diff --git a/.claude/settings.local.json b/.claude/settings.local.json index 97cf5c1..9e296ac 100644 --- a/.claude/settings.local.json +++ b/.claude/settings.local.json @@ -2,7 +2,8 @@ "permissions": { "allow": [ "Bash(dir:*)", - "WebSearch" + "WebSearch", + "Bash(mkdir:*)" ], "deny": [], "ask": [] diff --git a/app.py b/app.py index 605aa0b..21d89db 100644 --- a/app.py +++ b/app.py @@ -8,6 +8,7 @@ import os import time import cv2 from contextlib import asynccontextmanager +from typing import Dict, Any from fastapi import FastAPI, WebSocket, HTTPException from fastapi.responses import Response @@ -31,21 +32,135 @@ logger.setLevel(logging.DEBUG) # Frames are now stored in the shared cache buffer from core.streaming.buffers # latest_frames = {} # Deprecated - using shared_cache_buffer instead + +# Health monitoring recovery handlers +def _handle_stream_restart_recovery(component: str, details: Dict[str, Any]) -> bool: + """Handle stream restart recovery at the application level.""" + try: + from core.streaming.manager import shared_stream_manager + + # Extract camera ID from component name (e.g., "stream_cam-001" -> "cam-001") + if component.startswith("stream_"): + camera_id = component[7:] # Remove "stream_" prefix + else: + camera_id = component + + logger.info(f"Attempting stream restart recovery for {camera_id}") + + # Find and restart the subscription + subscriptions = shared_stream_manager.get_all_subscriptions() + for sub_info in subscriptions: + if sub_info.camera_id == camera_id: + # Remove and re-add the subscription + shared_stream_manager.remove_subscription(sub_info.subscription_id) + time.sleep(1.0) # Brief delay + + # Re-add subscription + success = shared_stream_manager.add_subscription( + sub_info.subscription_id, + sub_info.stream_config, + sub_info.crop_coords, + sub_info.model_id, + sub_info.model_url, + sub_info.tracking_integration + ) + + if success: + logger.info(f"Stream restart recovery successful for {camera_id}") + return True + else: + logger.error(f"Stream restart recovery failed for {camera_id}") + return False + + logger.warning(f"No subscription found for camera {camera_id} during recovery") + return False + + except Exception as e: + logger.error(f"Error in stream restart recovery for {component}: {e}") + return False + + +def _handle_stream_reconnect_recovery(component: str, details: Dict[str, Any]) -> bool: + """Handle stream reconnect recovery at the application level.""" + try: + from core.streaming.manager import shared_stream_manager + + # Extract camera ID from component name + if component.startswith("stream_"): + camera_id = component[7:] + else: + camera_id = component + + logger.info(f"Attempting stream reconnect recovery for {camera_id}") + + # For reconnect, we just need to trigger the stream's internal reconnect + # The stream readers handle their own reconnection logic + active_cameras = shared_stream_manager.get_active_cameras() + + if camera_id in active_cameras: + logger.info(f"Stream reconnect recovery triggered for {camera_id}") + return True + else: + logger.warning(f"Camera {camera_id} not found in active cameras during reconnect recovery") + return False + + except Exception as e: + logger.error(f"Error in stream reconnect recovery for {component}: {e}") + return False + # Lifespan event handler (modern FastAPI approach) @asynccontextmanager async def lifespan(app: FastAPI): """Application lifespan management.""" # Startup logger.info("Detector Worker started successfully") + + # Initialize health monitoring system + try: + from core.monitoring.health import health_monitor + from core.monitoring.stream_health import stream_health_tracker + from core.monitoring.thread_health import thread_health_monitor + from core.monitoring.recovery import recovery_manager + + # Start health monitoring + health_monitor.start() + logger.info("Health monitoring system started") + + # Register recovery handlers for stream management + from core.streaming.manager import shared_stream_manager + recovery_manager.register_recovery_handler( + "restart_stream", + _handle_stream_restart_recovery + ) + recovery_manager.register_recovery_handler( + "reconnect", + _handle_stream_reconnect_recovery + ) + + logger.info("Recovery handlers registered") + + except Exception as e: + logger.error(f"Failed to initialize health monitoring: {e}") + logger.info("WebSocket endpoint available at: ws://0.0.0.0:8001/") logger.info("HTTP camera endpoint available at: http://0.0.0.0:8001/camera/{camera_id}/image") logger.info("Health check available at: http://0.0.0.0:8001/health") + logger.info("Detailed health monitoring available at: http://0.0.0.0:8001/health/detailed") logger.info("Ready and waiting for backend WebSocket connections") yield # Shutdown logger.info("Detector Worker shutting down...") + + # Stop health monitoring + try: + from core.monitoring.health import health_monitor + health_monitor.stop() + logger.info("Health monitoring system stopped") + except Exception as e: + logger.error(f"Error stopping health monitoring: {e}") + # Clear all state worker_state.set_subscriptions([]) worker_state.session_ids.clear() @@ -86,10 +201,11 @@ else: os.makedirs("models", exist_ok=True) logger.info("Ensured models directory exists") -# Initialize stream manager with config value -from core.streaming import initialize_stream_manager -initialize_stream_manager(max_streams=config.get('max_streams', 10)) -logger.info(f"Initialized stream manager with max_streams={config.get('max_streams', 10)}") +# Stream manager already initialized at module level with max_streams=20 +# Calling initialize_stream_manager() creates a NEW instance, breaking references +# from core.streaming import initialize_stream_manager +# initialize_stream_manager(max_streams=config.get('max_streams', 10)) +logger.info(f"Using stream manager with max_streams=20 (module-level initialization)") # Frames are now stored in the shared cache buffer from core.streaming.buffers # latest_frames = {} # Deprecated - using shared_cache_buffer instead @@ -186,6 +302,63 @@ async def get_camera_image(camera_id: str): raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") +@app.get("/session-image/{session_id}") +async def get_session_image(session_id: int): + """ + HTTP endpoint to retrieve the saved session image by session ID. + + Args: + session_id: The session ID to retrieve the image for + + Returns: + JPEG image as binary response + + Raises: + HTTPException: 404 if no image found for the session + HTTPException: 500 if reading image fails + """ + try: + from pathlib import Path + import glob + + # Images directory + images_dir = Path("images") + + if not images_dir.exists(): + logger.warning(f"Images directory does not exist") + raise HTTPException( + status_code=404, + detail=f"No images directory found" + ) + + # Search for files matching session ID pattern: {session_id}_* + pattern = str(images_dir / f"{session_id}_*.jpg") + matching_files = glob.glob(pattern) + + if not matching_files: + logger.warning(f"No image found for session {session_id}") + raise HTTPException( + status_code=404, + detail=f"No image found for session {session_id}" + ) + + # Get the most recent file if multiple exist + most_recent_file = max(matching_files, key=os.path.getmtime) + logger.info(f"Found session image for session {session_id}: {most_recent_file}") + + # Read the image file + image_data = open(most_recent_file, 'rb').read() + + # Return image as binary response + return Response(content=image_data, media_type="image/jpeg") + + except HTTPException: + raise + except Exception as e: + logger.error(f"Error retrieving session image for session {session_id}: {str(e)}", exc_info=True) + raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") + + @app.get("/health") async def health_check(): """Health check endpoint for monitoring.""" @@ -197,6 +370,205 @@ async def health_check(): } +@app.get("/health/detailed") +async def detailed_health_check(): + """Comprehensive health status with detailed monitoring data.""" + try: + from core.monitoring.health import health_monitor + from core.monitoring.stream_health import stream_health_tracker + from core.monitoring.thread_health import thread_health_monitor + from core.monitoring.recovery import recovery_manager + + # Get comprehensive health status + overall_health = health_monitor.get_health_status() + stream_metrics = stream_health_tracker.get_all_metrics() + thread_info = thread_health_monitor.get_all_thread_info() + recovery_stats = recovery_manager.get_recovery_stats() + + return { + "timestamp": time.time(), + "overall_health": overall_health, + "stream_metrics": stream_metrics, + "thread_health": thread_info, + "recovery_stats": recovery_stats, + "system_info": { + "active_subscriptions": len(worker_state.subscriptions), + "active_sessions": len(worker_state.session_ids), + "version": "2.0.0" + } + } + + except Exception as e: + logger.error(f"Error generating detailed health report: {e}") + raise HTTPException(status_code=500, detail=f"Health monitoring error: {str(e)}") + + +@app.get("/health/streams") +async def stream_health_status(): + """Stream-specific health monitoring.""" + try: + from core.monitoring.stream_health import stream_health_tracker + from core.streaming.buffers import shared_cache_buffer + + stream_metrics = stream_health_tracker.get_all_metrics() + buffer_stats = shared_cache_buffer.get_stats() + + return { + "timestamp": time.time(), + "stream_count": len(stream_metrics), + "stream_metrics": stream_metrics, + "buffer_stats": buffer_stats, + "frame_ages": { + camera_id: { + "age_seconds": time.time() - info["last_frame_time"] if info and info.get("last_frame_time") else None, + "total_frames": info.get("frame_count", 0) if info else 0 + } + for camera_id, info in stream_metrics.items() + } + } + + except Exception as e: + logger.error(f"Error generating stream health report: {e}") + raise HTTPException(status_code=500, detail=f"Stream health error: {str(e)}") + + +@app.get("/health/threads") +async def thread_health_status(): + """Thread-specific health monitoring.""" + try: + from core.monitoring.thread_health import thread_health_monitor + + thread_info = thread_health_monitor.get_all_thread_info() + deadlocks = thread_health_monitor.detect_deadlocks() + + return { + "timestamp": time.time(), + "thread_count": len(thread_info), + "thread_info": thread_info, + "potential_deadlocks": deadlocks, + "summary": { + "responsive_threads": sum(1 for info in thread_info.values() if info.get("is_responsive", False)), + "unresponsive_threads": sum(1 for info in thread_info.values() if not info.get("is_responsive", True)), + "deadlock_count": len(deadlocks) + } + } + + except Exception as e: + logger.error(f"Error generating thread health report: {e}") + raise HTTPException(status_code=500, detail=f"Thread health error: {str(e)}") + + +@app.get("/health/recovery") +async def recovery_status(): + """Recovery system status and history.""" + try: + from core.monitoring.recovery import recovery_manager + + recovery_stats = recovery_manager.get_recovery_stats() + + return { + "timestamp": time.time(), + "recovery_stats": recovery_stats, + "summary": { + "total_recoveries_last_hour": recovery_stats.get("total_recoveries_last_hour", 0), + "components_with_recovery_state": len(recovery_stats.get("recovery_states", {})), + "total_recovery_failures": sum( + state.get("failure_count", 0) + for state in recovery_stats.get("recovery_states", {}).values() + ), + "total_recovery_successes": sum( + state.get("success_count", 0) + for state in recovery_stats.get("recovery_states", {}).values() + ) + } + } + + except Exception as e: + logger.error(f"Error generating recovery status report: {e}") + raise HTTPException(status_code=500, detail=f"Recovery status error: {str(e)}") + + +@app.post("/health/recovery/force/{component}") +async def force_recovery(component: str, action: str = "restart_stream"): + """Force recovery action for a specific component.""" + try: + from core.monitoring.recovery import recovery_manager, RecoveryAction + + # Validate action + try: + recovery_action = RecoveryAction(action) + except ValueError: + raise HTTPException( + status_code=400, + detail=f"Invalid recovery action: {action}. Valid actions: {[a.value for a in RecoveryAction]}" + ) + + # Force recovery + success = recovery_manager.force_recovery(component, recovery_action, "manual_api_request") + + return { + "timestamp": time.time(), + "component": component, + "action": action, + "success": success, + "message": f"Recovery {'successful' if success else 'failed'} for component {component}" + } + + except HTTPException: + raise + except Exception as e: + logger.error(f"Error forcing recovery for {component}: {e}") + raise HTTPException(status_code=500, detail=f"Recovery error: {str(e)}") + + +@app.get("/health/metrics") +async def health_metrics(): + """Performance and health metrics in a format suitable for monitoring systems.""" + try: + from core.monitoring.health import health_monitor + from core.monitoring.stream_health import stream_health_tracker + from core.streaming.buffers import shared_cache_buffer + + # Get basic metrics + overall_health = health_monitor.get_health_status() + stream_metrics = stream_health_tracker.get_all_metrics() + buffer_stats = shared_cache_buffer.get_stats() + + # Format for monitoring systems (Prometheus-style) + metrics = { + "detector_worker_up": 1, + "detector_worker_streams_total": len(stream_metrics), + "detector_worker_subscriptions_total": len(worker_state.subscriptions), + "detector_worker_sessions_total": len(worker_state.session_ids), + "detector_worker_memory_mb": buffer_stats.get("total_memory_mb", 0), + "detector_worker_health_status": { + "healthy": 1, + "warning": 2, + "critical": 3, + "unknown": 4 + }.get(overall_health.get("overall_status", "unknown"), 4) + } + + # Add per-stream metrics + for camera_id, stream_info in stream_metrics.items(): + safe_camera_id = camera_id.replace("-", "_").replace(".", "_") + metrics.update({ + f"detector_worker_stream_frames_total{{camera=\"{safe_camera_id}\"}}": stream_info.get("frame_count", 0), + f"detector_worker_stream_errors_total{{camera=\"{safe_camera_id}\"}}": stream_info.get("error_count", 0), + f"detector_worker_stream_fps{{camera=\"{safe_camera_id}\"}}": stream_info.get("frames_per_second", 0), + f"detector_worker_stream_frame_age_seconds{{camera=\"{safe_camera_id}\"}}": stream_info.get("last_frame_age_seconds") or 0 + }) + + return { + "timestamp": time.time(), + "metrics": metrics + } + + except Exception as e: + logger.error(f"Error generating health metrics: {e}") + raise HTTPException(status_code=500, detail=f"Metrics error: {str(e)}") + + if __name__ == "__main__": diff --git a/core/communication/websocket.py b/core/communication/websocket.py index 4e40d2a..e53096a 100644 --- a/core/communication/websocket.py +++ b/core/communication/websocket.py @@ -539,7 +539,7 @@ class WebSocketHandler: async def _handle_set_session_id(self, message: SetSessionIdMessage) -> None: """Handle setSessionId message.""" display_identifier = message.payload.displayIdentifier - session_id = message.payload.sessionId + session_id = str(message.payload.sessionId) if message.payload.sessionId is not None else None logger.info(f"[RX Processing] setSessionId for display {display_identifier}: {session_id}") diff --git a/core/detection/pipeline.py b/core/detection/pipeline.py index 076cdc9..d395f3a 100644 --- a/core/detection/pipeline.py +++ b/core/detection/pipeline.py @@ -64,6 +64,10 @@ class DetectionPipeline: # SessionId to processing results mapping (for combining with license plate results) self.session_processing_results = {} + # Field mappings from parallelActions (e.g., {"car_brand": "{car_brand_cls_v3.brand}"}) + self.field_mappings = {} + self._parse_field_mappings() + # Statistics self.stats = { 'detections_processed': 0, @@ -74,6 +78,25 @@ class DetectionPipeline: logger.info("DetectionPipeline initialized") + def _parse_field_mappings(self): + """ + Parse field mappings from parallelActions.postgresql_update_combined.fields. + Extracts mappings like {"car_brand": "{car_brand_cls_v3.brand}"} for dynamic field resolution. + """ + try: + if not self.pipeline_config or not hasattr(self.pipeline_config, 'parallel_actions'): + return + + for action in self.pipeline_config.parallel_actions: + if action.type.value == 'postgresql_update_combined': + fields = action.params.get('fields', {}) + self.field_mappings = fields + logger.info(f"[FIELD MAPPINGS] Parsed from pipeline config: {self.field_mappings}") + break + + except Exception as e: + logger.error(f"Error parsing field mappings: {e}", exc_info=True) + async def initialize(self) -> bool: """ Initialize all pipeline components including models, Redis, and database. @@ -165,6 +188,44 @@ class DetectionPipeline: logger.error(f"Error initializing detection model: {e}", exc_info=True) return False + def _extract_fields_from_branches(self, branch_results: Dict[str, Any]) -> Dict[str, Any]: + """ + Extract fields dynamically from branch results using field mappings. + + Args: + branch_results: Dictionary of branch execution results + + Returns: + Dictionary with extracted field values (e.g., {"car_brand": "Honda", "body_type": "Sedan"}) + """ + extracted = {} + + try: + for db_field_name, template in self.field_mappings.items(): + # Parse template like "{car_brand_cls_v3.brand}" -> branch_id="car_brand_cls_v3", field="brand" + if template.startswith('{') and template.endswith('}'): + var_name = template[1:-1] + if '.' in var_name: + branch_id, field_name = var_name.split('.', 1) + + # Look up value in branch_results + if branch_id in branch_results: + branch_data = branch_results[branch_id] + if isinstance(branch_data, dict) and 'result' in branch_data: + result_data = branch_data['result'] + if isinstance(result_data, dict) and field_name in result_data: + extracted[field_name] = result_data[field_name] + logger.debug(f"[DYNAMIC EXTRACT] {field_name}={result_data[field_name]} from branch {branch_id}") + else: + logger.debug(f"[DYNAMIC EXTRACT] Field '{field_name}' not found in branch {branch_id}") + else: + logger.debug(f"[DYNAMIC EXTRACT] Branch '{branch_id}' not in results") + + except Exception as e: + logger.error(f"Error extracting fields from branches: {e}", exc_info=True) + + return extracted + async def _on_license_plate_result(self, session_id: str, license_data: Dict[str, Any]): """ Callback for handling license plate results from LPR service. @@ -272,12 +333,12 @@ class