refactor: remove old code
This commit is contained in:
		
							parent
							
								
									b2d5726b7a
								
							
						
					
					
						commit
						f7c464be21
					
				
					 2 changed files with 0 additions and 1009 deletions
				
			
		| 
						 | 
				
			
			@ -1,211 +0,0 @@
 | 
			
		|||
import psycopg2
 | 
			
		||||
import psycopg2.extras
 | 
			
		||||
from typing import Optional, Dict, Any
 | 
			
		||||
import logging
 | 
			
		||||
import uuid
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
class DatabaseManager:
 | 
			
		||||
    def __init__(self, config: Dict[str, Any]):
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.connection: Optional[psycopg2.extensions.connection] = None
 | 
			
		||||
        
 | 
			
		||||
    def connect(self) -> bool:
 | 
			
		||||
        try:
 | 
			
		||||
            self.connection = psycopg2.connect(
 | 
			
		||||
                host=self.config['host'],
 | 
			
		||||
                port=self.config['port'],
 | 
			
		||||
                database=self.config['database'],
 | 
			
		||||
                user=self.config['username'],
 | 
			
		||||
                password=self.config['password']
 | 
			
		||||
            )
 | 
			
		||||
            logger.info("PostgreSQL connection established successfully")
 | 
			
		||||
            return True
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to connect to PostgreSQL: {e}")
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def disconnect(self):
 | 
			
		||||
        if self.connection:
 | 
			
		||||
            self.connection.close()
 | 
			
		||||
            self.connection = None
 | 
			
		||||
            logger.info("PostgreSQL connection closed")
 | 
			
		||||
    
 | 
			
		||||
    def is_connected(self) -> bool:
 | 
			
		||||
        try:
 | 
			
		||||
            if self.connection and not self.connection.closed:
 | 
			
		||||
                cur = self.connection.cursor()
 | 
			
		||||
                cur.execute("SELECT 1")
 | 
			
		||||
                cur.fetchone()
 | 
			
		||||
                cur.close()
 | 
			
		||||
                return True
 | 
			
		||||
        except:
 | 
			
		||||
            pass
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return False
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            query = """
 | 
			
		||||
            INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
 | 
			
		||||
            VALUES (%s, %s, %s, %s, NOW())
 | 
			
		||||
            ON CONFLICT (session_id) 
 | 
			
		||||
            DO UPDATE SET 
 | 
			
		||||
                car_brand = EXCLUDED.car_brand,
 | 
			
		||||
                car_model = EXCLUDED.car_model,
 | 
			
		||||
                car_body_type = EXCLUDED.car_body_type,
 | 
			
		||||
                updated_at = NOW()
 | 
			
		||||
            """
 | 
			
		||||
            cur.execute(query, (session_id, brand, model, body_type))
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
 | 
			
		||||
            return True
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to update car info: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return False
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            
 | 
			
		||||
            # Build the UPDATE query dynamically
 | 
			
		||||
            set_clauses = []
 | 
			
		||||
            values = []
 | 
			
		||||
            
 | 
			
		||||
            for field, value in fields.items():
 | 
			
		||||
                if value == "NOW()":
 | 
			
		||||
                    set_clauses.append(f"{field} = NOW()")
 | 
			
		||||
                else:
 | 
			
		||||
                    set_clauses.append(f"{field} = %s")
 | 
			
		||||
                    values.append(value)
 | 
			
		||||
            
 | 
			
		||||
            # Add schema prefix if table doesn't already have it
 | 
			
		||||
            full_table_name = table if '.' in table else f"gas_station_1.{table}"
 | 
			
		||||
            
 | 
			
		||||
            query = f"""
 | 
			
		||||
            INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
 | 
			
		||||
            VALUES (%s, {', '.join(['%s'] * len(fields))})
 | 
			
		||||
            ON CONFLICT ({key_field})
 | 
			
		||||
            DO UPDATE SET {', '.join(set_clauses)}
 | 
			
		||||
            """
 | 
			
		||||
            
 | 
			
		||||
            # Add key_value to the beginning of values list
 | 
			
		||||
            all_values = [key_value] + list(fields.values()) + values
 | 
			
		||||
            
 | 
			
		||||
            cur.execute(query, all_values)
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info(f"Updated {table} for {key_field}={key_value}")
 | 
			
