Compare commits

..

13 commits

Author SHA1 Message Date
864be5cb47 Merge pull request '[Pongsatorn K. 2025/08/30] worker ver 1.0.0' (#4) from feat/tracker into dev
Some checks failed
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Failing after 59s
Build Worker Base and Application Images / build-docker (push) Has been skipped
Build Worker Base and Application Images / deploy-stack (push) Has been skipped
Reviewed-on: #4
Reviewed-by: Siwat Sirichai <siwat@siwatinc.com>
2025-08-30 15:26:57 +00:00
Pongsatorn
338bbb410e delete log 2025-08-30 21:58:20 +07:00
Pongsatorn
cee856f59a version 1.0 2025-08-30 01:39:54 +07:00
Pongsatorn
72eb7d55ea update/car-in_no_fueling//next: car-in_fueling 2025-08-29 19:05:10 +07:00
Pongsatorn
5875b76d74 Successful 2025-08-29 02:13:22 +07:00
Pongsatorn
39394caa8e Finish 2025-08-29 00:57:32 +07:00
Pongsatorn
85b49ddf0f fix postgresql 2025-08-29 00:34:16 +07:00
Pongsatorn
80d9c925de wait update RX cam sub 2025-08-28 16:46:18 +07:00
Pongsatorn
5bf2d49e6b tracking 70% 2025-08-28 11:57:15 +07:00
Pongsatorn
07eddd3f0d update sessionID backend 2025-08-23 18:38:50 +07:00
Pongsatorn
5873945115 feat/tracking and save in redis finished 2025-08-21 20:59:29 +07:00
Pongsatorn
3a4a27ca68 update tracker 2025-08-20 21:26:54 +07:00
Pongsatorn
a54da904f7 update requirements 2025-08-19 22:42:34 +07:00
13 changed files with 3533 additions and 252 deletions

2
.gitignore vendored
View file

@ -13,3 +13,5 @@ no_frame_debug.log
feeder/ feeder/
.venv/ .venv/
.vscode/
dist/

1562
app.py

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,142 @@
#!/usr/bin/env python3
"""
Test script to check available camera indices
"""
import cv2
import logging
import sys
import subprocess
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s"
)
logger = logging.getLogger("camera_index_test")
def test_camera_index(index):
"""Test if a camera index is available"""
try:
cap = cv2.VideoCapture(index)
if cap.isOpened():
ret, frame = cap.read()
if ret and frame is not None:
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return True, f"{width}x{height} @ {fps}fps"
else:
cap.release()
return False, "Can open but cannot read frames"
else:
cap.release()
return False, "Cannot open camera"
except Exception as e:
return False, f"Error: {str(e)}"
def get_windows_cameras_ffmpeg():
"""Get available cameras on Windows using FFmpeg"""
try:
result = subprocess.run(['ffmpeg', '-f', 'dshow', '-list_devices', 'true', '-i', 'dummy'],
capture_output=True, text=True, timeout=10, encoding='utf-8', errors='ignore')
output = result.stderr
lines = output.split('\n')
video_devices = []
# Parse the output - look for lines with (video) that contain device names in quotes
for line in lines:
if '[dshow @' in line and '(video)' in line and '"' in line:
# Extract device name between first pair of quotes
start = line.find('"') + 1
end = line.find('"', start)
if start > 0 and end > start:
device_name = line[start:end]
video_devices.append(device_name)
logger.info(f"FFmpeg detected video devices: {video_devices}")
return video_devices
except Exception as e:
logger.error(f"Failed to get Windows camera names: {e}")
return []
def main():
logger.info("=== Camera Index Test ===")
# Check FFmpeg availability for Windows device detection
ffmpeg_available = False
try:
result = subprocess.run(['ffmpeg', '-version'], capture_output=True, text=True, timeout=5)
if result.returncode == 0:
ffmpeg_available = True
logger.info("FFmpeg is available")
except:
logger.info("FFmpeg not available")
# Get Windows camera names if possible
if sys.platform.startswith('win') and ffmpeg_available:
logger.info("\n=== Windows Camera Devices (FFmpeg) ===")
cameras = get_windows_cameras_ffmpeg()
if cameras:
for i, camera in enumerate(cameras):
logger.info(f"Device {i}: {camera}")
else:
logger.info("No cameras detected via FFmpeg")
# Test camera indices 0-9
logger.info("\n=== Testing Camera Indices ===")
available_cameras = []
for index in range(10):
logger.info(f"Testing camera index {index}...")
is_available, info = test_camera_index(index)
if is_available:
logger.info(f"✓ Camera {index}: AVAILABLE - {info}")
available_cameras.append(index)
else:
logger.info(f"✗ Camera {index}: NOT AVAILABLE - {info}")
# Summary
logger.info("\n=== Summary ===")
if available_cameras:
logger.info(f"Available camera indices: {available_cameras}")
logger.info(f"Default camera index to use: {available_cameras[0]}")
# Test the first available camera more thoroughly
logger.info(f"\n=== Detailed Test for Camera {available_cameras[0]} ===")
cap = cv2.VideoCapture(available_cameras[0])
if cap.isOpened():
# Get properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
backend = cap.getBackendName()
logger.info(f"Resolution: {width}x{height}")
logger.info(f"FPS: {fps}")
logger.info(f"Backend: {backend}")
# Test frame capture
ret, frame = cap.read()
if ret and frame is not None:
logger.info(f"Frame capture: SUCCESS")
logger.info(f"Frame shape: {frame.shape}")
logger.info(f"Frame dtype: {frame.dtype}")
else:
logger.info(f"Frame capture: FAILED")
cap.release()
else:
logger.error("No cameras available!")
logger.info("Possible solutions:")
logger.info("1. Check if camera is connected and not used by another application")
logger.info("2. Check camera permissions")
logger.info("3. Try different camera indices")
logger.info("4. Install camera drivers")
if __name__ == "__main__":
main()