DetectionPipeline: branch_results = self.session_processing_results[session_id_for_lookup] logger.info(f"[LICENSE PLATE] Retrieved processing results for session {session_id_for_lookup}") - if 'car_brand_cls_v2' in branch_results: - brand_result = branch_results['car_brand_cls_v2'].get('result', {}) - car_brand = brand_result.get('brand') - if 'car_bodytype_cls_v1' in branch_results: - bodytype_result = branch_results['car_bodytype_cls_v1'].get('result', {}) - body_type = bodytype_result.get('body_type') + # Extract fields dynamically using field mappings from pipeline config + extracted_fields = self._extract_fields_from_branches(branch_results) + car_brand = extracted_fields.get('brand') + body_type = extracted_fields.get('body_type') + + logger.info(f"[LICENSE PLATE] Extracted fields: brand={car_brand}, body_type={body_type}") # Clean up stored results after use del self.session_processing_results[session_id_for_lookup] @@ -1003,7 +1064,7 @@ class DetectionPipeline: Resolve field template using branch results and context. Args: - template: Template string like "{car_brand_cls_v2.brand}" + template: Template string like "{car_brand_cls_v3.brand}" branch_results: Dictionary of branch execution results context: Detection context @@ -1015,7 +1076,7 @@ class DetectionPipeline: if template.startswith('{') and template.endswith('}'): var_name = template[1:-1] - # Check for branch result reference (e.g., "car_brand_cls_v2.brand") + # Check for branch result reference (e.g., "car_brand_cls_v3.brand") if '.' in var_name: branch_id, field_name = var_name.split('.', 1) if branch_id in branch_results: @@ -1061,17 +1122,10 @@ class DetectionPipeline: logger.warning("No session_id in context for processing results") return - # Extract car brand from car_brand_cls_v2 results - car_brand = None - if 'car_brand_cls_v2' in branch_results: - brand_result = branch_results['car_brand_cls_v2'].get('result', {}) - car_brand = brand_result.get('brand') - - # Extract body type from car_bodytype_cls_v1 results - body_type = None - if 'car_bodytype_cls_v1' in branch_results: - bodytype_result = branch_results['car_bodytype_cls_v1'].get('result', {}) - body_type = bodytype_result.get('body_type') + # Extract fields dynamically using field mappings from pipeline config + extracted_fields = self._extract_fields_from_branches(branch_results) + car_brand = extracted_fields.get('brand') + body_type = extracted_fields.get('body_type') logger.info(f"[PROCESSING RESULTS] Completed for session {session_id}: " f"brand={car_brand}, bodyType={body_type}") diff --git a/core/monitoring/__init__.py b/core/monitoring/__init__.py new file mode 100644 index 0000000..2ad32ed --- /dev/null +++ b/core/monitoring/__init__.py @@ -0,0 +1,18 @@ +""" +Comprehensive health monitoring system for detector worker. +Tracks stream health, thread responsiveness, and system performance. +""" + +from .health import HealthMonitor, HealthStatus, HealthCheck +from .stream_health import StreamHealthTracker +from .thread_health import ThreadHealthMonitor +from .recovery import RecoveryManager + +__all__ = [ + 'HealthMonitor', + 'HealthStatus', + 'HealthCheck', + 'StreamHealthTracker', + 'ThreadHealthMonitor', + 'RecoveryManager' +] \ No newline at end of file diff --git a/core/monitoring/health.py b/core/monitoring/health.py new file mode 100644 index 0000000..be094f3 --- /dev/null +++ b/core/monitoring/health.py @@ -0,0 +1,456 @@ +""" +Core health monitoring system for comprehensive stream and system health tracking. +Provides centralized health status, alerting, and recovery coordination. +""" +import time +import threading +import logging +import psutil +from typing import Dict, List, Optional, Any, Callable +from dataclasses import dataclass, field +from enum import Enum +from collections import defaultdict, deque + + +logger = logging.getLogger(__name__) + + +class HealthStatus(Enum): + """Health status levels.""" + HEALTHY = "healthy" + WARNING = "warning" + CRITICAL = "critical" + UNKNOWN = "unknown" + + +@dataclass +class HealthCheck: + """Individual health check result.""" + name: str + status: HealthStatus + message: str + timestamp: float = field(default_factory=time.time) + details: Dict[str, Any] = field(default_factory=dict) + recovery_action: Optional[str] = None + + +@dataclass +class HealthMetrics: + """Health metrics for a component.""" + component_id: str + last_update: float + frame_count: int = 0 + error_count: int = 0 + warning_count: int = 0 + restart_count: int = 0 + avg_frame_interval: float = 0.0 + last_frame_time: Optional[float] = None + thread_alive: bool = True + connection_healthy: bool = True + memory_usage_mb: float = 0.0 + cpu_usage_percent: float = 0.0 + + +class HealthMonitor: + """Comprehensive health monitoring system.""" + + def __init__(self, check_interval: float = 30.0): + """ + Initialize health monitor. + + Args: + check_interval: Interval between health checks in seconds + """ + self.check_interval = check_interval + self.running = False + self.monitor_thread = None + self._lock = threading.RLock() + + # Health data storage + self.health_checks: Dict[str, HealthCheck] = {} + self.metrics: Dict[str, HealthMetrics] = {} + self.alert_history: deque = deque(maxlen=1000) + self.recovery_actions: deque = deque(maxlen=500) + + # Thresholds (configurable) + self.thresholds = { + 'frame_stale_warning_seconds': 120, # 2 minutes + 'frame_stale_critical_seconds': 300, # 5 minutes + 'thread_unresponsive_seconds': 60, # 1 minute + 'memory_warning_mb': 500, # 500MB per stream + 'memory_critical_mb': 1000, # 1GB per stream + 'cpu_warning_percent': 80, # 80% CPU + 'cpu_critical_percent': 95, # 95% CPU + 'error_rate_warning': 0.1, # 10% error rate + 'error_rate_critical': 0.3, # 30% error rate + 'restart_threshold': 3 # Max restarts per hour + } + + # Health check functions + self.health_checkers: List[Callable[[], List[HealthCheck]]] = [] + self.recovery_callbacks: Dict[str, Callable[[str, HealthCheck], bool]] = {} + + # System monitoring + self.process = psutil.Process() + self.system_start_time = time.time() + + def start(self): + """Start health monitoring.""" + if self.running: + logger.warning("Health monitor already running") + return + + self.running = True + self.monitor_thread = threading.Thread(target=self._monitor_loop, daemon=True) + self.monitor_thread.start() + logger.info(f"Health monitor started (check interval: {self.check_interval}s)") + + def stop(self): + """Stop health monitoring.""" + self.running = False + if self.monitor_thread: + self.monitor_thread.join(timeout=5.0) + logger.info("Health monitor stopped") + + def register_health_checker(self, checker: Callable[[], List[HealthCheck]]): + """Register a health check function.""" + self.health_checkers.append(checker) + logger.debug(f"Registered health checker: {checker.__name__}") + + def register_recovery_callback(self, component: str, callback: Callable[[str, HealthCheck], bool]): + """Register a recovery callback for a component.""" + self.recovery_callbacks[component] = callback + logger.debug(f"Registered recovery callback for {component}") + + def update_metrics(self, component_id: str, **kwargs): + """Update metrics for a component.""" + with self._lock: + if component_id not in self.metrics: + self.metrics[component_id] = HealthMetrics( + component_id=component_id, + last_update=time.time() + ) + + metrics = self.metrics[component_id] + metrics.last_update = time.time() + + # Update provided metrics + for key, value in kwargs.items(): + if hasattr(metrics, key): + setattr(metrics, key, value) + + def report_frame_received(self, component_id: str): + """Report that a frame was received for a component.""" + current_time = time.time() + with self._lock: + if component_id not in self.metrics: + self.metrics[component_id] = HealthMetrics( + component_id=component_id, + last_update=current_time + ) + + metrics = self.metrics[component_id] + + # Update frame metrics + if metrics.last_frame_time: + interval = current_time - metrics.last_frame_time + # Moving average of frame intervals + if metrics.avg_frame_interval == 0: + metrics.avg_frame_interval = interval + else: + metrics.avg_frame_interval = (metrics.avg_frame_interval * 0.9) + (interval * 0.1) + + metrics.last_frame_time = current_time + metrics.frame_count += 1 + metrics.last_update = current_time + + def report_error(self, component_id: str, error_type: str = "general"): + """Report an error for a component.""" + with self._lock: + if component_id not in self.metrics: + self.metrics[component_id] = HealthMetrics( + component_id=component_id, + last_update=time.time() + ) + + self.metrics[component_id].error_count += 1 + self.metrics[component_id].last_update = time.time() + + logger.debug(f"Error reported for {component_id}: {error_type}") + + def report_warning(self, component_id: str, warning_type: str = "general"): + """Report a warning for a component.""" + with self._lock: + if component_id not in self.metrics: + self.metrics[component_id] = HealthMetrics( + component_id=component_id, + last_update=time.time() + ) + + self.metrics[component_id].warning_count += 1 + self.metrics[component_id].last_update = time.time() + + logger.debug(f"Warning reported for {component_id}: {warning_type}") + + def report_restart(self, component_id: str): + """Report that a component was restarted.""" + with self._lock: + if component_id not in self.metrics: + self.metrics[component_id] = HealthMetrics( + component_id=component_id, + last_update=time.time() + ) + + self.metrics[component_id].restart_count += 1 + self.metrics[component_id].last_update = time.time() + + # Log recovery action + recovery_action = { + 'timestamp': time.time(), + 'component': component_id, + 'action': 'restart', + 'reason': 'manual_restart' + } + + with self._lock: + self.recovery_actions.append(recovery_action) + + logger.info(f"Restart reported for {component_id}") + + def get_health_status(self, component_id: Optional[str] = None) -> Dict[str, Any]: + """Get comprehensive health status.""" + with self._lock: + if component_id: + # Get health for specific component + return self._get_component_health(component_id) + else: + # Get overall health status + return self._get_overall_health() + + def _get_component_health(self, component_id: str) -> Dict[str, Any]: + """Get health status for a specific component.""" + if component_id not in self.metrics: + return { + 'component_id': component_id, + 'status': HealthStatus.UNKNOWN.value, + 'message': 'No metrics available', + 'metrics': {} + } + + metrics = self.metrics[component_id] + current_time = time.time() + + # Determine health status + status = HealthStatus.HEALTHY + issues = [] + + # Check frame freshness + if metrics.last_frame_time: + frame_age = current_time - metrics.last_frame_time + if frame_age > self.thresholds['frame_stale_critical_seconds']: + status = HealthStatus.CRITICAL + issues.append(f"Frames stale for {frame_age:.1f}s") + elif frame_age > self.thresholds['frame_stale_warning_seconds']: + if status == HealthStatus.HEALTHY: + status = HealthStatus.WARNING + issues.append(f"Frames aging ({frame_age:.1f}s)") + + # Check error rates + if metrics.frame_count > 0: + error_rate = metrics.error_count / metrics.frame_count + if error_rate > self.thresholds['error_rate_critical']: + status = HealthStatus.CRITICAL + issues.append(f"High error rate ({error_rate:.1%})") + elif error_rate > self.thresholds['error_rate_warning']: + if status == HealthStatus.HEALTHY: + status = HealthStatus.WARNING + issues.append(f"Elevated error rate ({error_rate:.1%})") + + # Check restart frequency + restart_rate = metrics.restart_count / max(1, (current_time - self.system_start_time) / 3600) + if restart_rate > self.thresholds['restart_threshold']: + status = HealthStatus.CRITICAL + issues.append(f"Frequent restarts ({restart_rate:.1f}/hour)") + + # Check thread health + if not metrics.thread_alive: + status = HealthStatus.CRITICAL + issues.append("Thread not alive") + + # Check connection health + if not metrics.connection_healthy: + if status == HealthStatus.HEALTHY: + status = HealthStatus.WARNING + issues.append("Connection unhealthy") + + return { + 'component_id': component_id, + 'status': status.value, + 'message': '; '.join(issues) if issues else 'All checks passing', + 'metrics': { + 'frame_count': metrics.frame_count, + 'error_count': metrics.error_count, + 'warning_count': metrics.warning_count, + 'restart_count': metrics.restart_count, + 'avg_frame_interval': metrics.avg_frame_interval, + 'last_frame_age': current_time - metrics.last_frame_time if metrics.last_frame_time else None, + 'thread_alive': metrics.thread_alive, + 'connection_healthy': metrics.connection_healthy, + 'memory_usage_mb': metrics.memory_usage_mb, + 'cpu_usage_percent': metrics.cpu_usage_percent, + 'uptime_seconds': current_time - self.system_start_time + }, + 'last_update': metrics.last_update + } + + def _get_overall_health(self) -> Dict[str, Any]: + """Get overall system health status.""" + current_time = time.time() + components = {} + overall_status = HealthStatus.HEALTHY + + # Get health for all components + for component_id in self.metrics.keys(): + component_health = self._get_component_health(component_id) + components[component_id] = component_health + + # Determine overall status + component_status = HealthStatus(component_health['status']) + if component_status == HealthStatus.CRITICAL: + overall_status = HealthStatus.CRITICAL + elif component_status == HealthStatus.WARNING and overall_status == HealthStatus.HEALTHY: + overall_status = HealthStatus.WARNING + + # System metrics + try: + system_memory = self.process.memory_info() + system_cpu = self.process.cpu_percent() + except Exception: + system_memory = None + system_cpu = 0.0 + + return { + 'overall_status': overall_status.value, + 'timestamp': current_time, + 'uptime_seconds': current_time - self.system_start_time, + 'total_components': len(self.metrics), + 'components': components, + 'system_metrics': { + 'memory_mb': system_memory.rss / (1024 * 1024) if system_memory else 0, + 'cpu_percent': system_cpu, + 'process_id': self.process.pid + }, + 'recent_alerts': list(self.alert_history)[-10:], # Last 10 alerts + 'recent_recoveries': list(self.recovery_actions)[-10:] # Last 10 recovery actions + } + + def _monitor_loop(self): + """Main health monitoring loop.""" + logger.info("Health monitor loop started") + + while self.running: + try: + start_time = time.time() + + # Run all registered health checks + all_checks = [] + for checker in self.health_checkers: + try: + checks = checker() + all_checks.extend(checks) + except Exception as e: + logger.error(f"Error in health checker {checker.__name__}: {e}") + + # Process health checks and trigger recovery if needed + for check in all_checks: + self._process_health_check(check) + + # Update system metrics + self._update_system_metrics() + + # Sleep until next check + elapsed = time.time() - start_time + sleep_time = max(0, self.check_interval - elapsed) + if sleep_time > 0: + time.sleep(sleep_time) + + except Exception as e: + logger.error(f"Error in health monitor loop: {e}") + time.sleep(5.0) # Fallback sleep + + logger.info("Health monitor loop ended") + + def _process_health_check(self, check: HealthCheck): + """Process a health check result and trigger recovery if needed.""" + with self._lock: + # Store health check + self.health_checks[check.name] = check + + # Log alerts for non-healthy status + if check.status != HealthStatus.HEALTHY: + alert = { + 'timestamp': check.timestamp, + 'component': check.name, + 'status': check.status.value, + 'message': check.message, + 'details': check.details + } + self.alert_history.append(alert) + + logger.warning(f"Health alert [{check.status.value.upper()}] {check.name}: {check.message}") + + # Trigger recovery if critical and recovery action available + if check.status == HealthStatus.CRITICAL and check.recovery_action: + self._trigger_recovery(check.name, check) + + def _trigger_recovery(self, component: str, check: HealthCheck): + """Trigger recovery action for a component.""" + if component in self.recovery_callbacks: + try: + logger.info(f"Triggering recovery for {component}: {check.recovery_action}") + + success = self.recovery_callbacks[component](component, check) + + recovery_action = { + 'timestamp': time.time(), + 'component': component, + 'action': check.recovery_action, + 'reason': check.message, + 'success': success + } + + with self._lock: + self.recovery_actions.append(recovery_action) + + if success: + logger.info(f"Recovery successful for {component}") + else: + logger.error(f"Recovery failed for {component}") + + except Exception as e: + logger.error(f"Error in recovery callback for {component}: {e}") + + def _update_system_metrics(self): + """Update system-level metrics.""" + try: + # Update process metrics for all components + current_time = time.time() + + with self._lock: + for component_id, metrics in self.metrics.items(): + # Update CPU and memory if available + try: + # This is a simplified approach - in practice you'd want + # per-thread or per-component resource tracking + metrics.cpu_usage_percent = self.process.cpu_percent() / len(self.metrics) + memory_info = self.process.memory_info() + metrics.memory_usage_mb = memory_info.rss / (1024 * 1024) / len(self.metrics) + except Exception: + pass + + except Exception as e: + logger.error(f"Error updating system metrics: {e}") + + +# Global health monitor instance +health_monitor = HealthMonitor() \ No newline at end of file diff --git a/core/monitoring/recovery.py b/core/monitoring/recovery.py new file mode 100644 index 0000000..4ea16dc --- /dev/null +++ b/core/monitoring/recovery.py @@ -0,0 +1,385 @@ +""" +Recovery manager for automatic handling of health issues. +Provides circuit breaker patterns, automatic restarts, and graceful degradation. +""" +import time +import logging +import threading +from typing import Dict, List, Optional, Any, Callable +from dataclasses import dataclass +from enum import Enum +from collections import defaultdict, deque + +from .health import HealthCheck, HealthStatus, health_monitor + + +logger = logging.getLogger(__name__) + + +class RecoveryAction(Enum): + """Types of recovery actions.""" + RESTART_STREAM = "restart_stream" + RESTART_THREAD = "restart_thread" + CLEAR_BUFFER = "clear_buffer" + RECONNECT = "reconnect" + THROTTLE = "throttle" + DISABLE = "disable" + + +@dataclass +class RecoveryAttempt: + """Record of a recovery attempt.""" + timestamp: float + component: str + action: RecoveryAction + reason: str + success: bool + details: Dict[str, Any] = None + + +@dataclass +class RecoveryState: + """Recovery state for a component - simplified without circuit breaker.""" + failure_count: int = 0 + success_count: int = 0 + last_failure_time: Optional[float] = None + last_success_time: Optional[float] = None + + +class RecoveryManager: + """Manages automatic recovery actions for health issues.""" + + def __init__(self): + self.recovery_handlers: Dict[str, Callable[[str, HealthCheck], bool]] = {} + self.recovery_states: Dict[str, RecoveryState] = {} + self.recovery_history: deque = deque(maxlen=1000) + self._lock = threading.RLock() + + # Configuration - simplified without circuit breaker + self.recovery_cooldown = 30 # 30 seconds between recovery attempts + self.max_attempts_per_hour = 20 # Still limit to prevent spam, but much higher + + # Track recovery attempts per component + self.recovery_attempts: Dict[str, deque] = defaultdict(lambda: deque(maxlen=50)) + + # Register with health monitor + health_monitor.register_recovery_callback("stream", self._handle_stream_recovery) + health_monitor.register_recovery_callback("thread", self._handle_thread_recovery) + health_monitor.register_recovery_callback("buffer", self._handle_buffer_recovery) + + def register_recovery_handler(self, action: RecoveryAction, handler: Callable[[str, Dict[str, Any]], bool]): + """ + Register a recovery handler for a specific action. + + Args: + action: Type of recovery action + handler: Function that performs the recovery + """ + self.recovery_handlers[action.value] = handler + logger.info(f"Registered recovery handler for {action.value}") + + def can_attempt_recovery(self, component: str) -> bool: + """ + Check if recovery can be attempted for a component. + + Args: + component: Component identifier + + Returns: + True if recovery can be attempted (always allow with minimal throttling) + """ + with self._lock: + current_time = time.time() + + # Check recovery attempt rate limiting (much more permissive) + recent_attempts = [ + attempt for attempt in self.recovery_attempts[component] + if current_time - attempt <= 3600 # Last hour + ] + + # Only block if truly excessive attempts + if len(recent_attempts) >= self.max_attempts_per_hour: + logger.warning(f"Recovery rate limit exceeded for {component} " + f"({len(recent_attempts)} attempts in last hour)") + return False + + # Check cooldown period (shorter cooldown) + if recent_attempts: + last_attempt = max(recent_attempts) + if current_time - last_attempt < self.recovery_cooldown: + logger.debug(f"Recovery cooldown active for {component} " + f"(last attempt {current_time - last_attempt:.1f}s ago)") + return False + + return True + + def attempt_recovery(self, component: str, action: RecoveryAction, reason: str, + details: Optional[Dict[str, Any]] = None) -> bool: + """ + Attempt recovery for a component. + + Args: + component: Component identifier + action: Recovery action to perform + reason: Reason for recovery + details: Additional details + + Returns: + True if recovery was successful + """ + if not self.can_attempt_recovery(component): + return False + + current_time = time.time() + + logger.info(f"Attempting recovery for {component}: {action.value} ({reason})") + + try: + # Record recovery attempt + with self._lock: + self.recovery_attempts[component].append(current_time) + + # Perform recovery action + success = self._execute_recovery_action(component, action, details or {}) + + # Record recovery result + attempt = RecoveryAttempt( + timestamp=current_time, + component=component, + action=action, + reason=reason, + success=success, + details=details + ) + + with self._lock: + self.recovery_history.append(attempt) + + # Update recovery state + self._update_recovery_state(component, success) + + if success: + logger.info(f"Recovery successful for {component}: {action.value}") + else: + logger.error(f"Recovery failed for {component}: {action.value}") + + return success + + except Exception as e: + logger.error(f"Error during recovery for {component}: {e}") + self._update_recovery_state(component, False) + return False + + def _execute_recovery_action(self, component: str, action: RecoveryAction, + details: Dict[str, Any]) -> bool: + """Execute a specific recovery action.""" + handler_key = action.value + + if handler_key not in self.recovery_handlers: + logger.error(f"No recovery handler registered for action: {handler_key}") + return False + + try: + handler = self.recovery_handlers[handler_key] + return handler(component, details) + + except Exception as e: + logger.error(f"Error executing recovery action {handler_key} for {component}: {e}") + return False + + def _update_recovery_state(self, component: str, success: bool): + """Update recovery state based on recovery result.""" + current_time = time.time() + + with self._lock: + if component not in self.recovery_states: + self.recovery_states[component] = RecoveryState() + + state = self.recovery_states[component] + + if success: + state.success_count += 1 + state.last_success_time = current_time + # Reset failure count on success + state.failure_count = max(0, state.failure_count - 1) + logger.debug(f"Recovery success for {component} (total successes: {state.success_count})") + else: + state.failure_count += 1 + state.last_failure_time = current_time + logger.debug(f"Recovery failure for {component} (total failures: {state.failure_count})") + + def _handle_stream_recovery(self, component: str, health_check: HealthCheck) -> bool: + """Handle recovery for stream-related issues.""" + if "frames" in health_check.name: + # Frame-related issue - restart stream + return self.attempt_recovery( + component, + RecoveryAction.RESTART_STREAM, + health_check.message, + health_check.details + ) + elif "connection" in health_check.name: + # Connection issue - reconnect + return self.attempt_recovery( + component, + RecoveryAction.RECONNECT, + health_check.message, + health_check.details + ) + elif "errors" in health_check.name: + # High error rate - throttle or restart + return self.attempt_recovery( + component, + RecoveryAction.THROTTLE, + health_check.message, + health_check.details + ) + else: + # Generic stream issue - restart + return self.attempt_recovery( + component, + RecoveryAction.RESTART_STREAM, + health_check.message, + health_check.details + ) + + def _handle_thread_recovery(self, component: str, health_check: HealthCheck) -> bool: + """Handle recovery for thread-related issues.""" + if "deadlock" in health_check.name: + # Deadlock detected - restart thread + return self.attempt_recovery( + component, + RecoveryAction.RESTART_THREAD, + health_check.message, + health_check.details + ) + elif "responsive" in health_check.name: + # Thread unresponsive - restart + return self.attempt_recovery( + component, + RecoveryAction.RESTART_THREAD, + health_check.message, + health_check.details + ) + else: + # Generic thread issue - restart + return self.attempt_recovery( + component, + RecoveryAction.RESTART_THREAD, + health_check.message, + health_check.details + ) + + def _handle_buffer_recovery(self, component: str, health_check: HealthCheck) -> bool: + """Handle recovery for buffer-related issues.""" + # Buffer issues - clear buffer + return self.attempt_recovery( + component, + RecoveryAction.CLEAR_BUFFER, + health_check.message, + health_check.details + ) + + def get_recovery_stats(self) -> Dict[str, Any]: + """Get recovery statistics.""" + current_time = time.time() + + with self._lock: + # Calculate stats from history + recent_recoveries = [ + attempt for attempt in self.recovery_history + if current_time - attempt.timestamp <= 3600 # Last hour + ] + + stats_by_component = defaultdict(lambda: { + 'attempts': 0, + 'successes': 0, + 'failures': 0, + 'last_attempt': None, + 'last_success': None + }) + + for attempt in recent_recoveries: + stats = stats_by_component[attempt.component] + stats['attempts'] += 1 + + if attempt.success: + stats['successes'] += 1 + if not stats['last_success'] or attempt.timestamp > stats['last_success']: + stats['last_success'] = attempt.timestamp + else: + stats['failures'] += 1 + + if not stats['last_attempt'] or attempt.timestamp > stats['last_attempt']: + stats['last_attempt'] = attempt.timestamp + + return { + 'total_recoveries_last_hour': len(recent_recoveries), + 'recovery_by_component': dict(stats_by_component), + 'recovery_states': { + component: { + 'failure_count': state.failure_count, + 'success_count': state.success_count, + 'last_failure_time': state.last_failure_time, + 'last_success_time': state.last_success_time + } + for component, state in self.recovery_states.items() + }, + 'recent_history': [ + { + 'timestamp': attempt.timestamp, + 'component': attempt.component, + 'action': attempt.action.value, + 'reason': attempt.reason, + 'success': attempt.success + } + for attempt in list(self.recovery_history)[-10:] # Last 10 attempts + ] + } + + def force_recovery(self, component: str, action: RecoveryAction, reason: str = "manual") -> bool: + """ + Force recovery for a component, bypassing rate limiting. + + Args: + component: Component identifier + action: Recovery action to perform + reason: Reason for forced recovery + + Returns: + True if recovery was successful + """ + logger.info(f"Forcing recovery for {component}: {action.value} ({reason})") + + current_time = time.time() + + try: + # Execute recovery action directly + success = self._execute_recovery_action(component, action, {}) + + # Record forced recovery + attempt = RecoveryAttempt( + timestamp=current_time, + component=component, + action=action, + reason=f"forced: {reason}", + success=success, + details={'forced': True} + ) + + with self._lock: + self.recovery_history.append(attempt) + self.recovery_attempts[component].append(current_time) + + # Update recovery state + self._update_recovery_state(component, success) + + return success + + except Exception as e: + logger.error(f"Error during forced recovery for {component}: {e}") + return False + + +# Global recovery manager instance +recovery_manager = RecoveryManager() \ No newline at end of file diff --git a/core/monitoring/stream_health.py b/core/monitoring/stream_health.py new file mode 100644 index 0000000..770dfe4 --- /dev/null +++ b/core/monitoring/stream_health.py @@ -0,0 +1,351 @@ +""" +Stream-specific health monitoring for video streams. +Tracks frame production, connection health, and stream-specific metrics. +""" +import time +import logging +import threading +import requests +from typing import Dict, Optional, List, Any +from collections import deque +from dataclasses import dataclass + +from .health import HealthCheck, HealthStatus, health_monitor + + +logger = logging.getLogger(__name__) + + +@dataclass +class StreamMetrics: + """Metrics for an individual stream.""" + camera_id: str + stream_type: str # 'rtsp', 'http_snapshot' + start_time: float + last_frame_time: Optional[float] = None + frame_count: int = 0 + error_count: int = 0 + reconnect_count: int = 0 + bytes_received: int = 0 + frames_per_second: float = 0.0 + connection_attempts: int = 0 + last_connection_test: Optional[float] = None + connection_healthy: bool = True + last_error: Optional[str] = None + last_error_time: Optional[float] = None + + +class StreamHealthTracker: + """Tracks health for individual video streams.""" + + def __init__(self): + self.streams: Dict[str, StreamMetrics] = {} + self._lock = threading.RLock() + + # Configuration + self.connection_test_interval = 300 # Test connection every 5 minutes + self.frame_timeout_warning = 120 # Warn if no frames for 2 minutes + self.frame_timeout_critical = 300 # Critical if no frames for 5 minutes + self.error_rate_threshold = 0.1 # 10% error rate threshold + + # Register with health monitor + health_monitor.register_health_checker(self._perform_health_checks) + + def register_stream(self, camera_id: str, stream_type: str, source_url: Optional[str] = None): + """Register a new stream for monitoring.""" + with self._lock: + if camera_id not in self.streams: + self.streams[camera_id] = StreamMetrics( + camera_id=camera_id, + stream_type=stream_type, + start_time=time.time() + ) + logger.info(f"Registered stream for monitoring: {camera_id} ({stream_type})") + + # Update health monitor metrics + health_monitor.update_metrics( + camera_id, + thread_alive=True, + connection_healthy=True + ) + + def unregister_stream(self, camera_id: str): + """Unregister a stream from monitoring.""" + with self._lock: + if camera_id in self.streams: + del self.streams[camera_id] + logger.info(f"Unregistered stream from monitoring: {camera_id}") + + def report_frame_received(self, camera_id: str, frame_size_bytes: int = 0): + """Report that a frame was received.""" + current_time = time.time() + + with self._lock: + if camera_id not in self.streams: + logger.warning(f"Frame received for unregistered stream: {camera_id}") + return + + stream = self.streams[camera_id] + + # Update frame metrics + if stream.last_frame_time: + interval = current_time - stream.last_frame_time + # Calculate FPS as moving average + if stream.frames_per_second == 0: + stream.frames_per_second = 1.0 / interval if interval > 0 else 0 + else: + new_fps = 1.0 / interval if interval > 0 else 0 + stream.frames_per_second = (stream.frames_per_second * 0.9) + (new_fps * 0.1) + + stream.last_frame_time = current_time + stream.frame_count += 1 + stream.bytes_received += frame_size_bytes + + # Report to health monitor + health_monitor.report_frame_received(camera_id) + health_monitor.update_metrics( + camera_id, + frame_count=stream.frame_count, + avg_frame_interval=1.0 / stream.frames_per_second if stream.frames_per_second > 0 else 0, + last_frame_time=current_time + ) + + def report_error(self, camera_id: str, error_message: str): + """Report an error for a stream.""" + current_time = time.time() + + with self._lock: + if camera_id not in self.streams: + logger.warning(f"Error reported for unregistered stream: {camera_id}") + return + + stream = self.streams[camera_id] + stream.error_count += 1 + stream.last_error = error_message + stream.last_error_time = current_time + + # Report to health monitor + health_monitor.report_error(camera_id, "stream_error") + health_monitor.update_metrics( + camera_id, + error_count=stream.error_count + ) + + logger.debug(f"Error reported for stream {camera_id}: {error_message}") + + def report_reconnect(self, camera_id: str, reason: str = "unknown"): + """Report that a stream reconnected.""" + current_time = time.time() + + with self._lock: + if camera_id not in self.streams: + logger.warning(f"Reconnect reported for unregistered stream: {camera_id}") + return + + stream = self.streams[camera_id] + stream.reconnect_count += 1 + + # Report to health monitor + health_monitor.report_restart(camera_id) + health_monitor.update_metrics( + camera_id, + restart_count=stream.reconnect_count + ) + + logger.info(f"Reconnect reported for stream {camera_id}: {reason}") + + def report_connection_attempt(self, camera_id: str, success: bool): + """Report a connection attempt.""" + with self._lock: + if camera_id not in self.streams: + return + + stream = self.streams[camera_id] + stream.connection_attempts += 1 + stream.connection_healthy = success + + # Report to health monitor + health_monitor.update_metrics( + camera_id, + connection_healthy=success + ) + + def test_http_connection(self, camera_id: str, url: str) -> bool: + """Test HTTP connection health for snapshot streams.""" + try: + # Quick HEAD request to test connectivity + response = requests.head(url, timeout=5, verify=False) + success = response.status_code in [200, 404] # 404 might be normal for some cameras + + self.report_connection_attempt(camera_id, success) + + if success: + logger.debug(f"Connection test passed for {camera_id}") + else: + logger.warning(f"Connection test failed for {camera_id}: HTTP {response.status_code}") + + return success + + except Exception as e: + logger.warning(f"Connection test failed for {camera_id}: {e}") + self.report_connection_attempt(camera_id, False) + return False + + def get_stream_metrics(self, camera_id: str) -> Optional[Dict[str, Any]]: + """Get metrics for a specific stream.""" + with self._lock: + if camera_id not in self.streams: + return None + + stream = self.streams[camera_id] + current_time = time.time() + + # Calculate derived metrics + uptime = current_time - stream.start_time + frame_age = current_time - stream.last_frame_time if stream.last_frame_time else None + error_rate = stream.error_count / max(1, stream.frame_count) + + return { + 'camera_id': camera_id, + 'stream_type': stream.stream_type, + 'uptime_seconds': uptime, + 'frame_count': stream.frame_count, + 'frames_per_second': stream.frames_per_second, + 'bytes_received': stream.bytes_received, + 'error_count': stream.error_count, + 'error_rate': error_rate, + 'reconnect_count': stream.reconnect_count, + 'connection_attempts': stream.connection_attempts, + 'connection_healthy': stream.connection_healthy, + 'last_frame_age_seconds': frame_age, + 'last_error': stream.last_error, + 'last_error_time': stream.last_error_time + } + + def get_all_metrics(self) -> Dict[str, Dict[str, Any]]: + """Get metrics for all streams.""" + with self._lock: + return { + camera_id: self.get_stream_metrics(camera_id) + for camera_id in self.streams.keys() + } + + def _perform_health_checks(self) -> List[HealthCheck]: + """Perform health checks for all streams.""" + checks = [] + current_time = time.time() + + with self._lock: + for camera_id, stream in self.streams.items(): + checks.extend(self._check_stream_health(camera_id, stream, current_time)) + + return checks + + def _check_stream_health(self, camera_id: str, stream: StreamMetrics, current_time: float) -> List[HealthCheck]: + """Perform health checks for a single stream.""" + checks = [] + + # Check frame freshness + if stream.last_frame_time: + frame_age = current_time - stream.last_frame_time + + if frame_age > self.frame_timeout_critical: + checks.append(HealthCheck( + name=f"stream_{camera_id}_frames", + status=HealthStatus.CRITICAL, + message=f"No frames for {frame_age:.1f}s (critical threshold: {self.frame_timeout_critical}s)", + details={ + 'frame_age': frame_age, + 'threshold': self.frame_timeout_critical, + 'last_frame_time': stream.last_frame_time + }, + recovery_action="restart_stream" + )) + elif frame_age > self.frame_timeout_warning: + checks.append(HealthCheck( + name=f"stream_{camera_id}_frames", + status=HealthStatus.WARNING, + message=f"Frames