		||||
            return True
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to execute update on {table}: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def create_car_frontal_info_table(self) -> bool:
 | 
			
		||||
        """Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return False
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            
 | 
			
		||||
            # Create schema if it doesn't exist
 | 
			
		||||
            cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
 | 
			
		||||
            
 | 
			
		||||
            # Create table if it doesn't exist
 | 
			
		||||
            create_table_query = """
 | 
			
		||||
            CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
 | 
			
		||||
                display_id VARCHAR(255),
 | 
			
		||||
                captured_timestamp VARCHAR(255),
 | 
			
		||||
                session_id VARCHAR(255) PRIMARY KEY,
 | 
			
		||||
                license_character VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                license_type VARCHAR(255) DEFAULT 'No model available',
 | 
			
		||||
                car_brand VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                car_model VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                car_body_type VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                updated_at TIMESTAMP DEFAULT NOW()
 | 
			
		||||
            )
 | 
			
		||||
            """
 | 
			
		||||
            
 | 
			
		||||
            cur.execute(create_table_query)
 | 
			
		||||
            
 | 
			
		||||
            # Add columns if they don't exist (for existing tables)
 | 
			
		||||
            alter_queries = [
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL", 
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
 | 
			
		||||
            ]
 | 
			
		||||
            
 | 
			
		||||
            for alter_query in alter_queries:
 | 
			
		||||
                try:
 | 
			
		||||
                    cur.execute(alter_query)
 | 
			
		||||
                    logger.debug(f"Executed: {alter_query}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    # Ignore errors if column already exists (for older PostgreSQL versions)
 | 
			
		||||
                    if "already exists" in str(e).lower():
 | 
			
		||||
                        logger.debug(f"Column already exists, skipping: {alter_query}")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Error in ALTER TABLE: {e}")
 | 
			
		||||
            
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info("Successfully created/verified car_frontal_info table with all required columns")
 | 
			
		||||
            return True
 | 
			
		||||
            
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to create car_frontal_info table: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
 | 
			
		||||
        """Insert initial detection record and return the session_id."""
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return None
 | 
			
		||||
        
 | 
			
		||||
        # Generate session_id if not provided
 | 
			
		||||
        if not session_id:
 | 
			
		||||
            session_id = str(uuid.uuid4())
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            # Ensure table exists
 | 
			
		||||
            if not self.create_car_frontal_info_table():
 | 
			
		||||
                logger.error("Failed to create/verify table before insertion")
 | 
			
		||||
                return None
 | 
			
		||||
            
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            insert_query = """
 | 
			
		||||
            INSERT INTO gas_station_1.car_frontal_info 
 | 
			
		||||
            (display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
 | 
			
		||||
            VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
 | 
			
		||||
            ON CONFLICT (session_id) DO NOTHING
 | 
			
		||||
            """
 | 
			
		||||
            
 | 
			
		||||
            cur.execute(insert_query, (display_id, captured_timestamp, session_id))
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info(f"Inserted initial detection record with session_id: {session_id}")
 | 
			
		||||
            return session_id
 | 
			
		||||
            
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to insert initial detection record: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return None
 | 
			
		||||
| 
						 | 
				
			
			@ -1,798 +0,0 @@
 | 
			
		|||
import os
 | 
			
		||||
import json
 | 
			
		||||
import logging
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import zipfile
 | 
			
		||||
import shutil
 | 
			
		||||
import traceback
 | 
			
		||||
import redis
 | 
			
		||||
import time
 | 
			
		||||
import uuid
 | 
			
		||||
import concurrent.futures
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
from .database import DatabaseManager
 | 
			
		||||
 | 
			
		||||
# Create a logger specifically for this module
 | 
			
		||||
logger = logging.getLogger("detector_worker.pympta")
 | 
			
		||||
 | 
			
		||||
def validate_redis_config(redis_config: dict) -> bool:
 | 
			
		||||
    """Validate Redis configuration parameters."""
 | 
			
		||||
    required_fields = ["host", "port"]
 | 
			
		||||
    for field in required_fields:
 | 
			
		||||
        if field not in redis_config:
 | 
			
		||||
            logger.error(f"Missing required Redis config field: {field}")
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
 | 
			