View file

@ -1,7 +1,13 @@
torch torch>=1.12.0,<2.1.0
torchvision torchvision>=0.13.0,<0.16.0
ultralytics ultralytics>=8.3.0
opencv-python opencv-python>=4.6.0,<4.9.0
scipy scipy>=1.9.0,<1.12.0
filterpy filterpy>=1.4.0,<1.5.0
psycopg2-binary psycopg2-binary>=2.9.0,<2.10.0
easydict
loguru
pyzmq
gitpython
gdown
lap

View file

@ -1,6 +1,5 @@
fastapi fastapi[standard]
uvicorn uvicorn
websockets websockets
fastapi[standard]
redis redis
urllib3<2.0.0 urllib3<2.0.0

View file

@ -80,37 +80,50 @@ class DatabaseManager:
try: try:
cur = self.connection.cursor() cur = self.connection.cursor()
# Build the UPDATE query dynamically # Build the INSERT and UPDATE query dynamically
insert_placeholders = []
insert_values = [key_value] # Start with key_value
set_clauses = [] set_clauses = []
values = [] update_values = []
for field, value in fields.items(): for field, value in fields.items():
if value == "NOW()": if value == "NOW()":
# Special handling for NOW()
insert_placeholders.append("NOW()")
set_clauses.append(f"{field} = NOW()") set_clauses.append(f"{field} = NOW()")
else: else:
insert_placeholders.append("%s")
insert_values.append(value)
set_clauses.append(f"{field} = %s") set_clauses.append(f"{field} = %s")
values.append(value) update_values.append(value)
# Add schema prefix if table doesn't already have it # Add schema prefix if table doesn't already have it
full_table_name = table if '.' in table else f"gas_station_1.{table}" full_table_name = table if '.' in table else f"gas_station_1.{table}"
# Build the complete query
query = f""" query = f"""
INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())}) INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
VALUES (%s, {', '.join(['%s'] * len(fields))}) VALUES (%s, {', '.join(insert_placeholders)})
ON CONFLICT ({key_field}) ON CONFLICT ({key_field})
DO UPDATE SET {', '.join(set_clauses)} DO UPDATE SET {', '.join(set_clauses)}
""" """
# Add key_value to the beginning of values list # Combine values for the query: insert_values + update_values
all_values = [key_value] + list(fields.values()) + values all_values = insert_values + update_values
logger.debug(f"SQL Query: {query}")
logger.debug(f"Values: {all_values}")
cur.execute(query, all_values) cur.execute(query, all_values)
self.connection.commit() self.connection.commit()
cur.close() cur.close()
logger.info(f"Updated {table} for {key_field}={key_value}") logger.info(f"Updated {table} for {key_field}={key_value} with fields: {fields}")
return True return True
except Exception as e: except Exception as e:
logger.error(f"Failed to execute update on {table}: {e}") logger.error(f"❌ Failed to execute update on {table}: {e}")
logger.debug(f"Query: {query if 'query' in locals() else 'Query not built'}")
logger.debug(f"Values: {all_values if 'all_values' in locals() else 'Values not prepared'}")
if self.connection: if self.connection:
self.connection.rollback() self.connection.rollback()
return False return False

