis Image Viewer")
|
||||
print("=" * 50)
|
||||
|
||||
# Connect to Redis
|
||||
client = connect_redis()
|
||||
if not client:
|
||||
return
|
||||
|
||||
while True:
|
||||
print("\n📋 Options:")
|
||||
print("1. List all image keys")
|
||||
print("2. View specific image")
|
||||
print("3. Monitor for new images")
|
||||
print("4. Exit")
|
||||
|
||||
choice = input("\nEnter choice (1-4): ").strip()
|
||||
|
||||
if choice == '1':
|
||||
keys = list_image_keys(client)
|
||||
elif choice == '2':
|
||||
keys = list_image_keys(client)
|
||||
if keys:
|
||||
try:
|
||||
idx = int(input(f"\nEnter image number (1-{len(keys)}): ")) - 1
|
||||
if 0 <= idx < len(keys):
|
||||
view_image(client, keys[idx])
|
||||
else:
|
||||
print("❌ Invalid selection")
|
||||
except ValueError:
|
||||
print("❌ Please enter a valid number")
|
||||
elif choice == '3':
|
||||
monitor_new_images(client)
|
||||
elif choice == '4':
|
||||
print("👋 Goodbye!")
|
||||
break
|
||||
else:
|
||||
print("❌ Invalid choice")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,325 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Enhanced webcam server that provides both RTSP streaming and HTTP snapshot endpoints
|
||||
Compatible with CMS UI requirements for camera configuration
|
||||
"""
|
||||
|
||||
import cv2
|
||||
import threading
|
||||
import time
|
||||
import logging
|
||||
import socket
|
||||
from http.server import BaseHTTPRequestHandler, HTTPServer
|
||||
import subprocess
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s"
|
||||
)
|
||||
logger = logging.getLogger("webcam_rtsp_server")
|
||||
|
||||
# Global webcam capture object
|
||||
webcam_cap = None
|
||||
rtsp_process = None
|
||||
|
||||
class WebcamHTTPHandler(BaseHTTPRequestHandler):
|
||||
"""HTTP handler for snapshot requests"""
|
||||
|
||||
def do_GET(self):
|
||||
if self.path == '/snapshot' or self.path == '/snapshot.jpg':
|
||||
try:
|
||||
# Capture fresh frame from webcam for each request
|
||||
ret, frame = webcam_cap.read()
|
||||
if ret and frame is not None:
|
||||
# Encode as JPEG
|
||||
success, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||
if success:
|
||||
self.send_response(200)
|
||||
self.send_header('Content-Type', 'image/jpeg')
|
||||
self.send_header('Content-Length', str(len(buffer)))
|
||||
self.send_header('Cache-Control', 'no-cache, no-store, must-revalidate')
|
||||
self.send_header('Pragma', 'no-cache')
|
||||
self.send_header('Expires', '0')
|
||||
self.end_headers()
|
||||
self.wfile.write(buffer.tobytes())
|
||||
logger.debug(f"Served webcam snapshot, size: {len(buffer)} bytes")
|
||||
return
|
||||
else:
|
||||
logger.error("Failed to encode frame as JPEG")
|
||||
else:
|
||||
logger.error("Failed to capture frame from webcam")
|
||||
|
||||
# Send error response
|
||||
self.send_response(500)
|
||||
self.send_header('Content-Type', 'text/plain')
|
||||
self.end_headers()
|
||||
self.wfile.write(b'Failed to capture webcam frame')
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error serving snapshot: {e}")
|
||||
self.send_response(500)
|
||||
self.send_header('Content-Type', 'text/plain')
|
||||
self.end_headers()
|
||||
self.wfile.write(f'Error: {str(e)}'.encode())
|
||||
|
||||
elif self.path == '/status':
|
||||
# Status endpoint for health checking
|
||||
self.send_response(200)
|
||||
self.send_header('Content-Type', 'application/json')
|
||||
self.end_headers()
|
||||
|
||||
width = int(webcam_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(webcam_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = webcam_cap.get(cv2.CAP_PROP_FPS)
|
||||
|
||||
status = f'{{"status": "online", "width": {width}, "height": {height}, "fps": {fps}}}'
|
||||
self.wfile.write(status.encode())
|
||||
|
||||
else:
|
||||
# 404 for other paths
|
||||
self.send_response(404)
|
||||
self.send_header('Content-Type', 'text/plain')
|
||||
self.end_headers()
|
||||
self.wfile.write(b'Not Found - Available endpoints: /snapshot, /snapshot.jpg, /status')
|
||||
|
||||
def log_message(self, format, *args):
|
||||
# Suppress default HTTP server logging to avoid spam
|
||||
pass
|
||||
|
||||
def check_ffmpeg():
|
||||
"""Check if FFmpeg is available for RTSP streaming"""
|
||||
try:
|
||||
result = subprocess.run(['ffmpeg', '-version'],
|
||||
capture_output=True, text=True, timeout=5)
|
||||
if result.returncode == 0:
|
||||
logger.info("FFmpeg found and working")
|
||||
return True
|
||||
except (subprocess.TimeoutExpired, FileNotFoundError, subprocess.SubprocessError):
|
||||
pass
|
||||
|
||||
logger.warning("FFmpeg not found. RTSP streaming will not be available.")