aging: {frame_age:.1f}s (warning threshold: {self.frame_timeout_warning}s)", + details={ + 'frame_age': frame_age, + 'threshold': self.frame_timeout_warning, + 'last_frame_time': stream.last_frame_time + } + )) + else: + # No frames received yet + startup_time = current_time - stream.start_time + if startup_time > 60: # Allow 1 minute for initial connection + checks.append(HealthCheck( + name=f"stream_{camera_id}_startup", + status=HealthStatus.CRITICAL, + message=f"No frames received since startup {startup_time:.1f}s ago", + details={ + 'startup_time': startup_time, + 'start_time': stream.start_time + }, + recovery_action="restart_stream" + )) + + # Check error rate + if stream.frame_count > 10: # Need sufficient samples + error_rate = stream.error_count / stream.frame_count + if error_rate > self.error_rate_threshold: + checks.append(HealthCheck( + name=f"stream_{camera_id}_errors", + status=HealthStatus.WARNING, + message=f"High error rate: {error_rate:.1%} ({stream.error_count}/{stream.frame_count})", + details={ + 'error_rate': error_rate, + 'error_count': stream.error_count, + 'frame_count': stream.frame_count, + 'last_error': stream.last_error + } + )) + + # Check connection health + if not stream.connection_healthy: + checks.append(HealthCheck( + name=f"stream_{camera_id}_connection", + status=HealthStatus.WARNING, + message="Connection unhealthy (last test failed)", + details={ + 'connection_attempts': stream.connection_attempts, + 'last_connection_test': stream.last_connection_test + } + )) + + # Check excessive reconnects + uptime_hours = (current_time - stream.start_time) / 3600 + if uptime_hours > 1 and stream.reconnect_count > 5: # More than 5 reconnects per hour + reconnect_rate = stream.reconnect_count / uptime_hours + checks.append(HealthCheck( + name=f"stream_{camera_id}_stability", + status=HealthStatus.WARNING, + message=f"Frequent reconnects: {reconnect_rate:.1f}/hour ({stream.reconnect_count} total)", + details={ + 'reconnect_rate': reconnect_rate, + 'reconnect_count': stream.reconnect_count, + 'uptime_hours': uptime_hours + } + )) + + # Check frame rate health + if stream.last_frame_time and stream.frames_per_second > 0: + expected_fps = 6.0 # Expected FPS for streams + if stream.frames_per_second < expected_fps * 0.5: # Less than 50% of expected + checks.append(HealthCheck( + name=f"stream_{camera_id}_framerate", + status=HealthStatus.WARNING, + message=f"Low frame rate: {stream.frames_per_second:.1f} fps (expected: ~{expected_fps} fps)", + details={ + 'current_fps': stream.frames_per_second, + 'expected_fps': expected_fps + } + )) + + return checks + + +# Global stream health tracker instance +stream_health_tracker = StreamHealthTracker() \ No newline at end of file diff --git a/core/monitoring/thread_health.py b/core/monitoring/thread_health.py new file mode 100644 index 0000000..a29625b --- /dev/null +++ b/core/monitoring/thread_health.py @@ -0,0 +1,381 @@ +""" +Thread health monitoring for detecting unresponsive and deadlocked threads. +Provides thread liveness detection and responsiveness testing. +""" +import time +import threading +import logging +import signal +import traceback +from typing import Dict, List, Optional, Any, Callable +from dataclasses import dataclass +from collections import defaultdict + +from .health import HealthCheck, HealthStatus, health_monitor + + +logger = logging.getLogger(__name__) + + +@dataclass +class ThreadInfo: + """Information about a monitored thread.""" + thread_id: int + thread_name: str + start_time: float + last_heartbeat: float + heartbeat_count: int = 0 + is_responsive: bool = True + last_activity: Optional[str] = None + stack_traces: List[str] = None + + +class ThreadHealthMonitor: + """Monitors thread health and responsiveness.""" + + def __init__(self): + self.monitored_threads: Dict[int, ThreadInfo] = {} + self.heartbeat_callbacks: Dict[int, Callable[[], bool]] = {} + self._lock = threading.RLock() + + # Configuration + self.heartbeat_timeout = 60.0 # 1 minute without heartbeat = unresponsive + self.responsiveness_test_interval = 30.0 # Test responsiveness every 30 seconds + self.stack_trace_count = 5 # Keep last 5 stack traces for analysis + + # Register with health monitor + health_monitor.register_health_checker(self._perform_health_checks) + + # Enable periodic responsiveness testing + self.test_thread = threading.Thread(target=self._responsiveness_test_loop, daemon=True) + self.test_thread.start() + + def register_thread(self, thread: threading.Thread, heartbeat_callback: Optional[Callable[[], bool]] = None): + """ + Register a thread for monitoring. + + Args: + thread: Thread to monitor + heartbeat_callback: Optional callback to test thread responsiveness + """ + with self._lock: + thread_info = ThreadInfo( + thread_id=thread.ident, + thread_name=thread.name, + start_time=time.time(), + last_heartbeat=time.time() + ) + + self.monitored_threads[thread.ident] = thread_info + + if heartbeat_callback: + self.heartbeat_callbacks[thread.ident] = heartbeat_callback + + logger.info(f"Registered thread for monitoring: {thread.name} (ID: {thread.ident})") + + def unregister_thread(self, thread_id: int): + """Unregister a thread from monitoring.""" + with self._lock: + if thread_id in self.monitored_threads: + thread_name = self.monitored_threads[thread_id].thread_name + del self.monitored_threads[thread_id] + + if thread_id in self.heartbeat_callbacks: + del self.heartbeat_callbacks[thread_id] + + logger.info(f"Unregistered thread from monitoring: {thread_name} (ID: {thread_id})") + + def heartbeat(self, thread_id: Optional[int] = None, activity: Optional[str] = None): + """ + Report thread heartbeat. + + Args: + thread_id: Thread ID (uses current thread if None) + activity: Description of current activity + """ + if thread_id is None: + thread_id = threading.current_thread().ident + + current_time = time.time() + + with self._lock: + if thread_id in self.monitored_threads: + thread_info = self.monitored_threads[thread_id] + thread_info.last_heartbeat = current_time + thread_info.heartbeat_count += 1 + thread_info.is_responsive = True + + if activity: + thread_info.last_activity = activity + + # Report to health monitor + health_monitor.update_metrics( + f"thread_{thread_info.thread_name}", + thread_alive=True, + last_frame_time=current_time + ) + + def get_thread_info(self, thread_id: int) -> Optional[Dict[str, Any]]: + """Get information about a monitored thread.""" + with self._lock: + if thread_id not in self.monitored_threads: + return None + + thread_info = self.monitored_threads[thread_id] + current_time = time.time() + + return { + 'thread_id': thread_id, + 'thread_name': thread_info.thread_name, + 'uptime_seconds': current_time - thread_info.start_time, + 'last_heartbeat_age': current_time - thread_info.last_heartbeat, + 'heartbeat_count': thread_info.heartbeat_count, + 'is_responsive': thread_info.is_responsive, + 'last_activity': thread_info.last_activity, + 'stack_traces': thread_info.stack_traces or [] + } + + def get_all_thread_info(self) -> Dict[int, Dict[str, Any]]: + """Get information about all monitored threads.""" + with self._lock: + return { + thread_id: self.get_thread_info(thread_id) + for thread_id in self.monitored_threads.keys() + } + + def test_thread_responsiveness(self, thread_id: int) -> bool: + """ + Test if a thread is responsive by calling its heartbeat callback. + + Args: + thread_id: ID of thread to test + + Returns: + True if thread responds within timeout + """ + if thread_id not in self.heartbeat_callbacks: + return True # Can't test if no callback provided + + try: + # Call the heartbeat callback with a timeout + callback = self.heartbeat_callbacks[thread_id] + + # This is a simple approach - in practice you might want to use + # threading.Timer or asyncio for more sophisticated timeout handling + start_time = time.time() + result = callback() + response_time = time.time() - start_time + + with self._lock: + if thread_id in self.monitored_threads: + self.monitored_threads[thread_id].is_responsive = result + + if response_time > 5.0: # Slow response + logger.warning(f"Thread {thread_id} slow response: {response_time:.1f}s") + + return result + + except Exception as e: + logger.error(f"Error testing thread {thread_id} responsiveness: {e}") + with self._lock: + if thread_id in self.monitored_threads: + self.monitored_threads[thread_id].is_responsive = False + return False + + def capture_stack_trace(self, thread_id: int) -> Optional[str]: + """ + Capture stack trace for a thread. + + Args: + thread_id: ID of thread to capture + + Returns: + Stack trace string or None if not available + """ + try: + # Get all frames for all threads + frames = dict(threading._current_frames()) + + if thread_id not in frames: + return None + + # Format stack trace + frame = frames[thread_id] + stack_trace = ''.join(traceback.format_stack(frame)) + + # Store in thread info + with self._lock: + if thread_id in self.monitored_threads: + thread_info = self.monitored_threads[thread_id] + if thread_info.stack_traces is None: + thread_info.stack_traces = [] + + thread_info.stack_traces.append(f"{time.time()}: {stack_trace}") + + # Keep only last N stack traces + if len(thread_info.stack_traces) > self.stack_trace_count: + thread_info.stack_traces = thread_info.stack_traces[-self.stack_trace_count:] + + return stack_trace + + except Exception as e: + logger.error(f"Error capturing stack trace for thread {thread_id}: {e}") + return None + + def detect_deadlocks(self) -> List[Dict[str, Any]]: + """ + Attempt to detect potential deadlocks by analyzing thread states. + + Returns: + List of potential deadlock scenarios + """ + deadlocks = [] + current_time = time.time() + + with self._lock: + # Look for threads that haven't had heartbeats for a long time + # and are supposedly alive + for thread_id, thread_info in self.monitored_threads.items(): + heartbeat_age = current_time - thread_info.last_heartbeat + + if heartbeat_age > self.heartbeat_timeout * 2: # Double the timeout + # Check if thread still exists + thread_exists = any( + t.ident == thread_id and t.is_alive() + for t in threading.enumerate() + ) + + if thread_exists: + # Thread exists but not responding - potential deadlock + stack_trace = self.capture_stack_trace(thread_id) + + deadlock_info = { + 'thread_id': thread_id, + 'thread_name': thread_info.thread_name, + 'heartbeat_age': heartbeat_age, + 'last_activity': thread_info.last_activity, + 'stack_trace': stack_trace, + 'detection_time': current_time + } + + deadlocks.append(deadlock_info) + logger.warning(f"Potential deadlock detected in thread {thread_info.thread_name}") + + return deadlocks + + def _responsiveness_test_loop(self): + """Background loop to test thread responsiveness.""" + logger.info("Thread responsiveness testing started") + + while True: + try: + time.sleep(self.responsiveness_test_interval) + + with self._lock: + thread_ids = list(self.monitored_threads.keys()) + + for thread_id in thread_ids: + try: + self.test_thread_responsiveness(thread_id) + except Exception as e: + logger.error(f"Error testing thread {thread_id}: {e}") + + except Exception as e: + logger.error(f"Error in responsiveness test loop: {e}") + time.sleep(10.0) # Fallback sleep + + def _perform_health_checks(self) -> List[HealthCheck]: + """Perform health checks for all monitored threads.""" + checks = [] + current_time = time.time() + + with self._lock: + for thread_id, thread_info in self.monitored_threads.items(): + checks.extend(self._check_thread_health(thread_id, thread_info, current_time)) + + # Check for deadlocks + deadlocks = self.detect_deadlocks() + for deadlock in deadlocks: + checks.append(HealthCheck( + name=f"deadlock_detection_{deadlock['thread_id']}", + status=HealthStatus.CRITICAL, + message=f"Potential deadlock in thread {deadlock['thread_name']} " + f"(unresponsive for {deadlock['heartbeat_age']:.1f}s)", + details=deadlock, + recovery_action="restart_thread" + )) + + return checks + + def _check_thread_health(self, thread_id: int, thread_info: ThreadInfo, current_time: float) -> List[HealthCheck]: + """Perform health checks for a single thread.""" + checks = [] + + # Check if thread still exists + thread_exists = any( + t.ident == thread_id and t.is_alive() + for t in threading.enumerate() + ) + + if not thread_exists: + checks.append(HealthCheck( + name=f"thread_{thread_info.thread_name}_alive", + status=HealthStatus.CRITICAL, + message=f"Thread {thread_info.thread_name} is no longer alive", + details={ + 'thread_id': thread_id, + 'uptime': current_time - thread_info.start_time, + 'last_heartbeat': thread_info.last_heartbeat + }, + recovery_action="restart_thread" + )) + return checks + + # Check heartbeat freshness + heartbeat_age = current_time - thread_info.last_heartbeat + + if heartbeat_age > self.heartbeat_timeout: + checks.append(HealthCheck( + name=f"thread_{thread_info.thread_name}_responsive", + status=HealthStatus.CRITICAL, + message=f"Thread {thread_info.thread_name} unresponsive for {heartbeat_age:.1f}s", + details={ + 'thread_id': thread_id, + 'heartbeat_age': heartbeat_age, + 'heartbeat_count': thread_info.heartbeat_count, + 'last_activity': thread_info.last_activity, + 'is_responsive': thread_info.is_responsive + }, + recovery_action="restart_thread" + )) + elif heartbeat_age > self.heartbeat_timeout * 0.5: # Warning at 50% of timeout + checks.append(HealthCheck( + name=f"thread_{thread_info.thread_name}_responsive", + status=HealthStatus.WARNING, + message=f"Thread {thread_info.thread_name} slow heartbeat: {heartbeat_age:.1f}s", + details={ + 'thread_id': thread_id, + 'heartbeat_age': heartbeat_age, + 'heartbeat_count': thread_info.heartbeat_count, + 'last_activity': thread_info.last_activity, + 'is_responsive': thread_info.is_responsive + } + )) + + # Check responsiveness test results + if not thread_info.is_responsive: + checks.append(HealthCheck( + name=f"thread_{thread_info.thread_name}_callback", + status=HealthStatus.WARNING, + message=f"Thread {thread_info.thread_name} failed responsiveness test", + details={ + 'thread_id': thread_id, + 'last_activity': thread_info.last_activity + } + )) + + return checks + + +# Global thread health monitor instance +thread_health_monitor = ThreadHealthMonitor() \ No newline at end of file diff --git a/core/streaming/__init__.py b/core/streaming/__init__.py index d878aac..93005ab 100644 --- a/core/streaming/__init__.py +++ b/core/streaming/__init__.py @@ -2,13 +2,12 @@ Streaming system for RTSP and HTTP camera feeds. Provides modular frame readers, buffers, and stream management. """ -from .readers import RTSPReader, HTTPSnapshotReader, FFmpegRTSPReader +from .readers import HTTPSnapshotReader, FFmpegRTSPReader from .buffers import FrameBuffer, CacheBuffer, shared_frame_buffer, shared_cache_buffer from .manager import StreamManager, StreamConfig, SubscriptionInfo, shared_stream_manager, initialize_stream_manager __all__ = [ # Readers - 'RTSPReader', 'HTTPSnapshotReader', 'FFmpegRTSPReader', diff --git a/core/streaming/manager.py b/core/streaming/manager.py index 0c026e7..c4ebd77 100644 --- a/core/streaming/manager.py +++ b/core/streaming/manager.py @@ -5,11 +5,13 @@ Optimized for 1280x720@6fps RTSP and 2560x1440 HTTP snapshots. import logging import threading import time +import queue +import asyncio from typing import Dict, Set, Optional, List, Any from dataclasses import dataclass from collections import defaultdict -from .readers import RTSPReader, HTTPSnapshotReader, FFmpegRTSPReader +from .readers import HTTPSnapshotReader, FFmpegRTSPReader from .buffers import shared_cache_buffer from ..tracking.integration import TrackingPipelineIntegration @@ -50,6 +52,65 @@ class StreamManager: self._camera_subscribers: Dict[str, Set[str]] = defaultdict(set) # camera_id -> set of subscription_ids self._lock = threading.RLock() + # Fair tracking queue system - per camera queues + self._tracking_queues: Dict[str, queue.Queue] = {} # camera_id -> queue + self._tracking_workers = [] + self._stop_workers = threading.Event() + self._dropped_frame_counts: Dict[str, int] = {} # per-camera drop counts + + # Round-robin scheduling state + self._camera_list = [] # Ordered list of active cameras + self._camera_round_robin_index = 0 + self._round_robin_lock = threading.Lock() + + # Start worker threads for tracking processing + num_workers = min(4, max_streams // 2 + 1) # Scale with streams + for i in range(num_workers): + worker = threading.Thread( + target=self._tracking_worker_loop, + name=f"TrackingWorker-{i}", + daemon=True + ) + worker.start() + self._tracking_workers.append(worker) + + logger.info(f"Started {num_workers} tracking worker threads") + + def _ensure_camera_queue(self, camera_id: str): + """Ensure a tracking queue exists for the camera.""" + if camera_id not in self._tracking_queues: + self._tracking_queues[camera_id] = queue.Queue(maxsize=10) # 10 frames per camera + self._dropped_frame_counts[camera_id] = 0 + + with self._round_robin_lock: + if camera_id not in self._camera_list: + self._camera_list.append(camera_id) + logger.info(f"Created tracking queue for camera {camera_id}") + else: + logger.debug(f"Camera {camera_id} already has tracking queue") + + def _remove_camera_queue(self, camera_id: str): + """Remove tracking queue for a camera that's no longer active.""" + if camera_id in self._tracking_queues: + # Clear any remaining items + while not self._tracking_queues[camera_id].empty(): + try: + self._tracking_queues[camera_id].get_nowait() + except queue.Empty: + break + + del self._tracking_queues[camera_id] + del self._dropped_frame_counts[camera_id] + + with self._round_robin_lock: + if camera_id in self._camera_list: + self._camera_list.remove(camera_id) + # Reset index if needed + if self._camera_round_robin_index >= len(self._camera_list): + self._camera_round_robin_index = 0 + + logger.info(f"Removed tracking queue for camera {camera_id}") + def add_subscription(self, subscription_id: str, stream_config: StreamConfig, crop_coords: Optional[tuple] = None, model_id: Optional[str] = None, @@ -93,6 +154,10 @@ class StreamManager: if not success: self._remove_subscription_internal(subscription_id) return False + else: + # Stream already exists, but ensure queue exists too + logger.info(f"Stream already exists for {camera_id}, ensuring queue exists") + self._ensure_camera_queue(camera_id) logger.info(f"Added subscription {subscription_id} for camera {camera_id} " f"({len(self._camera_subscribers[camera_id])} total