File diff suppressed because it is too large Load diff

BIN
test/sample.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

BIN
test/sample2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

60
test/test.py Normal file
View file

@ -0,0 +1,60 @@
from ultralytics import YOLO
import cv2
import os
# Load the model
# model = YOLO('../models/webcam-local-01/4/bangchak_poc/yolo11n.pt')
model = YOLO('yolo11m.pt')
def test_image(image_path):
"""Test a single image with YOLO model"""
if not os.path.exists(image_path):
print(f"Image not found: {image_path}")
return
# Run inference - filter for car class only (class 2 in COCO)
results = model(image_path, classes=[2, 5, 7]) # 2, 5, 7 = car, bus, truck in COCO dataset
# Display results
for r in results:
im_array = r.plot() # plot a BGR numpy array of predictions
# Resize image for display (max width/height 800px)
height, width = im_array.shape[:2]
max_dimension = 800
if width > max_dimension or height > max_dimension:
if width > height:
new_width = max_dimension
new_height = int(height * (max_dimension / width))
else:
new_height = max_dimension
new_width = int(width * (max_dimension / height))
im_array = cv2.resize(im_array, (new_width, new_height))
# Show image with predictions
cv2.imshow('YOLO Test - Car Detection Only', im_array)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Print detection info
print(f"\nDetections for {image_path}:")
if r.boxes is not None and len(r.boxes) > 0:
for i, box in enumerate(r.boxes):
cls = int(box.cls[0])
conf = float(box.conf[0])
original_class = model.names[cls] # Original class name (car/bus/truck)
# Get bounding box coordinates
x1, y1, x2, y2 = box.xyxy[0].tolist()
# Rename all vehicle types to "car"
print(f"Detection {i+1}: car (was: {original_class}) - Confidence: {conf:.3f} - BBox: ({x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f})")
print(f"Total cars detected: {len(r.boxes)}")
else:
print("No cars detected in the image")
if __name__ == "__main__":
# Test with an image file
image_path = input("Enter image path (or press Enter for default test): ")
if not image_path:
image_path = "sample.png" # Default test image
test_image(image_path)