|
||||
logger.info("To enable RTSP streaming, install FFmpeg:")
|
||||
logger.info(" Windows: Download from https://ffmpeg.org/download.html")
|
||||
logger.info(" Linux: sudo apt install ffmpeg")
|
||||
logger.info(" macOS: brew install ffmpeg")
|
||||
return False
|
||||
|
||||
def get_windows_camera_name():
|
||||
"""Get the actual camera device name on Windows"""
|
||||
try:
|
||||
# List video devices using FFmpeg with proper encoding handling
|
||||
result = subprocess.run(['ffmpeg', '-f', 'dshow', '-list_devices', 'true', '-i', 'dummy'],
|
||||
capture_output=True, text=True, timeout=10, encoding='utf-8', errors='ignore')
|
||||
output = result.stderr # FFmpeg outputs device list to stderr
|
||||
|
||||
# Look for video devices in the output
|
||||
lines = output.split('\n')
|
||||
video_devices = []
|
||||
|
||||
# Parse the output - look for lines with (video) that contain device names in quotes
|
||||
for line in lines:
|
||||
if '[dshow @' in line and '(video)' in line and '"' in line:
|
||||
# Extract device name between first pair of quotes
|
||||
start = line.find('"') + 1
|
||||
end = line.find('"', start)
|
||||
if start > 0 and end > start:
|
||||
device_name = line[start:end]
|
||||
video_devices.append(device_name)
|
||||
|
||||
logger.info(f"Found Windows video devices: {video_devices}")
|
||||
if video_devices:
|
||||
# Force use the first device (index 0) which is the Logitech HD webcam
|
||||
return video_devices[0] # This will be "罗技高清网络摄像机 C930c"
|
||||
else:
|
||||
logger.info("No devices found via FFmpeg detection, using fallback")
|
||||
# Fall through to fallback names
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to get Windows camera name: {e}")
|
||||
|
||||
# Try common camera device names as fallback
|
||||
# Prioritize Integrated Camera since that's what's working now
|
||||
common_names = [
|
||||
"Integrated Camera", # This is working for the current setup
|
||||
"USB Video Device", # Common name for USB cameras
|
||||
"USB2.0 Camera",
|
||||
"C930c", # Direct model name
|
||||
"HD Pro Webcam C930c", # Full Logitech name
|
||||
"Logitech", # Brand name
|
||||
"USB Camera",
|
||||
"Webcam"
|
||||
]
|
||||
logger.info(f"Using fallback camera names: {common_names}")
|
||||
return common_names[0] # Return "Integrated Camera" first
|
||||
|
||||
def start_rtsp_stream(webcam_index=0, rtsp_port=8554):
|
||||
"""Start RTSP streaming using FFmpeg"""
|
||||
global rtsp_process
|
||||
|
||||
if not check_ffmpeg():
|
||||
return None
|
||||
|
||||
try:
|
||||
# Get the actual camera device name for Windows
|
||||
if sys.platform.startswith('win'):
|
||||
camera_name = get_windows_camera_name()
|
||||
logger.info(f"Using Windows camera device: {camera_name}")
|
||||
|
||||