		||||
        logger.error(f"Invalid Redis port: {redis_config['port']}")
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
def validate_postgresql_config(pg_config: dict) -> bool:
 | 
			
		||||
    """Validate PostgreSQL configuration parameters."""
 | 
			
		||||
    required_fields = ["host", "port", "database", "username", "password"]
 | 
			
		||||
    for field in required_fields:
 | 
			
		||||
        if field not in pg_config:
 | 
			
		||||
            logger.error(f"Missing required PostgreSQL config field: {field}")
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
 | 
			
		||||
        logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
def crop_region_by_class(frame, regions_dict, class_name):
 | 
			
		||||
    """Crop a specific region from frame based on detected class."""
 | 
			
		||||
    if class_name not in regions_dict:
 | 
			
		||||
        logger.warning(f"Class '{class_name}' not found in detected regions")
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    bbox = regions_dict[class_name]['bbox']
 | 
			
		||||
    x1, y1, x2, y2 = bbox
 | 
			
		||||
    cropped = frame[y1:y2, x1:x2]
 | 
			
		||||
    
 | 
			
		||||
    if cropped.size == 0:
 | 
			
		||||
        logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    return cropped
 | 
			
		||||
 | 
			
		||||
def format_action_context(base_context, additional_context=None):
 | 
			
		||||
    """Format action context with dynamic values."""
 | 
			
		||||
    context = {**base_context}
 | 
			
		||||
    if additional_context:
 | 
			
		||||
        context.update(additional_context)
 | 
			
		||||
    return context
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
        logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
 | 
			
		||||
        logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
 | 
			
		||||
        raise FileNotFoundError(f"Model file {model_path} not found.")
 | 
			
		||||
    logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    model = YOLO(model_path)
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU")
 | 
			
		||||
        model.to("cuda")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
 | 
			
		||||
 | 
			
		||||
    # Prepare trigger class indices for optimization
 | 
			
		||||
    trigger_classes = node_config.get("triggerClasses", [])
 | 
			
		||||
    trigger_class_indices = None
 | 
			
		||||
    if trigger_classes and hasattr(model, "names"):
 | 
			
		||||
        # Convert class names to indices for the model
 | 
			
		||||
        trigger_class_indices = [i for i, name in model.names.items() 
 | 
			
		||||
                                if name in trigger_classes]
 | 
			
		||||
        logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
 | 
			
		||||
 | 
			
		||||
    node = {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
        "triggerClasses": trigger_classes,
 | 
			
		||||
        "triggerClassIndices": trigger_class_indices,
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "cropClass": node_config.get("cropClass"),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
			
		||||
        "multiClass": node_config.get("multiClass", False),
 | 
			
		||||
        "expectedClasses": node_config.get("expectedClasses", []),
 | 
			
		||||
        "parallel": node_config.get("parallel", False),
 | 
			
		||||
        "actions": node_config.get("actions", []),
 | 
			
		||||
        "parallelActions": node_config.get("parallelActions", []),
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": [],
 | 
			
		||||
        "redis_client": redis_client,
 | 
			
		||||
        "db_manager": db_manager
 | 
			
		||||
    }
 | 
			
		||||
    logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
 | 
			
		||||
    for child in node_config.get("branches", []):
 | 
			
		||||
        logger.debug(f"Loading branch for parent node {node_config['modelId']}")
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		||||
    logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
 | 
			
		||||
    os.makedirs(target_dir, exist_ok=True)
 | 
			
		||||
    zip_path = os.path.join(target_dir, "pipeline.mpta")
 | 
			
		||||
    
 | 
			
		||||
    # Parse the source; only local files are supported here.
 | 
			
		||||
    parsed = urlparse(zip_source)
 | 
			
		||||
    if parsed.scheme in ("", "file"):
 | 
			
		||||
        local_path = parsed.path if parsed.scheme == "file" else zip_source
 | 
			
		||||
        logger.debug(f"Checking if local file exists: {local_path}")
 | 
			
		||||
        if os.path.exists(local_path):
 | 
			
		||||
            try:
 | 
			
		||||
                shutil.copy(local_path, zip_path)
 | 
			
		||||
                logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
 | 
			
		||||
                return None
 | 
			
		||||
        else:
 | 
			
		||||
            logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
 | 
			
		||||
            # List all subdirectories of models directory to help debugging
 | 
			