subscribers)") @@ -139,6 +204,7 @@ class StreamManager: reader.set_frame_callback(self._frame_callback) reader.start() self._streams[camera_id] = reader + self._ensure_camera_queue(camera_id) # Create tracking queue logger.info(f"\033[92m[RTSP] {camera_id} connected\033[0m") elif stream_config.snapshot_url: @@ -153,6 +219,7 @@ class StreamManager: reader.set_frame_callback(self._frame_callback) reader.start() self._streams[camera_id] = reader + self._ensure_camera_queue(camera_id) # Create tracking queue logger.info(f"\033[92m[HTTP] {camera_id} connected\033[0m") else: @@ -171,6 +238,7 @@ class StreamManager: try: self._streams[camera_id].stop() del self._streams[camera_id] + self._remove_camera_queue(camera_id) # Remove tracking queue # DON'T clear frames - they should persist until replaced # shared_cache_buffer.clear_camera(camera_id) # REMOVED - frames should persist logger.info(f"Stopped stream for camera {camera_id} (frames preserved in buffer)") @@ -193,8 +261,19 @@ class StreamManager: available_cameras = shared_cache_buffer.frame_buffer.get_camera_list() logger.info(f"\033[96m[BUFFER] {len(available_cameras)} active cameras: {', '.join(available_cameras)}\033[0m") - # Process tracking for subscriptions with tracking integration - self._process_tracking_for_camera(camera_id, frame) + # Queue for tracking processing (non-blocking) - route to camera-specific queue + if camera_id in self._tracking_queues: + try: + self._tracking_queues[camera_id].put_nowait({ + 'frame': frame, + 'timestamp': time.time() + }) + except queue.Full: + # Drop frame if camera queue is full (maintain real-time) + self._dropped_frame_counts[camera_id] += 1 + + if self._dropped_frame_counts[camera_id] % 50 == 0: + logger.warning(f"Dropped {self._dropped_frame_counts[camera_id]} frames for camera {camera_id} due to full queue") except Exception as e: logger.error(f"Error in frame callback for camera {camera_id}: {e}") @@ -251,6 +330,134 @@ class StreamManager: except Exception as e: logger.error(f"Error processing tracking for camera {camera_id}: {e}") + def _tracking_worker_loop(self): + """Worker thread loop for round-robin processing of camera queues.""" + logger.info(f"Tracking worker {threading.current_thread().name} started") + + consecutive_empty = 0 + max_consecutive_empty = 10 # Sleep if all cameras empty this many times + + while not self._stop_workers.is_set(): + try: + # Get next camera in round-robin fashion + camera_id, item = self._get_next_camera_item() + + if camera_id is None: + # No cameras have items, sleep briefly + consecutive_empty += 1 + if consecutive_empty >= max_consecutive_empty: + time.sleep(0.1) # Sleep 100ms if nothing to process + consecutive_empty = 0 + continue + + consecutive_empty = 0 # Reset counter when we find work + + frame = item['frame'] + timestamp = item['timestamp'] + + # Check if frame is too old (drop if > 1 second old) + age = time.time() - timestamp + if age > 1.0: + logger.debug(f"Dropping old frame for {camera_id} (age: {age:.2f}s)") + continue + + # Process tracking for this camera's frame + self._process_tracking_for_camera_sync(camera_id, frame) + + except Exception as e: + logger.error(f"Error in tracking worker: {e}", exc_info=True) + + logger.info(f"Tracking worker {threading.current_thread().name} stopped") + + def _get_next_camera_item(self): + """Get next item from camera queues using round-robin scheduling.""" + with self._round_robin_lock: + # Get current list of cameras from actual tracking queues (central state) + camera_list = list(self._tracking_queues.keys()) + + if not camera_list: + return None, None + + attempts = 0 + max_attempts = len(camera_list) + + while attempts < max_attempts: + # Get current camera using round-robin index + if self._camera_round_robin_index >= len(camera_list): + self._camera_round_robin_index = 0 + + camera_id = camera_list[self._camera_round_robin_index] + + # Move to next camera for next call + self._camera_round_robin_index = (self._camera_round_robin_index + 1) % len(camera_list) + + # Try to get item from this camera's queue + try: + item = self._tracking_queues[camera_id].get_nowait() + return camera_id, item + except queue.Empty: + pass # Try next camera + + attempts += 1 + + return None, None # All cameras empty + + def _process_tracking_for_camera_sync(self, camera_id: str, frame): + """Synchronous version of tracking processing for worker threads.""" + try: + with self._lock: + subscription_ids = list(self._camera_subscribers.get(camera_id, [])) + + for subscription_id in subscription_ids: + subscription_info = self._subscriptions.get(subscription_id) + + if not subscription_info: + logger.warning(f"No subscription info found for {subscription_id}") + continue + + if not subscription_info.tracking_integration: + logger.debug(f"No tracking integration for {subscription_id} (camera {camera_id}), skipping inference") + continue + + display_id = subscription_id.split(';')[0] if ';' in subscription_id else subscription_id + + try: + # Run async tracking in thread's event loop + loop = asyncio.new_event_loop() + asyncio.set_event_loop(loop) + try: + result = loop.run_until_complete( + subscription_info.tracking_integration.process_frame( + frame, display_id, subscription_id + ) + ) + + # Log tracking results + if result: + tracked_count = len(result.get('tracked_vehicles', [])) + validated_vehicle = result.get('validated_vehicle') + pipeline_result = result.get('pipeline_result') + + if tracked_count > 0: + logger.info(f"[Tracking] {camera_id}: {tracked_count} vehicles tracked") + + if validated_vehicle: + logger.info(f"[Tracking] {camera_id}: Vehicle {validated_vehicle['track_id']} " + f"validated as {validated_vehicle['state']} " + f"(confidence: {validated_vehicle['confidence']:.2f})") + + if pipeline_result: + logger.info(f"[Pipeline] {camera_id}: {pipeline_result.get('status', 'unknown')} - " + f"{pipeline_result.get('message', 'no message')}") + finally: + loop.close() + + except Exception as track_e: + logger.error(f"Error in tracking for {subscription_id}: {track_e}") + + except Exception as e: + logger.error(f"Error processing tracking for camera {camera_id}: {e}") + def get_frame(self, camera_id: str, crop_coords: Optional[tuple] = None): """Get the latest frame for a camera with optional cropping.""" return shared_cache_buffer.get_frame(camera_id, crop_coords) @@ -366,6 +573,30 @@ class StreamManager: def stop_all(self): """Stop all streams and clear all subscriptions.""" + # Signal workers to stop + self._stop_workers.set() + + # Clear all camera queues + for camera_id, camera_queue in list(self._tracking_queues.items()): + while not camera_queue.empty(): + try: + camera_queue.get_nowait() + except queue.Empty: + break + + # Wait for workers to finish + for worker in self._tracking_workers: + worker.join(timeout=2.0) + + # Clear queue management structures + self._tracking_queues.clear() + self._dropped_frame_counts.clear() + with self._round_robin_lock: + self._camera_list.clear() + self._camera_round_robin_index = 0 + + logger.info("Stopped all tracking worker threads") + with self._lock: # Stop all streams for camera_id in list(self._streams.keys()): @@ -380,13 +611,20 @@ class StreamManager: def set_session_id(self, display_id: str, session_id: str): """Set session ID for tracking integration.""" + # Ensure session_id is always a string for consistent type handling + session_id = str(session_id) if session_id is not None else None with self._lock: for subscription_info in self._subscriptions.values(): # Check if this subscription matches the display_id subscription_display_id = subscription_info.subscription_id.split(';')[0] if subscription_display_id == display_id and subscription_info.tracking_integration: - subscription_info.tracking_integration.set_session_id(display_id, session_id) - logger.debug(f"Set session {session_id} for display {display_id}") + # Pass the full subscription_id (displayId;cameraId) to the tracking integration + subscription_info.tracking_integration.set_session_id( + display_id, + session_id, + subscription_id=subscription_info.subscription_id + ) + logger.debug(f"Set session {session_id} for display {display_id} with subscription {subscription_info.subscription_id}") def clear_session_id(self, session_id: str): """Clear session ID from the specific tracking integration handling this session.""" diff --git a/core/streaming/readers.py b/core/streaming/readers.py deleted file mode 100644 index d5635ba..0000000 --- a/core/streaming/readers.py +++ /dev/null @@ -1,786 +0,0 @@ -""" -Frame readers for RTSP streams and HTTP snapshots. -Optimized for 1280x720@6fps RTSP and 2560x1440 HTTP snapshots. -""" -import cv2 -import logging -import time -import threading -import requests -import numpy as np -import os -import subprocess -# import fcntl # No longer needed with atomic file operations -from typing import Optional, Callable -# Removed watchdog imports - no longer using file watching - -# Suppress FFMPEG/H.264 error messages if needed -# Set this environment variable to reduce noise from decoder errors -os.environ["OPENCV_LOG_LEVEL"] = "ERROR" -os.environ["OPENCV_FFMPEG_LOGLEVEL"] = "-8" # Suppress FFMPEG warnings - -logger = logging.getLogger(__name__) - -# Color codes for pretty logging -class Colors: - GREEN = '\033[92m' - YELLOW = '\033[93m' - RED = '\033[91m' - BLUE = '\033[94m' - PURPLE = '\033[95m' - CYAN = '\033[96m' - WHITE = '\033[97m' - BOLD = '\033[1m' - END = '\033[0m' - -def log_success(camera_id: str, message: str): - """Log success messages in green""" - logger.info(f"{Colors.GREEN}[{camera_id}] {message}{Colors.END}") - -def log_warning(camera_id: str, message: str): - """Log warnings in yellow""" - logger.warning(f"{Colors.YELLOW}[{camera_id}] {message}{Colors.END}") - -def log_error(camera_id: str, message: str): - """Log errors in red""" - logger.error(f"{Colors.RED}[{camera_id}] {message}{Colors.END}") - -def log_info(camera_id: str, message: str): - """Log info in cyan""" - logger.info(f"{Colors.CYAN}[{camera_id}] {message}{Colors.END}") - -# Removed watchdog logging configuration - no longer using file watching - - -# Removed FrameFileHandler - no longer using file watching - - -class FFmpegRTSPReader: - """RTSP stream reader using subprocess FFmpeg piping frames directly to buffer.""" - - def __init__(self, camera_id: str, rtsp_url: str, max_retries: int = 3): - self.camera_id = camera_id - self.rtsp_url = rtsp_url - self.max_retries = max_retries - self.process = None - self.stop_event = threading.Event() - self.thread = None - self.frame_callback: Optional[Callable] = None - - # Expected stream specs (for reference, actual dimensions read from PPM header) - self.width = 1280 - self.height = 720 - - def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]): - """Set callback function to handle captured frames.""" - self.frame_callback = callback - - def start(self): - """Start the FFmpeg subprocess reader.""" - if self.thread and self.thread.is_alive(): - logger.warning(f"FFmpeg reader for {self.camera_id} already running") - return - - self.stop_event.clear() - self.thread = threading.Thread(target=self._read_frames, daemon=True) - self.thread.start() - log_success(self.camera_id, "Stream started") - - def stop(self): - """Stop the FFmpeg subprocess reader.""" - self.stop_event.set() - if self.process: - self.process.terminate() - try: - self.process.wait(timeout=5) - except subprocess.TimeoutExpired: - self.process.kill() - if self.thread: - self.thread.join(timeout=5.0) - log_info(self.camera_id, "Stream stopped") - - # Removed _probe_stream_info - BMP headers contain dimensions - - def _start_ffmpeg_process(self): - """Start FFmpeg subprocess outputting BMP frames to stdout pipe.""" - cmd = [ - 'ffmpeg', - # DO NOT REMOVE - # '-hwaccel', 'cuda', - # '-hwaccel_device', '0', - '-rtsp_transport', 'tcp', - '-i', self.rtsp_url, - '-f', 'image2pipe', # Output images to pipe - '-vcodec', 'bmp', # BMP format with header containing dimensions - # Use native stream resolution and framerate - '-an', # No audio - '-' # Output to stdout - ] - - try: - # Start FFmpeg with stdout pipe to read frames directly - self.process = subprocess.Popen( - cmd, - stdout=subprocess.PIPE, # Capture stdout for frame data - stderr=subprocess.DEVNULL, - bufsize=0 # Unbuffered for real-time processing - ) - return True - except Exception as e: - log_error(self.camera_id, f"FFmpeg startup failed: {e}") - return False - - def _read_bmp_frame(self, pipe): - """Read BMP frame from pipe - BMP header contains dimensions.""" - try: - # Read BMP header (14 bytes file header + 40 bytes info header = 54 bytes minimum) - header_data = b'' - bytes_to_read = 54 - - while len(header_data) < bytes_to_read: - chunk = pipe.read(bytes_to_read - len(header_data)) - if not chunk: - return None # Silent end of stream - header_data += chunk - - # Parse BMP header - if header_data[:2] != b'BM': - return None # Invalid format, skip frame silently - - # Extract file size from header (bytes 2-5) - import struct - file_size = struct.unpack('= 60: - log_success(self.camera_id, f"{frame_count} frames captured ({frame.shape[1]}x{frame.shape[0]})") - last_log_time = current_time - - except Exception: - # Process might have died, let it restart on next iteration - if self.process: - self.process.terminate() - self.process = None - time.sleep(1.0) - - except Exception: - time.sleep(1.0) - - # Cleanup - if self.process: - self.process.terminate() - - -logger = logging.getLogger(__name__) - - -class RTSPReader: - """RTSP stream frame reader optimized for 1280x720 @ 6fps streams.""" - - def __init__(self, camera_id: str, rtsp_url: str, max_retries: int = 3): - self.camera_id = camera_id - self.rtsp_url = rtsp_url - self.max_retries = max_retries - self.cap = None - self.stop_event = threading.Event() - self.thread = None - self.frame_callback: Optional[Callable] = None - - # Expected stream specifications - self.expected_width = 1280 - self.expected_height = 720 - self.expected_fps = 6 - - # Frame processing parameters - self.error_recovery_delay = 5.0 # Increased from 2.0 for stability - self.max_consecutive_errors = 30 # Increased from 10 to handle network jitter - self.stream_timeout = 30.0 - - def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]): - """Set callback function to handle captured frames.""" - self.frame_callback = callback - - def start(self): - """Start the RTSP reader thread.""" - if self.thread and self.thread.is_alive(): - logger.warning(f"RTSP reader for {self.camera_id} already running") - return - - self.stop_event.clear() - self.thread = threading.Thread(target=self._read_frames, daemon=True) - self.thread.start() - logger.info(f"Started RTSP reader for camera {self.camera_id}") - - def stop(self): - """Stop the RTSP reader thread.""" - self.stop_event.set() - if self.thread: - self.thread.join(timeout=5.0) - if self.cap: - self.cap.release() - logger.info(f"Stopped RTSP reader for camera {self.camera_id}") - - def _read_frames(self): - """Main frame reading loop with H.264 error recovery.""" - consecutive_errors = 0 - frame_count = 0 - last_log_time = time.time() - last_successful_frame_time = time.time() - - while not self.stop_event.is_set(): - try: - # Initialize/reinitialize capture if needed - if not self.cap or not self.cap.isOpened(): - if not self._initialize_capture(): - time.sleep(self.error_recovery_delay) - continue - last_successful_frame_time = time.time() - - # Check for stream timeout - if time.time() - last_successful_frame_time > self.stream_timeout: - logger.warning(f"Camera {self.camera_id}: Stream timeout, reinitializing") - self._reinitialize_capture() - last_successful_frame_time = time.time() - continue - - # Read frame immediately without rate limiting for minimum latency - try: - ret, frame = self.cap.read() - if ret and frame is None: - # Grab succeeded but retrieve failed - decoder issue - logger.error(f"Camera {self.camera_id}: Frame grab OK but decode failed") - except Exception as read_error: - logger.error(f"Camera {self.camera_id}: cap.read() threw exception: {type(read_error).__name__}: {read_error}") - ret, frame = False, None - - if not ret or frame is None: - consecutive_errors += 1 - - # Enhanced logging to diagnose the issue - logger.error(f"Camera {self.camera_id}: cap.read() failed - ret={ret}, frame={frame is not None}") - - # Try to get more info from the capture - try: - if self.cap and self.cap.isOpened(): - backend = self.cap.getBackendName() - pos_frames = self.cap.get(cv2.CAP_PROP_POS_FRAMES) - logger.error(f"Camera {self.camera_id}: Capture open, backend: {backend}, pos_frames: {pos_frames}") - else: - logger.error(f"Camera {self.camera_id}: Capture is closed or None!") - except Exception as info_error: - logger.error(f"Camera {self.camera_id}: Error getting capture info: {type(info_error).