# FFmpeg command to stream webcam via RTSP
|
||||
if sys.platform.startswith('win'):
|
||||
cmd = [
|
||||
'ffmpeg',
|
||||
'-f', 'dshow',
|
||||
'-i', f'video={camera_name}', # Use detected camera name
|
||||
'-c:v', 'libx264',
|
||||
'-preset', 'veryfast',
|
||||
'-tune', 'zerolatency',
|
||||
'-r', '30',
|
||||
'-s', '1280x720',
|
||||
'-f', 'rtsp',
|
||||
f'rtsp://localhost:{rtsp_port}/stream'
|
||||
]
|
||||
elif sys.platform.startswith('linux'):
|
||||
cmd = [
|
||||
'ffmpeg',
|
||||
'-f', 'v4l2',
|
||||
'-i', f'/dev/video{webcam_index}',
|
||||
'-c:v', 'libx264',
|
||||
'-preset', 'veryfast',
|
||||
'-tune', 'zerolatency',
|
||||
'-r', '30',
|
||||
'-s', '1280x720',
|
||||
'-f', 'rtsp',
|
||||
f'rtsp://localhost:{rtsp_port}/stream'
|
||||
]
|
||||
else: # macOS
|
||||
cmd = [
|
||||
'ffmpeg',
|
||||
'-f', 'avfoundation',
|
||||
'-i', f'{webcam_index}:',
|
||||
'-c:v', 'libx264',
|
||||
'-preset', 'veryfast',
|
||||
'-tune', 'zerolatency',
|
||||
'-r', '30',
|
||||
'-s', '1280x720',
|
||||
'-f', 'rtsp',
|
||||
f'rtsp://localhost:{rtsp_port}/stream'
|
||||
]
|
||||
|
||||
logger.info(f"Starting RTSP stream on rtsp://localhost:{rtsp_port}/stream")
|
||||
logger.info(f"FFmpeg command: {' '.join(cmd)}")
|
||||
|
||||
rtsp_process = subprocess.Popen(
|
||||
cmd,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
text=True
|
||||
)
|
||||
|
||||
# Give FFmpeg a moment to start
|
||||
time.sleep(2)
|
||||
|
||||
# Check if process is still running
|
||||
if rtsp_process.poll() is None:
|
||||
logger.info("RTSP streaming started successfully")
|
||||
return rtsp_process
|
||||
else:
|
||||
# Get error output if process failed
|
||||
stdout, stderr = rtsp_process.communicate(timeout=2)
|
||||
logger.error("RTSP streaming failed to start")
|
||||
logger.error(f"FFmpeg stdout: {stdout}")
|
||||
logger.error(f"FFmpeg stderr: {stderr}")
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start RTSP stream: {e}")
|
||||
return None
|
||||
|
||||
def get_local_ip():
|
||||
"""Get the Wireguard IP address for external access"""
|
||||
# Use Wireguard IP for external access
|
||||
return "10.101.1.4"
|
||||
|
||||
def main():
|
||||
global webcam_cap, rtsp_process
|
||||
|
||||
# Configuration - Force use index 0 for Logitech HD webcam
|
||||
webcam_index = 0 # Logitech HD webcam C930c (1920x1080@30fps)
|
||||
http_port = 8080
|
||||
rtsp_port = 8554
|
||||
|
||||
logger.info("=== Webcam RTSP & HTTP Server ===")
|
||||
|
||||
# Initialize webcam
|
||||
logger.info("Initializing webcam...")
|
||||
webcam_cap = cv2.VideoCapture(webcam_index)
|
||||
|
||||
if not webcam_cap.isOpened():
|
||||
logger.error(f"Failed to open webcam at index {webcam_index}")
|
||||
logger.info("Try different webcam indices (0, 1, 2, etc.)")