		||||
            if os.path.exists("models"):
 | 
			
		||||
                logger.error(f"Content of models directory: {os.listdir('models')}")
 | 
			
		||||
                for root, dirs, files in os.walk("models"):
 | 
			
		||||
                    logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.error("The models directory doesn't exist")
 | 
			
		||||
            return None
 | 
			
		||||
    else:
 | 
			
		||||
        logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        if not os.path.exists(zip_path):
 | 
			
		||||
            logger.error(f"Zip file not found at expected location: {zip_path}")
 | 
			
		||||
            return None
 | 
			
		||||
            
 | 
			
		||||
        logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
 | 
			
		||||
        # Extract contents and track the directories created
 | 
			
		||||
        extracted_dirs = []
 | 
			
		||||
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
			
		||||
            file_list = zip_ref.namelist()
 | 
			
		||||
            logger.debug(f"Files in .mpta archive: {file_list}")
 | 
			
		||||
            
 | 
			
		||||
            # Extract and track the top-level directories
 | 
			
		||||
            for file_path in file_list:
 | 
			
		||||
                parts = file_path.split('/')
 | 
			
		||||
                if len(parts) > 1:
 | 
			
		||||
                    top_dir = parts[0]
 | 
			
		||||
                    if top_dir and top_dir not in extracted_dirs:
 | 
			
		||||
                        extracted_dirs.append(top_dir)
 | 
			
		||||
            
 | 
			
		||||
            # Now extract the files
 | 
			
		||||
            zip_ref.extractall(target_dir)
 | 
			
		||||
            
 | 
			
		||||
        logger.info(f"Successfully extracted .mpta file to {target_dir}")
 | 
			
		||||
        logger.debug(f"Extracted directories: {extracted_dirs}")
 | 
			
		||||
        
 | 
			
		||||
        # Check what was actually created after extraction
 | 
			
		||||
        actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
 | 
			
		||||
        logger.debug(f"Actual directories created: {actual_dirs}")
 | 
			
		||||
    except zipfile.BadZipFile as e:
 | 
			
		||||
        logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    finally:
 | 
			
		||||
        if os.path.exists(zip_path):
 | 
			
		||||
            os.remove(zip_path)
 | 
			
		||||
            logger.debug(f"Removed temporary zip file: {zip_path}")
 | 
			
		||||
 | 
			
		||||
    # Use the first extracted directory if it exists, otherwise use the expected name
 | 
			
		||||
    pipeline_name = os.path.basename(zip_source)
 | 
			
		||||
    pipeline_name = os.path.splitext(pipeline_name)[0]
 | 
			
		||||
    
 | 
			
		||||
    # Find the directory with pipeline.json
 | 
			
		||||
    mpta_dir = None
 | 
			
		||||
    # First try the expected directory name
 | 
			
		||||
    expected_dir = os.path.join(target_dir, pipeline_name)
 | 
			
		||||
    if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
 | 
			
		||||
        mpta_dir = expected_dir
 | 
			
		||||
        logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
 | 
			
		||||
    else:
 | 
			
		||||
        # Look through all subdirectories for pipeline.json
 | 
			
		||||
        for subdir in actual_dirs:
 | 
			
		||||
            potential_dir = os.path.join(target_dir, subdir)
 | 
			
		||||
            if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
 | 
			
		||||
                mpta_dir = potential_dir
 | 
			
		||||
                logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
 | 
			
		||||
                break
 | 
			
		||||
    
 | 
			
		||||
    if not mpta_dir:
 | 
			
		||||
        logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
 | 
			
		||||
        return None
 | 
			
		||||
        
 | 
			
		||||
    pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(pipeline_json_path):
 | 
			
		||||
        logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(pipeline_json_path, "r") as f:
 | 
			