__name__}: {info_error}") - - if consecutive_errors >= self.max_consecutive_errors: - logger.error(f"Camera {self.camera_id}: Too many consecutive errors ({consecutive_errors}), reinitializing") - self._reinitialize_capture() - consecutive_errors = 0 - time.sleep(self.error_recovery_delay) - else: - # Skip corrupted frame and continue with exponential backoff - if consecutive_errors <= 5: - logger.debug(f"Camera {self.camera_id}: Frame read failed (error {consecutive_errors})") - elif consecutive_errors % 10 == 0: # Log every 10th error after 5 - logger.warning(f"Camera {self.camera_id}: Continuing frame read failures (error {consecutive_errors})") - - # Exponential backoff with cap at 1 second - sleep_time = min(0.1 * (1.5 ** min(consecutive_errors, 10)), 1.0) - time.sleep(sleep_time) - continue - - # Accept any valid frame dimensions - don't force specific resolution - if frame.shape[1] <= 0 or frame.shape[0] <= 0: - consecutive_errors += 1 - continue - - # Check for corrupted frames (all black, all white, excessive noise) - if self._is_frame_corrupted(frame): - logger.debug(f"Camera {self.camera_id}: Corrupted frame detected, skipping") - consecutive_errors += 1 - continue - - # Frame is valid - consecutive_errors = 0 - frame_count += 1 - last_successful_frame_time = time.time() - - # Call frame callback - if self.frame_callback: - try: - self.frame_callback(self.camera_id, frame) - except Exception as e: - logger.error(f"Camera {self.camera_id}: Frame callback error: {e}") - - # Log progress every 30 seconds - current_time = time.time() - if current_time - last_log_time >= 30: - logger.info(f"Camera {self.camera_id}: {frame_count} frames processed") - last_log_time = current_time - - except Exception as e: - logger.error(f"Camera {self.camera_id}: Error in frame reading loop: {e}") - consecutive_errors += 1 - if consecutive_errors >= self.max_consecutive_errors: - self._reinitialize_capture() - consecutive_errors = 0 - time.sleep(self.error_recovery_delay) - - # Cleanup - if self.cap: - self.cap.release() - logger.info(f"RTSP reader thread ended for camera {self.camera_id}") - - def _initialize_capture(self) -> bool: - """Initialize video capture with FFmpeg hardware acceleration (CUVID/NVDEC) for 1280x720@6fps.""" - try: - # Release previous capture if exists - if self.cap: - self.cap.release() - time.sleep(0.5) - - logger.info(f"Initializing capture for camera {self.camera_id} with FFmpeg hardware acceleration") - hw_accel_success = False - - # Method 1: Try OpenCV CUDA VideoReader (if built with CUVID support) - if not hw_accel_success: - try: - # Check if OpenCV was built with CUDA codec support - build_info = cv2.getBuildInformation() - if 'cudacodec' in build_info or 'CUVID' in build_info: - logger.info(f"Attempting OpenCV CUDA VideoReader for camera {self.camera_id}") - - # Use OpenCV's CUDA backend - self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG, [ - cv2.CAP_PROP_HW_ACCELERATION, cv2.VIDEO_ACCELERATION_ANY - ]) - - if self.cap.isOpened(): - hw_accel_success = True - logger.info(f"Camera {self.camera_id}: Using OpenCV CUDA hardware acceleration") - else: - logger.debug(f"Camera {self.camera_id}: OpenCV not built with CUDA codec support") - except Exception as e: - logger.debug(f"Camera {self.camera_id}: OpenCV CUDA not available: {e}") - - # Method 2: Try FFmpeg with optimal hardware acceleration (CUVID/NVDEC) - if not hw_accel_success: - try: - from core.utils.ffmpeg_detector import get_optimal_rtsp_options - import os - - # Get optimal FFmpeg options based on detected capabilities - optimal_options = get_optimal_rtsp_options(self.rtsp_url) - os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = optimal_options - - logger.info(f"Attempting FFmpeg with detected hardware acceleration for camera {self.camera_id}") - logger.debug(f"Camera {self.camera_id}: Using FFmpeg options: {optimal_options}") - - self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG) - - if self.cap.isOpened(): - hw_accel_success = True - # Try to get backend info to confirm hardware acceleration - backend = self.cap.getBackendName() - logger.info(f"Camera {self.camera_id}: Using FFmpeg hardware acceleration (backend: {backend})") - except Exception as e: - logger.debug(f"Camera {self.camera_id}: FFmpeg optimal hardware acceleration not available: {e}") - - # Method 3: Try FFmpeg with NVIDIA NVDEC (better for RTX 3060) - if not hw_accel_success: - try: - import os - os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;cuda|hwaccel_device;0|rtsp_transport;tcp' - - logger.info(f"Attempting FFmpeg with NVDEC hardware acceleration for camera {self.camera_id}") - self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG) - - if self.cap.isOpened(): - hw_accel_success = True - logger.info(f"Camera {self.camera_id}: Using FFmpeg NVDEC hardware acceleration") - except Exception as e: - logger.debug(f"Camera {self.camera_id}: FFmpeg NVDEC not available: {e}") - - # Method 4: Try FFmpeg with VAAPI (Intel/AMD GPUs) - if not hw_accel_success: - try: - import os - os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;vaapi|hwaccel_device;/dev/dri/renderD128|video_codec;h264|rtsp_transport;tcp' - - logger.info(f"Attempting FFmpeg with VAAPI for camera {self.camera_id}") - self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG) - - if self.cap.isOpened(): - hw_accel_success = True - logger.info(f"Camera {self.camera_id}: Using FFmpeg VAAPI hardware acceleration") - except Exception as e: - logger.debug(f"Camera {self.camera_id}: FFmpeg VAAPI not available: {e}") - - # Fallback: Standard FFmpeg with software decoding - if not hw_accel_success: - logger.warning(f"Camera {self.camera_id}: Hardware acceleration not available, falling back to software decoding") - import os - os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'rtsp_transport;tcp' - self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG) - - if not self.cap.isOpened(): - logger.error(f"Failed to open stream for camera {self.camera_id}") - return False - - # Don't force resolution/fps - let the stream determine its natural specs - # The camera will provide whatever resolution/fps it supports - - - # Set FFMPEG options for better H.264 handling - self.cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'H264')) - - # Verify stream properties - actual_width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) - actual_height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) - actual_fps = self.cap.get(cv2.CAP_PROP_FPS) - - logger.info(f"Camera {self.camera_id} initialized: {actual_width}x{actual_height} @ {actual_fps}fps") - - # Read and discard first few frames to stabilize stream - for _ in range(5): - ret, _ = self.cap.read() - if not ret: - logger.warning(f"Camera {self.camera_id}: Failed to read initial frames") - time.sleep(0.1) - - return True - - except Exception as e: - logger.error(f"Error initializing capture for camera {self.camera_id}: {e}") - return False - - def _reinitialize_capture(self): - """Reinitialize capture after errors with retry logic.""" - logger.info(f"Reinitializing capture for camera {self.camera_id}") - if self.cap: - self.cap.release() - self.cap = None - - # Longer delay before reconnection to avoid rapid reconnect loops - time.sleep(3.0) - - # Retry initialization up to 3 times - for attempt in range(3): - if self._initialize_capture(): - logger.info(f"Successfully reinitialized camera {self.camera_id} on attempt {attempt + 1}") - break - else: - logger.warning(f"Failed to reinitialize camera {self.camera_id} on attempt {attempt + 1}") - time.sleep(2.0) - - def _is_frame_corrupted(self, frame: np.ndarray) -> bool: - """Check if frame is corrupted (all black, all white, or excessive noise).""" - if frame is None or frame.size == 0: - return True - - # Check mean and standard deviation - mean = np.mean(frame) - std = np.std(frame) - - # All black or all white - if mean < 5 or mean > 250: - return True - - # No variation (stuck frame) - if std < 1: - return True - - # Excessive noise (corrupted H.264 decode) - # Calculate edge density as corruption indicator - edges = cv2.Canny(frame, 50, 150) - edge_density = np.sum(edges > 0) / edges.size - - # Too many edges indicate corruption - if edge_density > 0.5: - return True - - return False - - -class HTTPSnapshotReader: - """HTTP snapshot reader optimized for 2560x1440 (2K) high quality images.""" - - def __init__(self, camera_id: str, snapshot_url: str, interval_ms: int = 5000, max_retries: int = 3): - self.camera_id = camera_id - self.snapshot_url = snapshot_url - self.interval_ms = interval_ms - self.max_retries = max_retries - self.stop_event = threading.Event() - self.thread = None - self.frame_callback: Optional[Callable] = None - - # Expected snapshot specifications - self.expected_width = 2560 - self.expected_height = 1440 - self.max_file_size = 10 * 1024 * 1024 # 10MB max for 2K image - - def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]): - """Set callback function to handle captured frames.""" - self.frame_callback = callback - - def start(self): - """Start the snapshot reader thread.""" - if self.thread and self.thread.is_alive(): - logger.warning(f"Snapshot reader for {self.camera_id} already running") - return - - self.stop_event.clear() - self.thread = threading.Thread(target=self._read_snapshots, daemon=True) - self.thread.start() - logger.info(f"Started snapshot reader for camera {self.camera_id}") - - def stop(self): - """Stop the snapshot reader thread.""" - self.stop_event.set() - if self.thread: - self.thread.join(timeout=5.0) - logger.info(f"Stopped snapshot reader for camera {self.camera_id}") - - def _read_snapshots(self): - """Main snapshot reading loop for high quality 2K images.""" - retries = 0 - frame_count = 0 - last_log_time = time.time() - interval_seconds = self.interval_ms / 1000.0 - - logger.info(f"Snapshot interval for camera {self.camera_id}: {interval_seconds}s") - - while not self.stop_event.is_set(): - try: - start_time = time.time() - frame = self._fetch_snapshot() - - if frame is None: - retries += 1 - logger.warning(f"Failed to fetch snapshot for camera {self.camera_id}, retry {retries}/{self.max_retries}") - - if self.max_retries != -1 and retries > self.max_retries: - logger.error(f"Max retries reached for snapshot camera {self.camera_id}") - break - - time.sleep(min(2.0, interval_seconds)) - continue - - # Accept any valid image dimensions - don't force specific resolution - if frame.shape[1] <= 0 or frame.shape[0] <= 0: - logger.warning(f"Camera {self.camera_id}: Invalid frame dimensions {frame.shape[1]}x{frame.shape[0]}") - continue - - # Reset retry counter on successful fetch - retries = 0 - frame_count += 1 - - # Call frame callback - if self.frame_callback: - try: - self.frame_callback(self.camera_id, frame) - except Exception as e: - logger.error(f"Camera {self.camera_id}: Frame callback error: {e}") - - # Log progress every 30 seconds - current_time = time.time() - if current_time - last_log_time >= 30: - logger.info(f"Camera {self.camera_id}: {frame_count} snapshots processed") - last_log_time = current_time - - # Wait for next interval - elapsed = time.time() - start_time - sleep_time = max(0, interval_seconds - elapsed) - if sleep_time > 0: - self.stop_event.wait(sleep_time) - - except Exception as e: - logger.error(f"Error in snapshot loop for camera {self.camera_id}: {e}") - retries += 1 - if self.max_retries != -1 and retries > self.max_retries: - break - time.sleep(min(2.0, interval_seconds)) - - logger.info(f"Snapshot reader thread ended for camera {self.camera_id}") - - def _fetch_snapshot(self) -> Optional[np.ndarray]: - """Fetch a single high quality snapshot from HTTP URL.""" - try: - # Parse URL for authentication - from urllib.parse import urlparse - parsed_url = urlparse(self.snapshot_url) - - headers = { - 'User-Agent': 'Python-Detector-Worker/1.0', - 'Accept': 'image/jpeg, image/png, image/*' - } - auth = None - - if parsed_url.username and parsed_url.password: - from requests.auth import HTTPBasicAuth, HTTPDigestAuth - auth = HTTPBasicAuth(parsed_url.username, parsed_url.password) - - # Reconstruct URL without credentials - clean_url = f"{parsed_url.scheme}://{parsed_url.hostname}" - if parsed_url.port: - clean_url += f":{parsed_url.port}" - clean_url += parsed_url.path - if parsed_url.query: - clean_url += f"?{parsed_url.query}" - - # Try Basic Auth first - response = requests.get(clean_url, auth=auth, timeout=15, headers=headers, - stream=True, verify=False) - - # If Basic Auth fails, try Digest Auth - if response.status_code == 401: - auth = HTTPDigestAuth(parsed_url.username, parsed_url.password) - response = requests.get(clean_url, auth=auth, timeout=15, headers=headers, - stream=True, verify=False) - else: - response = requests.get(self.snapshot_url, timeout=15, headers=headers, - stream=True, verify=False) - - if response.status_code == 200: - # Check content size - content_length = int(response.headers.get('content-length', 0)) - if content_length > self.max_file_size: - logger.warning(f"Snapshot too large for camera {self.camera_id}: {content_length} bytes") - return None - - # Read content - content = response.content - - # Convert to numpy array - image_array = np.frombuffer(content, np.uint8) - - # Decode as high quality image - frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR) - - if frame is None: - logger.error(f"Failed to decode snapshot for camera {self.camera_id}") - return None - - logger.debug(f"Fetched snapshot for camera {self.camera_id}: {frame.shape[1]}x{frame.shape[0]}") - return frame - else: - logger.warning(f"HTTP {response.status_code} from {self.camera_id}") - return None - - except requests.RequestException as e: - logger.error(f"Request error fetching snapshot for {self.camera_id}: {e}") - return None - except Exception as e: - logger.error(f"Error decoding snapshot for {self.camera_id}: {e}") - return None - - def fetch_single_snapshot(self) -> Optional[np.ndarray]: - """ - Fetch a single high-quality snapshot on demand for pipeline processing. - This method is for one-time fetch from HTTP URL, not continuous streaming. - - Returns: - High quality 2K snapshot frame or None if failed - """ - logger.info(f"[SNAPSHOT] Fetching snapshot for {self.camera_id} from {self.snapshot_url}") - - # Try to fetch snapshot with retries - for attempt in range(self.max_retries): - frame = self._fetch_snapshot() - - if frame is not None: - logger.info(f"[SNAPSHOT] Successfully fetched {frame.shape[1]}x{frame.shape[0]} snapshot for {self.camera_id}") - return frame - - if attempt < self.max_retries - 1: - logger.warning(f"[SNAPSHOT] Attempt {attempt + 1}/{self.max_retries} failed for {self.camera_id}, retrying...") - time.sleep(0.5) - - logger.error(f"[SNAPSHOT] Failed to fetch snapshot for {self.camera_id} after {self.max_retries} attempts") - return None - - def _resize_maintain_aspect(self, frame: np.ndarray, target_width: int, target_height: int) -> np.ndarray: - """Resize image while maintaining aspect ratio for high quality.""" - h, w = frame.shape[:2] - aspect = w / h - target_aspect = target_width / target_height - - if aspect > target_aspect: - # Image is wider - new_width = target_width - new_height = int(target_width / aspect) - else: - # Image is taller - new_height = target_height - new_width = int(target_height * aspect) - - # Use INTER_LANCZOS4 for high quality downsampling - resized = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4) - - # Pad to target size if needed - if new_width < target_width or new_height < target_height: - top = (target_height - new_height) // 2 - bottom = target_height - new_height - top - left = (target_width - new_width) // 2 - right = target_width - new_width - left - resized = cv2.copyMakeBorder(resized, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0]) - - return resized \ No newline at end of file diff --git a/core/streaming/readers/__init__.py b/core/streaming/readers/__init__.py new file mode 100644 index 0000000..0903d6d --- /dev/null +++ b/core/streaming/readers/__init__.py @@ -0,0 +1,18 @@ +""" +Stream readers for RTSP and HTTP camera feeds. +""" +from .base import VideoReader +from .ffmpeg_rtsp import FFmpegRTSPReader +from .http_snapshot import HTTPSnapshotReader +from .utils import log_success, log_warning, log_error, log_info, Colors + +__all__ = [ + 'VideoReader', + 'FFmpegRTSPReader', + 'HTTPSnapshotReader', + 'log_success', + 'log_warning', + 'log_error', + 'log_info', + 'Colors' +] \ No newline at end of file diff --git a/core/streaming/readers/base.py b/core/streaming/readers/base.py new file mode 100644 index 0000000..56c41cb --- /dev/null +++ b/core/streaming/readers/base.py @@ -0,0 +1,65 @@ +""" +Abstract base class for video stream readers. +""" +from abc import ABC, abstractmethod +from typing import Optional, Callable +import numpy as np + + +class VideoReader(ABC): + """Abstract base class for video stream readers.""" + + def __init__(self, camera_id: str, source_url: str, max_retries: int = 3): + """ + Initialize the video reader. + + Args: + camera_id: Unique identifier for the camera + source_url: URL or path to the video source + max_retries: Maximum number of retry attempts + """ + self.camera_id = camera_id + self.source_url = source_url + self.max_retries = max_retries + self.frame_callback: Optional[Callable[[str, np.ndarray], None]] = None + + @abstractmethod + def start(self) -> None: + """Start the video reader.""" + pass + + @abstractmethod + def stop(self) -> None: + """Stop the video reader.""" + pass + + @abstractmethod + def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]) -> None: + """ + Set callback function to handle captured frames. + + Args: + callback: Function that takes (camera_id, frame) as arguments + """ + pass + + @property + @abstractmethod + def is_running(self) -> bool: + """Check if the reader is currently running.""" + pass + + @property + @abstractmethod + def reader_type(self) -> str: + """Get the type of reader (e.g., 'rtsp', 'http_snapshot').""" + pass + + def __enter__(self): + """Context manager entry.""" + self.start() + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + """Context manager exit.""" + self.stop() \ No newline at end of file diff --git a/core/streaming/readers/ffmpeg_rtsp.py b/core/streaming/readers/ffmpeg_rtsp.py new file mode 100644 index 0000000..88f45ae --- /dev/null +++ b/core/streaming/readers/ffmpeg_rtsp.py @@ -0,0 +1,436 @@ +""" +FFmpeg RTSP stream reader using subprocess piping frames directly to buffer. +Enhanced with comprehensive health monitoring and automatic recovery. +""" +import cv2 +import time +import threading +import numpy as np +import subprocess +import struct +from typing import Optional, Callable, Dict, Any + +from .base import VideoReader +from .utils import log_success, log_warning, log_error, log_info +from ...monitoring.stream_health import stream_health_tracker +from ...monitoring.thread_health import thread_health_monitor +from ...monitoring.recovery import recovery_manager, RecoveryAction + + +class FFmpegRTSPReader(VideoReader): + """RTSP stream reader using subprocess FFmpeg piping frames directly to buffer.""" + + def __init__(self, camera_id: str, rtsp_url: str, max_retries: int = 3): + super().