View file

@ -0,0 +1,352 @@
import cv2
import torch
import numpy as np
import time
from collections import defaultdict
from ultralytics import YOLO
def point_in_polygon(point, polygon):
"""Check if a point is inside a polygon using ray casting algorithm"""
x, y = point
n = len(polygon)
inside = False
p1x, p1y = polygon[0]
for i in range(1, n + 1):
p2x, p2y = polygon[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def draw_zone(frame, zone_polygon, color=(255, 0, 0), thickness=3):
"""Draw tracking zone on frame"""
pts = np.array(zone_polygon, np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.polylines(frame, [pts], True, color, thickness)
# Add semi-transparent fill
overlay = frame.copy()
cv2.fillPoly(overlay, [pts], color)
cv2.addWeighted(overlay, 0.2, frame, 0.8, 0, frame)
def setup_video_writer(output_path, fps, width, height):
"""Setup video writer for output"""
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
return cv2.VideoWriter(output_path, fourcc, fps, (width, height))
def write_frame_to_video(video_writer, frame, repeat_count):
"""Write frame to video with specified repeat count"""
for _ in range(repeat_count):
video_writer.write(frame)
def finalize_video(video_writer):
"""Release video writer"""
video_writer.release()
def main():
video_path = "sample2.mp4"
yolo_model = "bangchakv2/yolov8n.pt"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
print("Loading YOLO model...")
model = YOLO(yolo_model)
print("Opening video...")
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"Video info: {width}x{height}, {fps} FPS, {total_frames} frames")
# Define tracking zone - Gas station floor area (trapezoidal shape)
# Based on the perspective of the gas station floor from your image
# width 2560, height 1440
tracking_zone = [
(423, 974), # Point 1
(1540, 1407), # Point 2
(1976, 806), # Point 3
(1364, 749) # Point 4
]
print(f"🎯 Tracking zone defined: {tracking_zone}")
# CONTINUOUS TRACKING: Process every 118 frames (~2.0s intervals)
frame_skip = 118
print(f"🎯 CONTINUOUS MODE: Processing every {frame_skip} frames ({frame_skip/fps:.2f}s intervals)")
print(f"🎬 Output video will have same duration as input (each processed frame shown for 2 seconds)")
print("🔥 ZONE-FIRST TRACKING: Only cars entering the zone will be tracked!")
print("Requires 5 consecutive detections IN ZONE for verification")
print("🕐 24/7 MODE: Memory reset every hour to prevent overflow")
print("Press 'q' to quit")
# Setup video writer for output (same fps as input for normal playback speed)
output_path = "tracking_output_botsort_zone_track.mp4"
output_fps = fps # Use same fps as input video
out = setup_video_writer(output_path, output_fps, width, height)
# Track car IDs and their consecutive detections
car_id_counts = defaultdict(int)
successful_cars = set()
last_positions = {}
processed_count = 0
# ID remapping for clean sequential zone IDs
tracker_to_zone_id = {} # Maps tracker IDs to clean zone IDs
next_zone_id = 1 # Next clean zone ID to assign
# Store previous frame detections to filter tracking inputs
previous_zone_cars = set()
# 24/7 operation: Reset every hour (1800 snapshots at 2-sec intervals = 1 hour)
RESET_INTERVAL = 1800 # Reset every 1800 processed frames (1 hour)
frame_idx = 0
while True:
# Skip frames to maintain interval
for _ in range(frame_skip):
ret, frame = cap.read()
if not ret:
print("\nNo more frames to read")
cap.release()
cv2.destroyAllWindows()
return
frame_idx += 1
processed_count += 1
current_time = frame_idx / fps
print(f"\n🎬 Frame {frame_idx} at {current_time:.2f}s (processed #{processed_count})")
# 24/7 Memory Management: Reset every hour
if processed_count % RESET_INTERVAL == 0:
print(f"🕐 HOURLY RESET: Clearing all tracking data (processed {processed_count} frames)")
print(f" 📊 Before reset: {len(tracker_to_zone_id)} tracked cars, next Zone ID was {next_zone_id}")
# Clear all tracking data
tracker_to_zone_id.clear()
car_id_counts.clear()
successful_cars.clear()
last_positions.clear()
next_zone_id = 1 # Reset to 1
# Reset BoT-SORT tracker state
try:
model.reset()
print(f" ✅ BoT-SORT tracker reset successfully")
except:
print(f" ⚠️ BoT-SORT reset not available (continuing without reset)")
print(f" 🆕 Zone IDs will start from 1 again")
# Draw tracking zone on frame
draw_zone(frame, tracking_zone, color=(0, 255, 255), thickness=3) # Yellow zone
# First run YOLO detection (without tracking) to find cars in zone
detection_results = model(frame, verbose=False, conf=0.7, classes=[2])
# Find cars currently in the tracking zone
current_zone_cars = []
total_detections = 0
if detection_results[0].boxes is not None:
boxes = detection_results[0].boxes.xyxy.cpu()
scores = detection_results[0].boxes.conf.cpu()
total_detections = len(boxes)
print(f" 🔍 Total car detections: {total_detections}")
for i in range(len(boxes)):
x1, y1, x2, y2 = boxes[i]
conf = float(scores[i])
# Check if detection is in zone (using bottom center)
box_bottom = ((x1 + x2) / 2, y2)
if point_in_polygon(box_bottom, tracking_zone):
current_zone_cars.append({
'bbox': [float(x1), float(y1), float(x2), float(y2)],
'conf': conf,
'center': ((x1 + x2) / 2, (y1 + y2) / 2),
'bottom': box_bottom
})
print(f" 🎯 Cars in zone: {len(current_zone_cars)}")
# Only run tracking if there are cars in the zone
detected_car_ids = set()
if current_zone_cars:
# Run tracking on the full frame (let tracker handle associations)
# But we'll filter results to only zone cars afterward
results = model.track(
frame,
persist=True,
verbose=False,
conf=0.7,
classes=[2],
tracker="botsort_reid.yaml"
)
if results[0].boxes is not None and results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu()
scores = results[0].boxes.conf.cpu()
track_ids = results[0].boxes.id.cpu().int()
print(f" 📊 Total tracked objects: {len(track_ids)}")
# Filter tracked objects to only those in zone
zone_tracks = []
for i, track_id in enumerate(track_ids):
x1, y1, x2, y2 = boxes[i]
conf = float(scores[i])
# Check if this tracked object is in our zone
box_bottom = ((x1 + x2) / 2, y2)
if point_in_polygon(box_bottom, tracking_zone):
zone_tracks.append({
'id': int(track_id),
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'conf': conf,
'center': ((x1 + x2) / 2, (y1 + y2) / 2),
'bottom': box_bottom
})
print(f" ✅ Zone tracks: {len(zone_tracks)}")
# Process each zone track
for track in zone_tracks:
tracker_id = track['id'] # Original tracker ID
x1, y1, x2, y2 = track['bbox']
conf = track['conf']
box_center = track['center']
# Map tracker ID to clean zone ID
if tracker_id not in tracker_to_zone_id:
tracker_to_zone_id[tracker_id] = next_zone_id
print(f" 🆕 New car: Tracker ID {tracker_id} → Zone ID {next_zone_id}")
next_zone_id += 1
zone_id = tracker_to_zone_id[tracker_id] # Clean sequential ID
# Validate track continuity (use tracker_id for internal logic)
is_valid = True
# Check for suspicious jumps
if tracker_id in last_positions:
last_center = last_positions[tracker_id]
distance = np.sqrt((box_center[0] - last_center[0])**2 +
(box_center[1] - last_center[1])**2)
if distance > 400: # pixels in ~2.0s
is_valid = False
print(f" ⚠️ Zone ID {zone_id} (Tracker {tracker_id}): suspicious jump {distance:.0f}px")
# Skip already successful cars (use zone_id for user logic)
if zone_id in successful_cars:
is_valid = False
print(f" ✅ Zone ID {zone_id}: already successful, skipping")
# Only process valid, high-confidence zone tracks
if is_valid and conf > 0.7:
detected_car_ids.add(zone_id) # Use zone_id for display
car_id_counts[zone_id] += 1
last_positions[tracker_id] = box_center # Track by tracker_id internally
# Draw tracking results with clean zone ID
zone_color = (0, 255, 0) # Green for zone cars
cv2.rectangle(frame, (x1, y1), (x2, y2), zone_color, 2)
cv2.putText(frame, f'ZONE ID:{zone_id}',
(x1, y1-30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, zone_color, 2)
cv2.putText(frame, f'#{car_id_counts[zone_id]} {conf:.2f}',
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, zone_color, 2)
# Draw center point
cv2.circle(frame, (int(track['bottom'][0]), int(track['bottom'][1])), 5, zone_color, -1)
print(f" ✅ Zone ID {zone_id} (Tracker {tracker_id}): ZONE detection #{car_id_counts[zone_id]} (conf: {conf:.2f})")
# Check for success (5 consecutive detections IN ZONE)
if car_id_counts[zone_id] == 5:
print(f"🏆 SUCCESS: Zone ID {zone_id} achieved 5 continuous ZONE detections - TRIGGER NEXT MODEL!")
successful_cars.add(zone_id)
# Add success indicator to frame
cv2.putText(frame, f"SUCCESS: Zone Car {zone_id}!",
(50, height-50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)
else:
print(" 📋 No cars in zone - no tracking performed")
# Draw any cars outside the zone in red (for reference)
if detection_results[0].boxes is not None:
boxes = detection_results[0].boxes.xyxy.cpu()
scores = detection_results[0].boxes.conf.cpu()
for i in range(len(boxes)):
x1, y1, x2, y2 = boxes[i]
conf = float(scores[i])
box_bottom = ((x1 + x2) / 2, y2)
if not point_in_polygon(box_bottom, tracking_zone):
# Draw cars outside zone in red (not tracked)
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 1)
cv2.putText(frame, f'OUT {conf:.2f}',
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
# Display results
if detected_car_ids:
print(f" 📋 Active Zone IDs: {sorted(detected_car_ids)} (Clean sequential IDs)")
# Show ID mapping for debugging
if tracker_to_zone_id:
mapping_str = ", ".join([f"Tracker{k}→Zone{v}" for k, v in tracker_to_zone_id.items()])
print(f" 🔄 ID Mapping: {mapping_str}")
# Add annotations to frame
cv2.putText(frame, f"BoT-SORT Zone-First Tracking | Frame: {frame_idx} | {current_time:.2f}s",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
cv2.putText(frame, f"Zone Cars: {len(current_zone_cars)} | Active Tracks: {len(detected_car_ids)}",
(10, 65), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"Successful Cars: {len(successful_cars)}",
(10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, "TRACKING ZONE",
(tracking_zone[0][0], tracking_zone[0][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
# Write annotated frame to output video (repeat for 2 seconds duration)
write_frame_to_video(out, frame, frame_skip)
# Show video with zone tracking info
display_frame = cv2.resize(frame, (960, 540))
cv2.imshow('BoT-SORT Zone-First Tracking', display_frame)
# Quick check for quit
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
# Small delay to see results
time.sleep(0.1)
cap.release()
finalize_video(out)
cv2.destroyAllWindows()
print(f"\n🎯 BoT-SORT zone-first tracking completed!")
print(f"📊 Processed {processed_count} frames with {frame_skip/fps:.2f}s intervals")
print(f"🏆 Successfully tracked {len(successful_cars)} unique cars IN ZONE")
print(f"💾 Annotated video saved to: {output_path}")
if __name__ == "__main__":
main()