		||||
            pipeline_config = json.load(f)
 | 
			
		||||
        logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
 | 
			
		||||
        logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
 | 
			
		||||
        
 | 
			
		||||
        # Establish Redis connection if configured
 | 
			
		||||
        redis_client = None
 | 
			
		||||
        if "redis" in pipeline_config:
 | 
			
		||||
            redis_config = pipeline_config["redis"]
 | 
			
		||||
            if not validate_redis_config(redis_config):
 | 
			
		||||
                logger.error("Invalid Redis configuration, skipping Redis connection")
 | 
			
		||||
            else:
 | 
			
		||||
                try:
 | 
			
		||||
                    redis_client = redis.Redis(
 | 
			
		||||
                        host=redis_config["host"],
 | 
			
		||||
                        port=redis_config["port"],
 | 
			
		||||
                        password=redis_config.get("password"),
 | 
			
		||||
                        db=redis_config.get("db", 0),
 | 
			
		||||
                        decode_responses=True
 | 
			
		||||
                    )
 | 
			
		||||
                    redis_client.ping()
 | 
			
		||||
                    logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
 | 
			
		||||
                except redis.exceptions.ConnectionError as e:
 | 
			
		||||
                    logger.error(f"Failed to connect to Redis: {e}")
 | 
			
		||||
                    redis_client = None
 | 
			
		||||
        
 | 
			
		||||
        # Establish PostgreSQL connection if configured
 | 
			
		||||
        db_manager = None
 | 
			
		||||
        if "postgresql" in pipeline_config:
 | 
			
		||||
            pg_config = pipeline_config["postgresql"]
 | 
			
		||||
            if not validate_postgresql_config(pg_config):
 | 
			
		||||
                logger.error("Invalid PostgreSQL configuration, skipping database connection")
 | 
			
		||||
            else:
 | 
			
		||||
                try:
 | 
			
		||||
                    db_manager = DatabaseManager(pg_config)
 | 
			
		||||
                    if db_manager.connect():
 | 
			
		||||
                        logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.error("Failed to connect to PostgreSQL")
 | 
			
		||||
                        db_manager = None
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.error(f"Error initializing PostgreSQL connection: {e}")
 | 
			
		||||
                    db_manager = None
 | 
			
		||||
        
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
 | 
			
		||||
    except json.JSONDecodeError as e:
 | 
			
		||||
        logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    except KeyError as e:
 | 
			
		||||
        logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def execute_actions(node, frame, detection_result, regions_dict=None):
 | 
			
		||||
    if not node["redis_client"] or not node["actions"]:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Create a dynamic context for this detection event
 | 
			
		||||
    from datetime import datetime
 | 
			
		||||
    action_context = {
 | 
			
		||||
        **detection_result,
 | 
			
		||||
        "timestamp_ms": int(time.time() * 1000),
 | 
			
		||||
        "uuid": str(uuid.uuid4()),
 | 
			
		||||
        "timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
 | 
			
		||||
        "filename": f"{uuid.uuid4()}.jpg"
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for action in node["actions"]:
 | 
			
		||||
        try:
 | 
			
		||||
            if action["type"] == "redis_save_image":
 | 
			
		||||
                key = action["key"].format(**action_context)
 | 
			
		||||
                
 | 
			
		||||
                # Check if we need to crop a specific region
 | 
			
		||||
                region_name = action.get("region")
 | 
			
		||||
                image_to_save = frame
 | 
			
		||||
                
 | 
			
		||||
                if region_name and regions_dict:
 | 
			
		||||
                    cropped_image = crop_region_by_class(frame, regions_dict, region_name)
 | 
			
		||||
                    if cropped_image is not None:
 | 
			
		||||
                        image_to_save = cropped_image
 | 
			
		||||
                        logger.debug(f"Cropped region '{region_name}' for redis_save_image")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
 | 
			
		||||
                
 | 
			
		||||
                # Encode image with specified format and quality (default to JPEG)
 | 
			
		||||
                img_format = action.get("format", "jpeg").lower()
 | 
			
		||||
                quality = action.get("quality", 90)
 | 
			
		||||
                
 | 
			
		||||
                if img_format == "jpeg":
 | 
			
		||||
                    encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
 | 
			
		||||
                    success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
 | 
			
		||||
                elif img_format == "png":
 | 
			
		||||
                    success, buffer = cv2.imencode('.png', image_to_save)
 | 
			