|
||||
return
|
||||
|
||||
# Set webcam properties - Use high resolution for Logitech HD webcam
|
||||
webcam_cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
|
||||
webcam_cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
|
||||
webcam_cap.set(cv2.CAP_PROP_FPS, 30)
|
||||
|
||||
width = int(webcam_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(webcam_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = webcam_cap.get(cv2.CAP_PROP_FPS)
|
||||
|
||||
logger.info(f"Webcam initialized: {width}x{height} @ {fps}fps")
|
||||
|
||||
# Get local IP for CMS configuration
|
||||
local_ip = get_local_ip()
|
||||
|
||||
# Start RTSP streaming (optional, requires FFmpeg)
|
||||
rtsp_process = start_rtsp_stream(webcam_index, rtsp_port)
|
||||
|
||||
# Start HTTP server for snapshots
|
||||
server_address = ('0.0.0.0', http_port) # Bind to all interfaces
|
||||
http_server = HTTPServer(server_address, WebcamHTTPHandler)
|
||||
|
||||
logger.info("\n=== Server URLs for CMS Configuration ===")
|
||||
logger.info(f"HTTP Snapshot URL: http://{local_ip}:{http_port}/snapshot")
|
||||
|
||||
if rtsp_process:
|
||||
logger.info(f"RTSP Stream URL: rtsp://{local_ip}:{rtsp_port}/stream")
|
||||
else:
|
||||
logger.info("RTSP Stream: Not available (FFmpeg not found)")
|
||||
logger.info("HTTP-only mode: Use Snapshot URL for camera input")
|
||||
|
||||
logger.info(f"Status URL: http://{local_ip}:{http_port}/status")
|
||||
logger.info("\n=== CMS Configuration Suggestions ===")
|
||||
logger.info(f"Camera Identifier: webcam-local-01")
|
||||
logger.info(f"RTSP Stream URL: rtsp://{local_ip}:{rtsp_port}/stream")
|
||||
logger.info(f"Snapshot URL: http://{local_ip}:{http_port}/snapshot")
|
||||
logger.info(f"Snapshot Interval: 2000 (ms)")
|
||||
logger.info("\nPress Ctrl+C to stop all servers")
|
||||
|
||||
try:
|
||||
# Start HTTP server
|
||||
http_server.serve_forever()
|
||||
except KeyboardInterrupt:
|
||||
logger.info("Shutting down servers...")
|
||||
finally:
|
||||
# Clean up
|
||||
if webcam_cap:
|
||||
webcam_cap.release()
|
||||
|
||||
if rtsp_process:
|
||||
logger.info("Stopping RTSP stream...")
|
||||
rtsp_process.terminate()
|
||||
try:
|
||||
rtsp_process.wait(timeout=5)
|
||||
except subprocess.TimeoutExpired:
|
||||
rtsp_process.kill()
|
||||
|
||||
http_server.server_close()
|
||||
logger.info("All servers stopped")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
495
worker.md
495
worker.md
|
@ -1,495 +0,0 @@
|
|||
# Worker Communication Protocol
|
||||
|
||||
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
|
||||
|
||||
## 1. Connection
|
||||
|
||||
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
|
||||
|
||||
Upon a successful connection from the backend, you should begin sending `stateReport` messages as heartbeats.
|
||||
|
||||
## 2. Communication Overview
|
||||
|
||||
Communication is bidirectional and asynchronous. All messages are JSON objects with a `type` field that indicates the message's purpose, and an optional `payload` field containing the data.
|
||||
|
||||
- **Worker -> Backend:** You will send messages to the backend to report status, forward detection events, or request changes to session data.
|
||||
- **Backend -> Worker:** The backend will send commands to you to manage camera subscriptions.
|
||||
|
||||
## 3. Dynamic Configuration via MPTA File
|
||||
|
||||
To enable modularity and dynamic configuration, the backend will send you a URL to a `.mpta` file when it issues a `subscribe` command. This file is a renamed `.zip` archive that contains everything your worker needs to perform its task.
|
||||
|
||||
**Your worker is responsible for:**
|
||||
|
||||
1. Fetching this file from the provided URL.
|
||||
2. Extracting its contents.
|
||||
3. Interpreting the contents to configure its internal pipeline.
|
||||
|
||||
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
|
||||
|
||||
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
|
||||
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
|
||||
- Scripts: Custom Python scripts for pre-processing or post-processing.
|
||||
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
|
||||
|
||||
Essentially, the `.mpta` file is a self-contained package that tells your worker _how_ to process the video stream for a given subscription.
|
||||
|
||||
## 4. Messages from Worker to Backend
|
||||
|
||||
These are the messages your worker is expected to send to the backend.
|
||||
|
||||
### 4.1. State Report (Heartbeat)
|
||||
|
||||
This message is crucial for the backend to monitor your worker's health and status, including GPU usage.
|
||||
|
||||
- **Type:** `stateReport`
|
||||
- **When to Send:** Periodically (e.g., every 2 seconds) after a connection is established.