162
view_redis_images.py Normal file
View file

@ -0,0 +1,162 @@
#!/usr/bin/env python3
"""
Script to view frontal images saved in Redis
"""
import redis
import cv2
import numpy as np
import sys
from datetime import datetime
# Redis connection config (from pipeline.json)
REDIS_CONFIG = {
"host": "10.100.1.3",
"port": 6379,
"password": "FBQgi0i5RevAAMO5Hh66",
"db": 0
}
def connect_redis():
"""Connect to Redis server."""
try:
client = redis.Redis(
host=REDIS_CONFIG["host"],
port=REDIS_CONFIG["port"],
password=REDIS_CONFIG["password"],
db=REDIS_CONFIG["db"],
decode_responses=False # Keep bytes for images
)
client.ping()
print(f"✅ Connected to Redis at {REDIS_CONFIG['host']}:{REDIS_CONFIG['port']}")
return client
except redis.exceptions.ConnectionError as e:
print(f"❌ Failed to connect to Redis: {e}")
return None
def list_image_keys(client):
"""List all image keys in Redis."""
try:
# Look for keys matching the inference pattern
keys = client.keys("inference:*")
print(f"\n📋 Found {len(keys)} image keys:")
for i, key in enumerate(keys):
key_str = key.decode() if isinstance(key, bytes) else key
print(f"{i+1}. {key_str}")
return keys
except Exception as e:
print(f"❌ Error listing keys: {e}")
return []
def view_image(client, key):
"""View a specific image from Redis."""
try:
# Get image data from Redis
image_data = client.get(key)
if image_data is None:
print(f"❌ No data found for key: {key}")
return
print(f"📸 Image size: {len(image_data)} bytes")
# Convert bytes to numpy array
nparr = np.frombuffer(image_data, np.uint8)
# Decode image
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None:
print("❌ Failed to decode image data")
return
print(f"🖼️ Image dimensions: {img.shape[1]}x{img.shape[0]} pixels")
# Display image
key_str = key.decode() if isinstance(key, bytes) else key
cv2.imshow(f'Redis Image: {key_str}', img)
print("👁️ Image displayed. Press any key to close...")
cv2.waitKey(0)
cv2.destroyAllWindows()
# Ask if user wants to save the image
save = input("💾 Save image to file? (y/n): ").lower().strip()
if save == 'y':
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"redis_image_{timestamp}.jpg"
cv2.imwrite(filename, img)
print(f"💾 Image saved as: {filename}")
except Exception as e:
print(f"❌ Error viewing image: {e}")
def monitor_new_images(client):
"""Monitor for new images being added to Redis."""
print("👀 Monitoring for new images... (Press Ctrl+C to stop)")
try:
# Subscribe to Redis pub/sub for car detections
pubsub = client.pubsub()
pubsub.subscribe('car_detections')
for message in pubsub.listen():
if message['type'] == 'message':
data = message['data'].decode()
print(f"🚨 New detection: {data}")
# Try to extract image key from message
import json
try:
detection_data = json.loads(data)
image_key = detection_data.get('image_key')
if image_key:
print(f"🖼️ New image available: {image_key}")
view_choice = input("View this image now? (y/n): ").lower().strip()
if view_choice == 'y':
view_image(client, image_key)
except json.JSONDecodeError:
pass
except KeyboardInterrupt:
print("\n👋 Stopping monitor...")
except Exception as e:
print(f"❌ Monitor error: {e}")
def main():
"""Main function."""
print("🔍 Redis Image Viewer")
print("=" * 50)
# Connect to Redis
client = connect_redis()
if not client:
return
while True:
print("\n📋 Options:")
print("1. List all image keys")
print("2. View specific image")
print("3. Monitor for new images")
print("4. Exit")
choice = input("\nEnter choice (1-4): ").strip()
if choice == '1':
keys = list_image_keys(client)
elif choice == '2':
keys = list_image_keys(client)
if keys:
try:
idx = int(input(f"\nEnter image number (1-{len(keys)}): ")) - 1
if 0 <= idx < len(keys):
view_image(client, keys[idx])
else:
print("❌ Invalid selection")
except ValueError:
print("❌ Please enter a valid number")
elif choice == '3':
monitor_new_images(client)
elif choice == '4':
print("👋 Goodbye!")
break
else:
print("❌ Invalid choice")
if __name__ == "__main__":
main()