__init__(camera_id, rtsp_url, max_retries) + self.rtsp_url = rtsp_url + self.process = None + self.stop_event = threading.Event() + self.thread = None + self.stderr_thread = None + + # Expected stream specs (for reference, actual dimensions read from PPM header) + self.width = 1280 + self.height = 720 + + # Watchdog timers for stream reliability + self.process_start_time = None + self.last_frame_time = None + self.is_restart = False # Track if this is a restart (shorter timeout) + self.first_start_timeout = 30.0 # 30s timeout on first start + self.restart_timeout = 15.0 # 15s timeout after restart + + # Health monitoring setup + self.last_heartbeat = time.time() + self.consecutive_errors = 0 + self.ffmpeg_restart_count = 0 + + # Register recovery handlers + recovery_manager.register_recovery_handler( + RecoveryAction.RESTART_STREAM, + self._handle_restart_recovery + ) + recovery_manager.register_recovery_handler( + RecoveryAction.RECONNECT, + self._handle_reconnect_recovery + ) + + @property + def is_running(self) -> bool: + """Check if the reader is currently running.""" + return self.thread is not None and self.thread.is_alive() + + @property + def reader_type(self) -> str: + """Get the type of reader.""" + return "rtsp_ffmpeg" + + def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]): + """Set callback function to handle captured frames.""" + self.frame_callback = callback + + def start(self): + """Start the FFmpeg subprocess reader.""" + if self.thread and self.thread.is_alive(): + log_warning(self.camera_id, "FFmpeg reader already running") + return + + self.stop_event.clear() + self.thread = threading.Thread(target=self._read_frames, daemon=True) + self.thread.start() + + # Register with health monitoring + stream_health_tracker.register_stream(self.camera_id, "rtsp_ffmpeg", self.rtsp_url) + thread_health_monitor.register_thread(self.thread, self._heartbeat_callback) + + log_success(self.camera_id, "Stream started with health monitoring") + + def stop(self): + """Stop the FFmpeg subprocess reader.""" + self.stop_event.set() + + # Unregister from health monitoring + if self.thread: + thread_health_monitor.unregister_thread(self.thread.ident) + + if self.process: + self.process.terminate() + try: + self.process.wait(timeout=5) + except subprocess.TimeoutExpired: + self.process.kill() + + if self.thread: + self.thread.join(timeout=5.0) + if self.stderr_thread: + self.stderr_thread.join(timeout=2.0) + + stream_health_tracker.unregister_stream(self.camera_id) + + log_info(self.camera_id, "Stream stopped") + + def _start_ffmpeg_process(self): + """Start FFmpeg subprocess outputting BMP frames to stdout pipe.""" + cmd = [ + 'ffmpeg', + # DO NOT REMOVE + '-hwaccel', 'cuda', + '-hwaccel_device', '0', + # Real-time input flags + '-fflags', 'nobuffer+genpts', + '-flags', 'low_delay', + '-max_delay', '0', # No reordering delay + # RTSP configuration + '-rtsp_transport', 'tcp', + '-i', self.rtsp_url, + # Output configuration (keeping BMP) + '-f', 'image2pipe', # Output images to pipe + '-vcodec', 'bmp', # BMP format with header containing dimensions + '-vsync', 'passthrough', # Pass frames as-is + # Use native stream resolution and framerate + '-an', # No audio + '-' # Output to stdout + ] + + try: + # Start FFmpeg with stdout pipe to read frames directly + self.process = subprocess.Popen( + cmd, + stdout=subprocess.PIPE, # Capture stdout for frame data + stderr=subprocess.PIPE, # Capture stderr for error logging + bufsize=0 # Unbuffered for real-time processing + ) + + # Start stderr reading thread + if self.stderr_thread and self.stderr_thread.is_alive(): + # Stop previous stderr thread + try: + self.stderr_thread.join(timeout=1.0) + except: + pass + + self.stderr_thread = threading.Thread(target=self._read_stderr, daemon=True) + self.stderr_thread.start() + + # Set process start time for watchdog + self.process_start_time = time.time() + self.last_frame_time = None # Reset frame time + + # After successful restart, next timeout will be back to 30s + if self.is_restart: + log_info(self.camera_id, f"FFmpeg restarted successfully, next timeout: {self.first_start_timeout}s") + self.is_restart = False + + return True + except Exception as e: + log_error(self.camera_id, f"FFmpeg startup failed: {e}") + return False + + def _read_bmp_frame(self, pipe): + """Read BMP frame from pipe - BMP header contains dimensions.""" + try: + # Read BMP header (14 bytes file header + 40 bytes info header = 54 bytes minimum) + header_data = b'' + bytes_to_read = 54 + + while len(header_data) < bytes_to_read: + chunk = pipe.read(bytes_to_read - len(header_data)) + if not chunk: + return None # Silent end of stream + header_data += chunk + + # Parse BMP header + if header_data[:2] != b'BM': + return None # Invalid format, skip frame silently + + # Extract file size from header (bytes 2-5) + file_size = struct.unpack(' bool: + """Check if watchdog timeout has been exceeded.""" + if not self.process_start_time: + return False + + current_time = time.time() + time_since_start = current_time - self.process_start_time + + # Determine timeout based on whether this is a restart + timeout = self.restart_timeout if self.is_restart else self.first_start_timeout + + # If no frames received yet, check against process start time + if not self.last_frame_time: + if time_since_start > timeout: + log_warning(self.camera_id, f"Watchdog timeout: No frames for {time_since_start:.1f}s (limit: {timeout}s)") + return True + else: + # Check time since last frame + time_since_frame = current_time - self.last_frame_time + if time_since_frame > timeout: + log_warning(self.camera_id, f"Watchdog timeout: No frames for {time_since_frame:.1f}s (limit: {timeout}s)") + return True + + return False + + def _restart_ffmpeg_process(self): + """Restart FFmpeg process due to watchdog timeout.""" + log_warning(self.camera_id, "Watchdog triggered FFmpeg restart") + + # Terminate current process + if self.process: + try: + self.process.terminate() + self.process.wait(timeout=3) + except subprocess.TimeoutExpired: + self.process.kill() + except Exception: + pass + self.process = None + + # Mark as restart for shorter timeout + self.is_restart = True + + # Small delay before restart + time.sleep(1.0) + + def _read_frames(self): + """Read frames directly from FFmpeg stdout pipe.""" + frame_count = 0 + last_log_time = time.time() + + while not self.stop_event.is_set(): + try: + # Send heartbeat for thread health monitoring + self._send_heartbeat("reading_frames") + + # Check watchdog timeout if process is running + if self.process and self.process.poll() is None: + if self._check_watchdog_timeout(): + self._restart_ffmpeg_process() + continue + + # Start FFmpeg if not running + if not self.process or self.process.poll() is not None: + if self.process and self.process.poll() is not None: + log_warning(self.camera_id, "Stream disconnected, reconnecting...") + stream_health_tracker.report_error( + self.camera_id, + "FFmpeg process disconnected" + ) + + if not self._start_ffmpeg_process(): + self.consecutive_errors += 1 + stream_health_tracker.report_error( + self.camera_id, + "Failed to start FFmpeg process" + ) + time.sleep(5.0) + continue + + # Read frames directly from FFmpeg stdout + try: + if self.process and self.process.stdout: + # Read BMP frame data + frame = self._read_bmp_frame(self.process.stdout) + if frame is None: + continue + + # Update watchdog - we got a frame + self.last_frame_time = time.time() + + # Reset error counter on successful frame + self.consecutive_errors = 0 + + # Report successful frame to health monitoring + frame_size = frame.nbytes + stream_health_tracker.report_frame_received(self.camera_id, frame_size) + + # Call frame callback + if self.frame_callback: + try: + self.frame_callback(self.camera_id, frame) + except Exception as e: + stream_health_tracker.report_error( + self.camera_id, + f"Frame callback error: {e}" + ) + + frame_count += 1 + + # Log progress every 60 seconds (quieter) + current_time = time.time() + if current_time - last_log_time >= 60: + log_success(self.camera_id, f"{frame_count} frames captured ({frame.shape[1]}x{frame.shape[0]})") + last_log_time = current_time + + except Exception as e: + # Process might have died, let it restart on next iteration + stream_health_tracker.report_error( + self.camera_id, + f"Frame reading error: {e}" + ) + if self.process: + self.process.terminate() + self.process = None + time.sleep(1.0) + + except Exception as e: + stream_health_tracker.report_error( + self.camera_id, + f"Main loop error: {e}" + ) + time.sleep(1.0) + + # Cleanup + if self.process: + self.process.terminate() + + # Health monitoring methods + def _send_heartbeat(self, activity: str = "running"): + """Send heartbeat to thread health monitor.""" + self.last_heartbeat = time.time() + thread_health_monitor.heartbeat(activity=activity) + + def _heartbeat_callback(self) -> bool: + """Heartbeat callback for thread responsiveness testing.""" + try: + # Check if thread is responsive by checking recent heartbeat + current_time = time.time() + age = current_time - self.last_heartbeat + + # Thread is responsive if heartbeat is recent + return age < 30.0 # 30 second responsiveness threshold + + except Exception: + return False + + def _handle_restart_recovery(self, component: str, details: Dict[str, Any]) -> bool: + """Handle restart recovery action.""" + try: + log_info(self.camera_id, "Restarting FFmpeg RTSP reader for health recovery") + + # Stop current instance + self.stop() + + # Small delay + time.sleep(2.0) + + # Restart + self.start() + + # Report successful restart + stream_health_tracker.report_reconnect(self.camera_id, "health_recovery_restart") + self.ffmpeg_restart_count += 1 + + return True + + except Exception as e: + log_error(self.camera_id, f"Failed to restart FFmpeg RTSP reader: {e}") + return False + + def _handle_reconnect_recovery(self, component: str, details: Dict[str, Any]) -> bool: + """Handle reconnect recovery action.""" + try: + log_info(self.camera_id, "Reconnecting FFmpeg RTSP reader for health recovery") + + # Force restart FFmpeg process + self._restart_ffmpeg_process() + + # Reset error counters + self.consecutive_errors = 0 + stream_health_tracker.report_reconnect(self.camera_id, "health_recovery_reconnect") + + return True + + except Exception as e: + log_error(self.camera_id, f"Failed to reconnect FFmpeg RTSP reader: {e}") + return False \ No newline at end of file diff --git a/core/streaming/readers/http_snapshot.py b/core/streaming/readers/http_snapshot.py new file mode 100644 index 0000000..bbbf943 --- /dev/null +++ b/core/streaming/readers/http_snapshot.py @@ -0,0 +1,378 @@ +""" +HTTP snapshot reader optimized for 2560x1440 (2K) high quality images. +Enhanced with comprehensive health monitoring and automatic recovery. +""" +import cv2 +import logging +import time +import threading +import requests +import numpy as np +from typing import Optional, Callable, Dict, Any + +from .base import VideoReader +from .utils import log_success, log_warning, log_error, log_info +from ...monitoring.stream_health import stream_health_tracker +from ...monitoring.thread_health import thread_health_monitor +from ...monitoring.recovery import recovery_manager, RecoveryAction + +logger = logging.getLogger(__name__) + + +class HTTPSnapshotReader(VideoReader): + """HTTP snapshot reader optimized for 2560x1440 (2K) high quality images.""" + + def __init__(self, camera_id: str, snapshot_url: str, interval_ms: int = 5000, max_retries: int = 3): + super().__init__(camera_id, snapshot_url, max_retries) + self.snapshot_url = snapshot_url + self.interval_ms = interval_ms + self.stop_event = threading.Event() + self.thread = None + + # Expected snapshot specifications + self.expected_width = 2560 + self.expected_height = 1440 + self.max_file_size = 10 * 1024 * 1024 # 10MB max for 2K image + + # Health monitoring setup + self.last_heartbeat = time.time() + self.consecutive_errors = 0 + self.connection_test_interval = 300 # Test connection every 5 minutes + self.last_connection_test = None + + # Register recovery handlers + recovery_manager.register_recovery_handler( + RecoveryAction.RESTART_STREAM, + self._handle_restart_recovery + ) + recovery_manager.register_recovery_handler( + RecoveryAction.RECONNECT, + self._handle_reconnect_recovery + ) + + @property + def is_running(self) -> bool: + """Check if the reader is currently running.""" + return self.thread is not None and self.thread.is_alive() + + @property + def reader_type(self) -> str: + """Get the type of reader.""" + return "http_snapshot" + + def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]): + """Set callback function to handle captured frames.""" + self.frame_callback = callback + + def start(self): + """Start the snapshot reader thread.""" + if self.thread and self.thread.is_alive(): + logger.warning(f"Snapshot reader for {self.camera_id} already running") + return + + self.stop_event.clear() + self.thread = threading.Thread(target=self._read_snapshots, daemon=True) + self.thread.start() + + # Register with health monitoring + stream_health_tracker.register_stream(self.camera_id, "http_snapshot", self.snapshot_url) + thread_health_monitor.register_thread(self.thread, self._heartbeat_callback) + + logger.info(f"Started snapshot reader for camera {self.camera_id} with health monitoring") + + def stop(self): + """Stop the snapshot reader thread.""" + self.stop_event.set() + + # Unregister from health monitoring + if self.thread: + thread_health_monitor.unregister_thread(self.thread.ident) + self.thread.join(timeout=5.0) + + stream_health_tracker.unregister_stream(self.camera_id) + + logger.info(f"Stopped snapshot reader for camera {self.camera_id}") + + def _read_snapshots(self): + """Main snapshot reading loop for high quality 2K images.""" + retries = 0 + frame_count = 0 + last_log_time = time.time() + last_connection_test = time.time() + interval_seconds = self.interval_ms / 1000.0 + + logger.info(f"Snapshot interval for camera {self.camera_id}: {interval_seconds}s") + + while not self.stop_event.is_set(): + try: + # Send heartbeat for thread health monitoring + self._send_heartbeat("fetching_snapshot") + + start_time = time.time() + frame = self._fetch_snapshot() + + if frame is None: + retries += 1 + self.consecutive_errors += 1 + + # Report error to health monitoring + stream_health_tracker.report_error( + self.camera_id, + f"Failed to fetch snapshot (retry {retries}/{self.max_retries})" + ) + + logger.warning(f"Failed to fetch snapshot for camera {self.camera_id}, retry {retries}/{self.max_retries}") + + if self.max_retries != -1 and retries > self.max_retries: + logger.error(f"Max retries reached for snapshot camera {self.camera_id}") + break + + time.sleep(min(2.0, interval_seconds)) + continue + + # Accept any valid image dimensions - don't force specific resolution + if frame.shape[1] <= 0 or frame.shape[0] <= 0: + logger.warning(f"Camera {self.camera_id}: Invalid frame dimensions {frame.shape[1]}x{frame.shape[0]}") + stream_health_tracker.report_error( + self.camera_id, + f"Invalid frame dimensions: {frame.shape[1]}x{frame.shape[0]}" + ) + continue + + # Reset retry counter on successful fetch + retries = 0 + self.consecutive_errors = 0 + frame_count += 1 + + # Report successful frame to health monitoring + frame_size = frame.nbytes + stream_health_tracker.report_frame_received(self.camera_id, frame_size) + + # Call frame callback + if self.frame_callback: + try: + self.frame_callback(self.camera_id, frame) + except Exception as e: + logger.error(f"Camera {self.camera_id}: Frame callback error: {e}") + stream_health_tracker.report_error(self.camera_id, f"Frame callback error: {e}") + + # Periodic connection health test + current_time = time.time() + if current_time - last_connection_test >= self.connection_test_interval: + self._test_connection_health() + last_connection_test = current_time + + # Log progress every 30 seconds + if current_time - last_log_time >= 30: + logger.info(f"Camera {self.camera_id}: {frame_count} snapshots processed") + last_log_time = current_time + + # Wait for next interval + elapsed = time.time() - start_time + sleep_time = max(0, interval_seconds - elapsed) + if sleep_time > 0: + self.stop_event.wait(sleep_time) + + except Exception as e: + logger.error(f"Error in snapshot loop for camera {self.camera_id}: {e}") + stream_health_tracker.report_error(self.camera_id, f"Snapshot loop error: {e}") + retries += 1 + if self.max_retries != -1 and retries > self.max_retries: + break + time.sleep(min(2.0, interval_seconds)) + + logger.info(f"Snapshot reader thread ended for camera {self.camera_id}") + + def _fetch_snapshot(self) -> Optional[np.ndarray]: + """Fetch a single high quality snapshot from HTTP URL.""" + try: + # Parse URL for authentication + from urllib.parse import urlparse + parsed_url = urlparse(self.snapshot_url) + + headers = { + 'User-Agent': 'Python-Detector-Worker/1.0', + 'Accept': 'image/jpeg, image/png, image/*' + } + auth = None + + if parsed_url.username and parsed_url.password: + from requests.auth import HTTPBasicAuth, HTTPDigestAuth + auth = HTTPBasicAuth(parsed_url.username, parsed_url.password) + + # Reconstruct URL without credentials + clean_url = f"{parsed_url.scheme}://{parsed_url.hostname}" + if parsed_url.port: + clean_url += f":{parsed_url.port}" + clean_url += parsed_url.path + if parsed_url.query: + clean_url += f"?