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 75.5,
|
||||
"memoryUsage": 40.2,
|
||||
"gpuUsage": 60.0,
|
||||
"gpuMemoryUsage": 25.1,
|
||||
"cameraConnections": [
|
||||
{
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"modelId": 101,
|
||||
"modelName": "General Object Detection",
|
||||
"online": true,
|
||||
"cropX1": 100,
|
||||
"cropY1": 200,
|
||||
"cropX2": 300,
|
||||
"cropY2": 400
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
>
|
||||
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) should be included in each camera connection to indicate the crop coordinates for that subscription.
|
||||
|
||||
### 4.2. Image Detection
|
||||
|
||||
Sent when the worker detects a relevant object. The `detection` object should be flat and contain key-value pairs corresponding to the detected attributes.
|
||||
|
||||
- **Type:** `imageDetection`
|
||||
|
||||
**Payload Example:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"timestamp": "2025-07-14T12:34:56.789Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carModel": "Civic",
|
||||
"carBrand": "Honda",
|
||||
"carYear": 2023,
|
||||
"bodyType": "Sedan",
|
||||
"licensePlateText": "ABCD1234",
|
||||
"licensePlateConfidence": 0.95
|
||||
},
|
||||
"modelId": 101,
|
||||
"modelName": "US-LPR-and-Vehicle-ID"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 4.3. Patch Session
|
||||
|
||||
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
|
||||
|
||||
Allows the worker to request a modification to an active session's data. The `data` payload must be a partial object of the `DisplayPersistentData` structure.
|
||||
|
||||
- **Type:** `patchSession`
|
||||
|
||||
**Payload Example:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "patchSession",
|
||||
"sessionId": 12345,
|
||||
"data": {
|
||||
"currentCar": {
|
||||
"carModel": "Civic",
|
||||
"carBrand": "Honda",
|
||||
"licensePlateText": "ABCD1234"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The backend will respond with a `patchSessionResult` command.
|
||||
|
||||
#### `DisplayPersistentData` Structure
|
||||
|
||||
The `data` object in the `patchSession` message is merged with the existing `DisplayPersistentData` on the backend. Here is its structure:
|
||||
|
||||
```typescript
|
||||
interface DisplayPersistentData {
|
||||
progressionStage:
|
||||
| 'welcome'
|
||||
| 'car_fueling'
|
||||
| 'car_waitpayment'
|
||||
| 'car_postpayment'
|
||||
| null;
|
||||
qrCode: string | null;
|
||||
adsPlayback: {
|
||||
playlistSlotOrder: number; // The 'order' of the current slot
|
||||
adsId: number | null;
|
||||
adsUrl: string | null;
|
||||
} | null;
|
||||
currentCar: {
|
||||
carModel?: string;
|
||||
carBrand?: string;
|
||||
carYear?: number;
|
||||
bodyType?: string;
|
||||
licensePlateText?: string;
|
||||
licensePlateType?: string;
|
||||
} | null;
|
||||
fuelPump: {
|
||||
/* FuelPumpData structure */
|
||||
} | null;
|
||||
weatherData: {
|
||||
/* WeatherResponse structure */
|
||||
} | null;
|
||||
sessionId: number | null;
|
||||
}
|
||||
```
|
||||
|
||||
#### Patching Behavior
|
||||
|
||||
- The patch is a **deep merge**.
|
||||
- **`undefined`** values are ignored.
|
||||
- **`null`** values will set the corresponding field to `null`.
|
||||
- Nested objects are merged recursively.
|
||||
|
||||
## 5. Commands from Backend to Worker
|
||||
|
||||
These are the commands your worker will receive from the backend.
|
||||
|
||||
### 5.1. Subscribe to Camera
|
||||
|
||||
Instructs the worker to process a camera's RTSP stream using the configuration from the specified `.mpta` file.
|
||||
|
||||
- **Type:** `subscribe`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-002",
|
||||
"rtspUrl": "rtsp://user:pass@host:port/stream",
|
||||
"snapshotUrl": "http://go2rtc/snapshot/1",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://storage/models/us-lpr.mpta",
|
||||
"modelName": "US-LPR-and-Vehicle-ID",
|
||||
"modelId": 102,
|
||||
"cropX1": 100,
|
||||
"cropY1": 200,
|
||||
"cropX2": 300,
|
||||
"cropY2": 400
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
>
|
||||
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) specify the crop coordinates for the camera stream. These values are configured per display and passed in the subscription payload. If not provided, the worker should process the full frame.