325
webcam_rtsp_server.py Normal file
View file

@ -0,0 +1,325 @@
#!/usr/bin/env python3
"""
Enhanced webcam server that provides both RTSP streaming and HTTP snapshot endpoints
Compatible with CMS UI requirements for camera configuration
"""
import cv2
import threading
import time
import logging
import socket
from http.server import BaseHTTPRequestHandler, HTTPServer
import subprocess
import sys
import os
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s"
)
logger = logging.getLogger("webcam_rtsp_server")
# Global webcam capture object
webcam_cap = None
rtsp_process = None
class WebcamHTTPHandler(BaseHTTPRequestHandler):
"""HTTP handler for snapshot requests"""
def do_GET(self):
if self.path == '/snapshot' or self.path == '/snapshot.jpg':
try:
# Capture fresh frame from webcam for each request
ret, frame = webcam_cap.read()
if ret and frame is not None:
# Encode as JPEG
success, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
if success:
self.send_response(200)
self.send_header('Content-Type', 'image/jpeg')
self.send_header('Content-Length', str(len(buffer)))
self.send_header('Cache-Control', 'no-cache, no-store, must-revalidate')
self.send_header('Pragma', 'no-cache')
self.send_header('Expires', '0')
self.end_headers()
self.wfile.write(buffer.tobytes())
logger.debug(f"Served webcam snapshot, size: {len(buffer)} bytes")
return
else:
logger.error("Failed to encode frame as JPEG")
else:
logger.error("Failed to capture frame from webcam")
# Send error response
self.send_response(500)
self.send_header('Content-Type', 'text/plain')
self.end_headers()
self.wfile.write(b'Failed to capture webcam frame')
except Exception as e:
logger.error(f"Error serving snapshot: {e}")
self.send_response(500)
self.send_header('Content-Type', 'text/plain')
self.end_headers()
self.wfile.write(f'Error: {str(e)}'.encode())
elif self.path == '/status':
# Status endpoint for health checking
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
width = int(webcam_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(webcam_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = webcam_cap.get(cv2.CAP_PROP_FPS)
status = f'{{"status": "online", "width": {width}, "height": {height}, "fps": {fps}}}'
self.wfile.write(status.encode())
else:
# 404 for other paths
self.send_response(404)
self.send_header('Content-Type', 'text/plain')
self.end_headers()
self.wfile.write(b'Not Found - Available endpoints: /snapshot, /snapshot.jpg, /status')
def log_message(self, format, *args):
# Suppress default HTTP server logging to avoid spam
pass
def check_ffmpeg():
"""Check if FFmpeg is available for RTSP streaming"""
try:
result = subprocess.run(['ffmpeg', '-version'],
capture_output=True, text=True, timeout=5)
if result.returncode == 0:
logger.info("FFmpeg found and working")
return True
except (subprocess.TimeoutExpired, FileNotFoundError, subprocess.SubprocessError):
pass
logger.warning("FFmpeg not found. RTSP streaming will not be available.")
logger.info("To enable RTSP streaming, install FFmpeg:")
logger.info(" Windows: Download from https://ffmpeg.org/download.html")
logger.info(" Linux: sudo apt install ffmpeg")
logger.info(" macOS: brew install ffmpeg")
return False
def get_windows_camera_name():
"""Get the actual camera device name on Windows"""
try:
# List video devices using FFmpeg with proper encoding handling
result = subprocess.run(['ffmpeg', '-f', 'dshow', '-list_devices', 'true', '-i', 'dummy'],
capture_output=True, text=True, timeout=10, encoding='utf-8', errors='ignore')
output = result.stderr # FFmpeg outputs device list to stderr
# Look for video devices in the output
lines = output.split('\n')
video_devices = []
# Parse the output - look for lines with (video) that contain device names in quotes
for line in lines:
if '[dshow @' in line and '(video)' in line and '"' in line:
# Extract device name between first pair of quotes
start = line.find('"') + 1
end = line.find('"', start)
if start > 0 and end > start:
device_name = line[start:end]
video_devices.append(device_name)
logger.info(f"Found Windows video devices: {video_devices}")
if video_devices:
# Force use the first device (index 0) which is the Logitech HD webcam
return video_devices[0] # This will be "罗技高清网络摄像机 C930c"
else:
logger.info("No devices found via FFmpeg detection, using fallback")
# Fall through to fallback names
except Exception as e:
logger.debug(f"Failed to get Windows camera name: {e}")
# Try common camera device names as fallback
# Prioritize Integrated Camera since that's what's working now
common_names = [
"Integrated Camera", # This is working for the current setup
"USB Video Device", # Common name for USB cameras
"USB2.0 Camera",
"C930c", # Direct model name