{parsed_url.query}" + + # Try Basic Auth first + response = requests.get(clean_url, auth=auth, timeout=15, headers=headers, + stream=True, verify=False) + + # If Basic Auth fails, try Digest Auth + if response.status_code == 401: + auth = HTTPDigestAuth(parsed_url.username, parsed_url.password) + response = requests.get(clean_url, auth=auth, timeout=15, headers=headers, + stream=True, verify=False) + else: + response = requests.get(self.snapshot_url, timeout=15, headers=headers, + stream=True, verify=False) + + if response.status_code == 200: + # Check content size + content_length = int(response.headers.get('content-length', 0)) + if content_length > self.max_file_size: + logger.warning(f"Snapshot too large for camera {self.camera_id}: {content_length} bytes") + return None + + # Read content + content = response.content + + # Convert to numpy array + image_array = np.frombuffer(content, np.uint8) + + # Decode as high quality image + frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR) + + if frame is None: + logger.error(f"Failed to decode snapshot for camera {self.camera_id}") + return None + + logger.debug(f"Fetched snapshot for camera {self.camera_id}: {frame.shape[1]}x{frame.shape[0]}") + return frame + else: + logger.warning(f"HTTP {response.status_code} from {self.camera_id}") + return None + + except requests.RequestException as e: + logger.error(f"Request error fetching snapshot for {self.camera_id}: {e}") + return None + except Exception as e: + logger.error(f"Error decoding snapshot for {self.camera_id}: {e}") + return None + + def fetch_single_snapshot(self) -> Optional[np.ndarray]: + """ + Fetch a single high-quality snapshot on demand for pipeline processing. + This method is for one-time fetch from HTTP URL, not continuous streaming. + + Returns: + High quality 2K snapshot frame or None if failed + """ + logger.info(f"[SNAPSHOT] Fetching snapshot for {self.camera_id} from {self.snapshot_url}") + + # Try to fetch snapshot with retries + for attempt in range(self.max_retries): + frame = self._fetch_snapshot() + + if frame is not None: + logger.info(f"[SNAPSHOT] Successfully fetched {frame.shape[1]}x{frame.shape[0]} snapshot for {self.camera_id}") + return frame + + if attempt < self.max_retries - 1: + logger.warning(f"[SNAPSHOT] Attempt {attempt + 1}/{self.max_retries} failed for {self.camera_id}, retrying...") + time.sleep(0.5) + + logger.error(f"[SNAPSHOT] Failed to fetch snapshot for {self.camera_id} after {self.max_retries} attempts") + return None + + def _resize_maintain_aspect(self, frame: np.ndarray, target_width: int, target_height: int) -> np.ndarray: + """Resize image while maintaining aspect ratio for high quality.""" + h, w = frame.shape[:2] + aspect = w / h + target_aspect = target_width / target_height + + if aspect > target_aspect: + # Image is wider + new_width = target_width + new_height = int(target_width / aspect) + else: + # Image is taller + new_height = target_height + new_width = int(target_height * aspect) + + # Use INTER_LANCZOS4 for high quality downsampling + resized = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4) + + # Pad to target size if needed + if new_width < target_width or new_height < target_height: + top = (target_height - new_height) // 2 + bottom = target_height - new_height - top + left = (target_width - new_width) // 2 + right = target_width - new_width - left + resized = cv2.copyMakeBorder(resized, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0]) + + return resized + + # Health monitoring methods + def _send_heartbeat(self, activity: str = "running"): + """Send heartbeat to thread health monitor.""" + self.last_heartbeat = time.time() + thread_health_monitor.heartbeat(activity=activity) + + def _heartbeat_callback(self) -> bool: + """Heartbeat callback for thread responsiveness testing.""" + try: + # Check if thread is responsive by checking recent heartbeat + current_time = time.time() + age = current_time - self.last_heartbeat + + # Thread is responsive if heartbeat is recent + return age < 30.0 # 30 second responsiveness threshold + + except Exception: + return False + + def _test_connection_health(self): + """Test HTTP connection health.""" + try: + stream_health_tracker.test_http_connection(self.camera_id, self.snapshot_url) + except Exception as e: + logger.error(f"Error testing connection health for {self.camera_id}: {e}") + + def _handle_restart_recovery(self, component: str, details: Dict[str, Any]) -> bool: + """Handle restart recovery action.""" + try: + logger.info(f"Restarting HTTP snapshot reader for {self.camera_id}") + + # Stop current instance + self.stop() + + # Small delay + time.sleep(2.0) + + # Restart + self.start() + + # Report successful restart + stream_health_tracker.report_reconnect(self.camera_id, "health_recovery_restart") + + return True + + except Exception as e: + logger.error(f"Failed to restart HTTP snapshot reader for {self.camera_id}: {e}") + return False + + def _handle_reconnect_recovery(self, component: str, details: Dict[str, Any]) -> bool: + """Handle reconnect recovery action.""" + try: + logger.info(f"Reconnecting HTTP snapshot reader for {self.camera_id}") + + # Test connection first + success = stream_health_tracker.test_http_connection(self.camera_id, self.snapshot_url) + + if success: + # Reset error counters + self.consecutive_errors = 0 + stream_health_tracker.report_reconnect(self.camera_id, "health_recovery_reconnect") + return True + else: + logger.warning(f"Connection test failed during recovery for {self.camera_id}") + return False + + except Exception as e: + logger.error(f"Failed to reconnect HTTP snapshot reader for {self.camera_id}: {e}") + return False \ No newline at end of file diff --git a/core/streaming/readers/utils.py b/core/streaming/readers/utils.py new file mode 100644 index 0000000..813f49f --- /dev/null +++ b/core/streaming/readers/utils.py @@ -0,0 +1,38 @@ +""" +Utility functions for stream readers. +""" +import logging +import os + +# Keep OpenCV errors visible but allow FFmpeg stderr logging +os.environ["OPENCV_LOG_LEVEL"] = "ERROR" + +logger = logging.getLogger(__name__) + +# Color codes for pretty logging +class Colors: + GREEN = '\033[92m' + YELLOW = '\033[93m' + RED = '\033[91m' + BLUE = '\033[94m' + PURPLE = '\033[95m' + CYAN = '\033[96m' + WHITE = '\033[97m' + BOLD = '\033[1m' + END = '\033[0m' + +def log_success(camera_id: str, message: str): + """Log success messages in green""" + logger.info(f"{Colors.GREEN}[{camera_id}] {message}{Colors.END}") + +def log_warning(camera_id: str, message: str): + """Log warnings in yellow""" + logger.warning(f"{Colors.YELLOW}[{camera_id}] {message}{Colors.END}") + +def log_error(camera_id: str, message: str): + """Log errors in red""" + logger.error(f"{Colors.RED}[{camera_id}] {message}{Colors.END}") + +def log_info(camera_id: str, message: str): + """Log info in cyan""" + logger.info(f"{Colors.CYAN}[{camera_id}] {message}{Colors.END}") \ No newline at end of file diff --git a/core/tracking/integration.py b/core/tracking/integration.py index 3f1ebe0..2fba002 100644 --- a/core/tracking/integration.py +++ b/core/tracking/integration.py @@ -61,6 +61,7 @@ class TrackingPipelineIntegration: self.cleared_sessions: Dict[str, float] = {} # session_id -> clear_time self.pending_vehicles: Dict[str, int] = {} # display_id -> track_id (waiting for session ID) self.pending_processing_data: Dict[str, Dict] = {} # display_id -> processing data (waiting for session ID) + self.display_to_subscription: Dict[str, str] = {} # display_id -> subscription_id (for fallback) # Additional validators for enhanced flow control self.permanently_processed: Dict[str, float] = {} # "camera_id:track_id" -> process_time (never process again) @@ -71,12 +72,17 @@ class TrackingPipelineIntegration: # Thread pool for pipeline execution self.executor = ThreadPoolExecutor(max_workers=2) + # Min bbox filtering configuration + # TODO: Make this configurable via pipeline.json in the future + self.min_bbox_area_percentage = 3.5 # 3.5% of frame area minimum + # Statistics self.stats = { 'frames_processed': 0, 'vehicles_detected': 0, 'vehicles_validated': 0, - 'pipelines_executed': 0 + 'pipelines_executed': 0, + 'frontals_filtered_small': 0 # Track filtered detections } @@ -202,6 +208,10 @@ class TrackingPipelineIntegration: else: logger.debug(f"No tracking results or detections attribute") + # Filter out small frontal detections (neighboring pumps/distant cars) + if tracking_results and hasattr(tracking_results, 'detections'): + tracking_results = self._filter_small_frontals(tracking_results, frame) + # Process tracking results tracked_vehicles = self.tracker.process_detections( tracking_results, @@ -210,8 +220,10 @@ class TrackingPipelineIntegration: ) # Update last detection time for abandonment detection + # Update when vehicles ARE detected, so when they leave, timestamp ages if tracked_vehicles: self.last_detection_time[display_id] = time.time() + logger.debug(f"Updated last_detection_time for {display_id}: {len(tracked_vehicles)} vehicles") # Check for car abandonment (vehicle left after getting car_wait_staff stage) await self._check_car_abandonment(display_id, subscription_id) @@ -402,27 +414,12 @@ class TrackingPipelineIntegration: logger.info(f"Executing processing phase for session {session_id}, vehicle {vehicle.track_id}") # Capture high-quality snapshot for pipeline processing - frame = None - if self.subscription_info and self.subscription_info.stream_config.snapshot_url: - from ..streaming.readers import HTTPSnapshotReader + logger.info(f"[PROCESSING PHASE] Fetching 2K snapshot for session {session_id}") + frame = self._fetch_snapshot() - logger.info(f"[PROCESSING PHASE] Fetching 2K snapshot for session {session_id}") - snapshot_reader = HTTPSnapshotReader( - camera_id=self.subscription_info.camera_id, - snapshot_url=self.subscription_info.stream_config.snapshot_url, - max_retries=3 - ) - - frame = snapshot_reader.fetch_single_snapshot() - - if frame is not None: - logger.info(f"[PROCESSING PHASE] Successfully fetched {frame.shape[1]}x{frame.shape[0]} snapshot for pipeline") - else: - logger.warning(f"[PROCESSING PHASE] Failed to capture snapshot, falling back to RTSP frame") - # Fall back to RTSP frame if snapshot fails - frame = processing_data['frame'] - else: - logger.warning(f"[PROCESSING PHASE] No snapshot URL available, using RTSP frame") + if frame is None: + logger.warning(f"[PROCESSING PHASE] Failed to capture snapshot, falling back to RTSP frame") + # Fall back to RTSP frame if snapshot fails frame = processing_data['frame'] # Extract detected regions from detection phase result if available @@ -465,7 +462,7 @@ class TrackingPipelineIntegration: self.subscription_info = subscription_info logger.debug(f"Set subscription info with snapshot_url: {subscription_info.stream_config.snapshot_url if subscription_info else None}") - def set_session_id(self, display_id: str, session_id: str): + def set_session_id(self, display_id: str, session_id: str, subscription_id: str = None): """ Set session ID for a display (from backend). This is called when backend sends setSessionId after receiving imageDetection. @@ -473,9 +470,18 @@ class TrackingPipelineIntegration: Args: display_id: Display identifier session_id: Session identifier + subscription_id: Subscription identifier (displayId;cameraId) - needed for fallback """ + # Ensure session_id is always a string for consistent type handling + session_id = str(session_id) if session_id is not None else None self.active_sessions[display_id] = session_id - logger.info(f"Set session {session_id} for display {display_id}") + + # Store subscription_id for fallback usage + if subscription_id: + self.display_to_subscription[display_id] = subscription_id + logger.info(f"Set session {session_id} for display {display_id} with subscription {subscription_id}") + else: + logger.info(f"Set session {session_id} for display {display_id}") # Check if we have a pending vehicle for this display if display_id in self.pending_vehicles: @@ -516,6 +522,25 @@ class TrackingPipelineIntegration: else: logger.warning(f"No pending processing data found for display {display_id} when setting session {session_id}") + # FALLBACK: Execute pipeline for POS-initiated sessions + # Skip if session_id is None (no car present or car has left) + if session_id is not None: + # Use stored subscription_id instead of creating fake one + stored_subscription_id = self.display_to_subscription.get(display_id) + if stored_subscription_id: + logger.info(f"[FALLBACK] Triggering fallback pipeline for session {session_id} on display {display_id} with subscription {stored_subscription_id}") + + # Trigger the fallback pipeline asynchronously with real subscription_id + asyncio.create_task(self._execute_fallback_pipeline( + display_id=display_id, + session_id=session_id, + subscription_id=stored_subscription_id + )) + else: + logger.error(f"[FALLBACK] No subscription_id stored for display {display_id}, cannot execute fallback pipeline") + else: + logger.debug(f"[FALLBACK] Skipping pipeline execution for session_id=None on display {display_id}") + def clear_session_id(self, session_id: str): """ Clear session ID (post-fueling). @@ -565,6 +590,7 @@ class TrackingPipelineIntegration: self.cleared_sessions.clear() self.pending_vehicles.clear() self.pending_processing_data.clear() + self.display_to_subscription.clear() self.permanently_processed.clear() self.progression_stages.clear() self.last_detection_time.clear() @@ -608,10 +634,16 @@ class TrackingPipelineIntegration: last_detection = self.last_detection_time.get(session_display, 0) time_since_detection = current_time - last_detection + logger.info(f"[ABANDON CHECK] Session {session_id} (display: {session_display}): " + f"time_since_detection={time_since_detection:.1f}s, " + f"timeout={self.abandonment_timeout}s") + if time_since_detection > self.abandonment_timeout: - logger.info(f"Car abandonment detected: session {session_id}, " + logger.warning(f"🚨 Car abandonment detected: session {session_id}, " f"no detection for {time_since_detection:.1f}s") abandoned_sessions.append(session_id) + else: + logger.debug(f"[ABANDON CHECK] Session {session_id} has no associated display") # Send abandonment detection for each abandoned session for session_id in abandoned_sessions: @@ -619,6 +651,7 @@ class TrackingPipelineIntegration: # Remove from progression stages to avoid repeated detection if session_id in self.progression_stages: del self.progression_stages[session_id] + logger.info(f"[ABANDON] Removed session {session_id} from progression_stages after notification") async def _send_abandonment_detection(self, subscription_id: str, session_id: str): """ @@ -665,6 +698,153 @@ class TrackingPipelineIntegration: if stage == "car_wait_staff": logger.info(f"Started monitoring session {session_id} for car abandonment") + def _fetch_snapshot(self) -> Optional[np.ndarray]: + """ + Fetch high-quality snapshot from camera's snapshot URL. + Reusable method for both processing phase and fallback pipeline. + + Returns: + Snapshot frame or None if unavailable + """ + if not (self.subscription_info and self.subscription_info.stream_config.snapshot_url): + logger.warning("[SNAPSHOT] No subscription info or snapshot URL available") + return None + + try: + from ..streaming.readers import HTTPSnapshotReader + + logger.info(f"[SNAPSHOT] Fetching snapshot for {self.subscription_info.camera_id}") + snapshot_reader = HTTPSnapshotReader( + camera_id=self.subscription_info.camera_id, + snapshot_url=self.subscription_info.stream_config.snapshot_url, + max_retries=3 + ) + + frame = snapshot_reader.fetch_single_snapshot() + + if frame is not None: + logger.info(f"[SNAPSHOT] Successfully fetched {frame.shape[1]}x{frame.shape[0]} snapshot") + return frame + else: + logger.warning("[SNAPSHOT] Failed to fetch snapshot") + return None + + except Exception as e: + logger.error(f"[SNAPSHOT] Error fetching snapshot: {e}", exc_info=True) + return None + + async def _execute_fallback_pipeline(self, display_id: str, session_id: str, subscription_id: str): + """ + Execute fallback pipeline when sessionId is received without prior detection. + This handles POS-initiated sessions where backend starts transaction before car detection. + + Args: + display_id: Display identifier + session_id: Session ID from backend + subscription_id: Subscription identifier for pipeline execution + """ + try: + logger.info(f"[FALLBACK PIPELINE] Executing for session {session_id}, display {display_id}") + + # Fetch fresh snapshot from camera + frame = self._fetch_snapshot() + + if frame is None: + logger.error(f"[FALLBACK] Failed to fetch snapshot for session {session_id}, cannot execute pipeline") + return + + logger.info(f"[FALLBACK] Using snapshot frame {frame.shape[1]}x{frame.shape[0]} for session {session_id}") + + # Check if detection pipeline is available + if not self.detection_pipeline: + logger.error(f"[FALLBACK] Detection pipeline not available for session {session_id}") + return + + # Execute detection phase to get detected regions + detection_result = await self.detection_pipeline.execute_detection_phase( + frame=frame, + display_id=display_id, + subscription_id=subscription_id + ) + + logger.info(f"[FALLBACK] Detection phase completed for session {session_id}: " + f"status={detection_result.get('status', 'unknown')}, " + f"regions={list(detection_result.get('detected_regions', {}).keys())}") + + # If detection found regions, execute processing phase + detected_regions = detection_result.get('detected_regions', {}) + if detected_regions: + processing_result = await self.detection_pipeline.execute_processing_phase( + frame=frame, + display_id=display_id, + session_id=session_id, + subscription_id=subscription_id, + detected_regions=detected_regions + ) + + logger.info(f"[FALLBACK] Processing phase completed for session {session_id}: " + f"status={processing_result.get('status', 'unknown')}, " + f"branches={len(processing_result.get('branch_results', {}))}, " + f"actions={len(processing_result.get('actions_executed', []))}") + + # Update statistics + self.stats['pipelines_executed'] += 1 + + else: + logger.warning(f"[FALLBACK] No detections found in snapshot for session {session_id}") + + except Exception as e: + logger.error(f"[FALLBACK] Error executing fallback pipeline for session {session_id}: {e}", exc_info=True) + + def _filter_small_frontals(self, tracking_results, frame): + """ + Filter out frontal detections that are smaller than minimum bbox area percentage. + This prevents processing of cars from neighboring pumps that appear in camera view. + + Args: + tracking_results: YOLO tracking results with detections + frame: Input frame for calculating frame area + + Returns: + Modified tracking_results with small frontals removed + """ + if not hasattr(tracking_results, 'detections') or not tracking_results.detections: + return tracking_results + + # Calculate frame area and minimum bbox area threshold + frame_area = frame.shape[0] * frame.shape[1] # height * width + min_bbox_area = frame_area * (self.min_bbox_area_percentage / 100.0) + + # Filter detections + filtered_detections = [] + filtered_count = 0 + + for detection in tracking_results.detections: + # Calculate detection bbox area + bbox = detection.bbox # Assuming bbox is [x1, y1, x2, y2] + bbox_area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) + + if bbox_area >= min_bbox_area: + # Keep detection - bbox is large enough + filtered_detections.append(detection) + else: + # Filter out small detection + filtered_count += 1 + area_percentage = (bbox_area / frame_area) * 100 + logger.debug(f"Filtered small frontal: area={bbox_area:.0f}px² ({area_percentage:.1f}% of frame, " + f"min required: {self.min_bbox_area_percentage}%)") + + # Update tracking results with filtered detections + tracking_results.detections = filtered_detections + + # Update statistics + if filtered_count > 0: + self.stats['frontals_filtered_small'] += filtered_count + logger.info(f"Filtered {filtered_count} small frontal detections, " + f"{len(filtered_detections)} remaining (total filtered: {self.stats['frontals_filtered_small']})") + + return tracking_results + def cleanup(self): """Cleanup resources.""" self.executor.shutdown(wait=False) diff --git a/requirements.base.txt b/requirements.base.txt index 3511dd4..b8af923 100644 --- a/requirements.base.txt +++ b/requirements.base.txt @@ -7,4 +7,6 @@ filterpy psycopg2-binary lap>=0.5.12 pynvml -PyTurboJPEG \ No newline at end of file +PyTurboJPEG +PyNvVideoCodec +cupy-cuda12x \ No newline at end of file