|
||||
>
|
||||
> **Important:**
|
||||
> If multiple displays are bound to the same camera, your worker must ensure that only **one stream** is opened per camera. When you receive multiple subscriptions for the same camera (with different `subscriptionIdentifier` values), you should:
|
||||
>
|
||||
> - Open the RTSP stream **once** for that camera if using RTSP.
|
||||
> - Capture each snapshot only once per cycle, and reuse it for all display subscriptions sharing that camera.
|
||||
> - Capture each frame/image only once per cycle.
|
||||
> - Reuse the same captured image and snapshot for all display subscriptions that share the camera, processing and routing detection results separately for each display as needed.
|
||||
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
|
||||
|
||||
### 5.2. Unsubscribe from Camera
|
||||
|
||||
Instructs the worker to stop processing a camera's stream.
|
||||
|
||||
- **Type:** `unsubscribe`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "unsubscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-002"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 5.3. Request State
|
||||
|
||||
Direct request for the worker's current state. Respond with a `stateReport` message.
|
||||
|
||||
- **Type:** `requestState`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "requestState"
|
||||
}
|
||||
```
|
||||
|
||||
### 5.4. Patch Session Result
|
||||
|
||||
Backend's response to a `patchSession` message.
|
||||
|
||||
- **Type:** `patchSessionResult`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "patchSessionResult",
|
||||
"payload": {
|
||||
"sessionId": 12345,
|
||||
"success": true,
|
||||
"message": "Session updated successfully."
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 5.5. Set Session ID
|
||||
|
||||
Allows the backend to instruct the worker to associate a session ID with a subscription. This is useful for linking detection events to a specific session. The session ID can be `null` to indicate no active session.
|
||||
|
||||
- **Type:** `setSessionId`
|
||||
|
||||
**Payload:**
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "setSessionId",
|
||||
"payload": {
|
||||
"displayIdentifier": "display-001",
|
||||
"sessionId": 12345
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Or to clear the session:
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "setSessionId",
|
||||
"payload": {
|
||||
"displayIdentifier": "display-001",
|
||||
"sessionId": null
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
>
|
||||
> - The worker should store the session ID for the given subscription and use it in subsequent detection or patch messages as appropriate. If `sessionId` is `null`, the worker should treat the subscription as having no active session.
|
||||
|
||||
## Subscription Identifier Format
|
||||
|
||||
The `subscriptionIdentifier` used in all messages is constructed as:
|
||||
|
||||
```
|
||||
displayIdentifier;cameraIdentifier
|
||||
```
|
||||
|
||||
This uniquely identifies a camera subscription for a specific display.
|
||||
|
||||
### Session ID Association
|
||||
|
||||
When the backend sends a `setSessionId` command, it will only provide the `displayIdentifier` (not the full `subscriptionIdentifier`).
|
||||
|
||||
**Worker Responsibility:**
|
||||
|
||||
- The worker must match the `displayIdentifier` to all active subscriptions for that display (i.e., all `subscriptionIdentifier` values that start with `displayIdentifier;`).
|
||||
- The worker should set or clear the session ID for all matching subscriptions.
|
||||
|
||||
## 6. Example Communication Log
|
||||
|
||||
This section shows a typical sequence of messages between the backend and the worker. Patch messages are not included, as they are only used when the worker cannot keep up.
|
||||
|
||||
> **Note:** Unsubscribe is triggered when a user removes a camera or when the node is too heavily loaded and needs rebalancing.