"HD Pro Webcam C930c", # Full Logitech name
"Logitech", # Brand name
"USB Camera",
"Webcam"
]
logger.info(f"Using fallback camera names: {common_names}")
return common_names[0] # Return "Integrated Camera" first
def start_rtsp_stream(webcam_index=0, rtsp_port=8554):
"""Start RTSP streaming using FFmpeg"""
global rtsp_process
if not check_ffmpeg():
return None
try:
# Get the actual camera device name for Windows
if sys.platform.startswith('win'):
camera_name = get_windows_camera_name()
logger.info(f"Using Windows camera device: {camera_name}")
# FFmpeg command to stream webcam via RTSP
if sys.platform.startswith('win'):
cmd = [
'ffmpeg',
'-f', 'dshow',
'-i', f'video={camera_name}', # Use detected camera name
'-c:v', 'libx264',
'-preset', 'veryfast',
'-tune', 'zerolatency',
'-r', '30',
'-s', '1280x720',
'-f', 'rtsp',
f'rtsp://localhost:{rtsp_port}/stream'
]
elif sys.platform.startswith('linux'):
cmd = [
'ffmpeg',
'-f', 'v4l2',
'-i', f'/dev/video{webcam_index}',
'-c:v', 'libx264',
'-preset', 'veryfast',
'-tune', 'zerolatency',
'-r', '30',
'-s', '1280x720',
'-f', 'rtsp',
f'rtsp://localhost:{rtsp_port}/stream'
]
else: # macOS
cmd = [
'ffmpeg',
'-f', 'avfoundation',
'-i', f'{webcam_index}:',
'-c:v', 'libx264',
'-preset', 'veryfast',
'-tune', 'zerolatency',
'-r', '30',
'-s', '1280x720',
'-f', 'rtsp',
f'rtsp://localhost:{rtsp_port}/stream'
]
logger.info(f"Starting RTSP stream on rtsp://localhost:{rtsp_port}/stream")
logger.info(f"FFmpeg command: {' '.join(cmd)}")
rtsp_process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Give FFmpeg a moment to start
time.sleep(2)
# Check if process is still running
if rtsp_process.poll() is None:
logger.info("RTSP streaming started successfully")
return rtsp_process
else:
# Get error output if process failed
stdout, stderr = rtsp_process.communicate(timeout=2)
logger.error("RTSP streaming failed to start")
logger.error(f"FFmpeg stdout: {stdout}")
logger.error(f"FFmpeg stderr: {stderr}")
return None
except Exception as e:
logger.error(f"Failed to start RTSP stream: {e}")
return None
def get_local_ip():
"""Get the Wireguard IP address for external access"""
# Use Wireguard IP for external access
return "10.101.1.4"
def main():
global webcam_cap, rtsp_process
# Configuration - Force use index 0 for Logitech HD webcam
webcam_index = 0 # Logitech HD webcam C930c (1920x1080@30fps)
http_port = 8080
rtsp_port = 8554
logger.info("=== Webcam RTSP & HTTP Server ===")
# Initialize webcam
logger.info("Initializing webcam...")
webcam_cap = cv2.VideoCapture(webcam_index)
if not webcam_cap.isOpened():
logger.error(f"Failed to open webcam at index {webcam_index}")
logger.info("Try different webcam indices (0, 1, 2, etc.)")
return
# Set webcam properties - Use high resolution for Logitech HD webcam
webcam_cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
webcam_cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
webcam_cap.set(cv2.CAP_PROP_FPS, 30)
width = int(webcam_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(webcam_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = webcam_cap.get(cv2.CAP_PROP_FPS)
logger.info(f"Webcam initialized: {width}x{height} @ {fps}fps")
# Get local IP for CMS configuration
local_ip = get_local_ip()
# Start RTSP streaming (optional, requires FFmpeg)
rtsp_process = start_rtsp_stream(webcam_index, rtsp_port)
# Start HTTP server for snapshots
server_address = ('0.0.0.0', http_port) # Bind to all interfaces
http_server = HTTPServer(server_address, WebcamHTTPHandler)
logger.info("\n=== Server URLs for CMS Configuration ===")
logger.info(f"HTTP Snapshot URL: http://{local_ip}:{http_port}/snapshot")
if rtsp_process:
logger.info(f"RTSP Stream URL: rtsp://{local_ip}:{rtsp_port}/stream")
else:
logger.info("RTSP Stream: Not available (FFmpeg not found)")
logger.info("HTTP-only mode: Use Snapshot URL for camera input")
logger.info(f"Status URL: http://{local_ip}:{http_port}/status")
logger.info("\n=== CMS Configuration Suggestions ===")
logger.info(f"Camera Identifier: webcam-local-01")
logger.info(f"RTSP Stream URL: rtsp://{local_ip}:{rtsp_port}/stream")
logger.info(f"Snapshot URL: http://{local_ip}:{http_port}/snapshot")
logger.info(f"Snapshot Interval: 2000 (ms)")
logger.info("\nPress Ctrl+C to stop all servers")
try:
# Start HTTP server
http_server.serve_forever()
except KeyboardInterrupt:
logger.info("Shutting down servers...")
finally:
# Clean up
if webcam_cap:
webcam_cap.release()
if rtsp_process:
logger.info("Stopping RTSP stream...")
rtsp_process.terminate()
try:
rtsp_process.wait(timeout=5)
except subprocess.TimeoutExpired:
rtsp_process.kill()
http_server.server_close()
logger.info("All servers stopped")
if __name__ == "__main__":
main()