|
||||
|
||||
1. **Connection Established** & **Heartbeat**
|
||||
- **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 70.2,
|
||||
"memoryUsage": 38.1,
|
||||
"gpuUsage": 55.0,
|
||||
"gpuMemoryUsage": 20.0,
|
||||
"cameraConnections": []
|
||||
}
|
||||
```
|
||||
2. **Backend Subscribes Camera**
|
||||
- **Backend -> Worker**
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"rtspUrl": "rtsp://192.168.1.100/stream1",
|
||||
"modelUrl": "http://storage/models/vehicle-id.mpta",
|
||||
"modelName": "Vehicle Identification",
|
||||
"modelId": 201
|
||||
}
|
||||
}
|
||||
```
|
||||
3. **Worker Acknowledges in Heartbeat**
|
||||
- **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 72.5,
|
||||
"memoryUsage": 39.0,
|
||||
"gpuUsage": 57.0,
|
||||
"gpuMemoryUsage": 21.0,
|
||||
"cameraConnections": [
|
||||
{
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification",
|
||||
"online": true
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
4. **Worker Detects a Car**
|
||||
- **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"timestamp": "2025-07-15T10:00:00.000Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carBrand": "Honda",
|
||||
"carModel": "CR-V",
|
||||
"bodyType": "SUV",
|
||||
"licensePlateText": "GEMINI-AI",
|
||||
"licensePlateConfidence": 0.98
|
||||
},
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification"
|
||||
}
|
||||
}
|
||||
```
|
||||
- **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"timestamp": "2025-07-15T10:00:01.000Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carBrand": "Toyota",
|
||||
"carModel": "Corolla",
|
||||
"bodyType": "Sedan",
|
||||
"licensePlateText": "CMS-1234",
|
||||
"licensePlateConfidence": 0.97
|
||||
},
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification"
|
||||
}
|
||||
}
|
||||
```
|
||||
- **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||
"timestamp": "2025-07-15T10:00:02.000Z",
|
||||
"data": {
|
||||
"detection": {
|
||||
"carBrand": "Ford",
|
||||
"carModel": "Focus",
|
||||
"bodyType": "Hatchback",
|
||||
"licensePlateText": "CMS-5678",
|
||||
"licensePlateConfidence": 0.96
|
||||
},
|
||||
"modelId": 201,
|
||||
"modelName": "Vehicle Identification"
|
||||
}
|
||||
}
|
||||
```
|
||||
5. **Backend Unsubscribes Camera**
|
||||
- **Backend -> Worker**
|
||||
```json
|
||||
{
|
||||
"type": "unsubscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;entry-cam-01"
|
||||
}
|
||||
}
|
||||
```
|
||||
6. **Worker Acknowledges Unsubscription**
|
||||
- **Worker -> Backend**
|
||||
```json
|
||||
{
|
||||
"type": "stateReport",
|
||||
"cpuUsage": 68.0,
|
||||
"memoryUsage": 37.0,
|
||||
"gpuUsage": 50.0,
|
||||
"gpuMemoryUsage": 18.0,
|
||||
"cameraConnections": []
|
||||
}
|
||||
```
|
||||
|
||||
## 7. HTTP API: Image Retrieval
|
||||
|
||||
In addition to the WebSocket protocol, the worker exposes an HTTP endpoint for retrieving the latest image frame from a camera.
|
||||
|
||||
### Endpoint
|
||||
|
||||
```
|
||||
GET /camera/{camera_id}/image
|
||||
```
|
||||
|
||||
- **`camera_id`**: The full `subscriptionIdentifier` (e.g., `display-001;cam-001`).
|
||||
|
||||
### Response
|
||||
|
||||
- **Success (200):** Returns the latest JPEG image from the camera stream.
|
||||
|
||||
- `Content-Type: image/jpeg`
|
||||
- Binary JPEG data.
|
||||
|
||||
- **Error (404):** If the camera is not found or no frame is available.
|
||||
|
||||
- JSON error response.
|
||||
|
||||
- **Error (500):** Internal server error.
|
||||
|
||||
### Example Request
|
||||
|
||||
```
|
||||
GET /camera/display-001;cam-001/image
|
||||
```
|
||||
|
||||
### Example Response
|
||||
|
||||
- **Headers:**
|
||||
```
|
||||
Content-Type: image/jpeg
|
||||
```
|
||||
- **Body:** Binary JPEG image.
|
||||
|
||||
### Notes
|
||||
|
||||
- The endpoint returns the most recent frame available for the specified camera subscription.
|
||||
- If multiple displays share the same camera, each subscription has its own buffer; the endpoint uses the buffer for the given `camera_id`.
|
||||
- This API is useful for debugging, monitoring, or integrating with external systems that require direct image access.
|
Loading…
Add table
Add a link
Reference in a new issue