		||||
                else:
 | 
			
		||||
                    success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
 | 
			
		||||
                
 | 
			
		||||
                if not success:
 | 
			
		||||
                    logger.error(f"Failed to encode image for redis_save_image")
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                expire_seconds = action.get("expire_seconds")
 | 
			
		||||
                if expire_seconds:
 | 
			
		||||
                    node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
 | 
			
		||||
                    logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
 | 
			
		||||
                else:
 | 
			
		||||
                    node["redis_client"].set(key, buffer.tobytes())
 | 
			
		||||
                    logger.info(f"Saved image to Redis with key: {key}")
 | 
			
		||||
                action_context["image_key"] = key
 | 
			
		||||
            elif action["type"] == "redis_publish":
 | 
			
		||||
                channel = action["channel"]
 | 
			
		||||
                try:
 | 
			
		||||
                    # Handle JSON message format by creating it programmatically
 | 
			
		||||
                    message_template = action["message"]
 | 
			
		||||
                    
 | 
			
		||||
                    # Check if the message is JSON-like (starts and ends with braces)
 | 
			
		||||
                    if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
 | 
			
		||||
                        # Create JSON data programmatically to avoid formatting issues
 | 
			
		||||
                        json_data = {}
 | 
			
		||||
                        
 | 
			
		||||
                        # Add common fields
 | 
			
		||||
                        json_data["event"] = "frontal_detected"
 | 
			
		||||
                        json_data["display_id"] = action_context.get("display_id", "unknown")
 | 
			
		||||
                        json_data["session_id"] = action_context.get("session_id")
 | 
			
		||||
                        json_data["timestamp"] = action_context.get("timestamp", "")
 | 
			
		||||
                        json_data["image_key"] = action_context.get("image_key", "")
 | 
			
		||||
                        
 | 
			
		||||
                        # Convert to JSON string
 | 
			
		||||
                        message = json.dumps(json_data)
 | 
			
		||||
                    else:
 | 
			
		||||
                        # Use regular string formatting for non-JSON messages
 | 
			
		||||
                        message = message_template.format(**action_context)
 | 
			
		||||
                    
 | 
			
		||||
                    # Publish to Redis
 | 
			
		||||
                    if not node["redis_client"]:
 | 
			
		||||
                        logger.error("Redis client is None, cannot publish message")
 | 
			
		||||
                        continue
 | 
			
		||||
                        
 | 
			
		||||
                    # Test Redis connection
 | 
			
		||||
                    try:
 | 
			
		||||
                        node["redis_client"].ping()
 | 
			
		||||
                        logger.debug("Redis connection is active")
 | 
			
		||||
                    except Exception as ping_error:
 | 
			
		||||
                        logger.error(f"Redis connection test failed: {ping_error}")
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    result = node["redis_client"].publish(channel, message)
 | 
			
		||||
                    logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
			
		||||
                    logger.info(f"Redis publish result (subscribers count): {result}")
 | 
			
		||||
                    
 | 
			
		||||
                    # Additional debug info
 | 
			
		||||
                    if result == 0:
 | 
			
		||||
                        logger.warning(f"No subscribers listening to channel '{channel}'")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.info(f"Message delivered to {result} subscriber(s)")
 | 
			
		||||
                    
 | 
			
		||||
                except KeyError as e:
 | 
			
		||||
                    logger.error(f"Missing key in redis_publish message template: {e}")
 | 
			
		||||
                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.error(f"Error in redis_publish action: {e}")
 | 
			
		||||
                    logger.debug(f"Message template: {action['message']}")
 | 
			
		||||
                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
			
		||||
                    import traceback
 | 
			
		||||
                    logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error executing action {action['type']}: {e}")
 | 
			
		||||
 | 
			
		||||
def execute_parallel_actions(node, frame, detection_result, regions_dict):
 | 
			
		||||
    """Execute parallel actions after all required branches have completed."""
 | 
			
		||||
    if not node.get("parallelActions"):
 | 
			
		||||
        return
 | 
			
		||||
    
 | 
			
		||||
    logger.debug("Executing parallel actions...")
 | 
			
		||||
    branch_results = detection_result.get("branch_results", {})
 | 
			
		||||
    
 | 
			
		||||
    for action in node["parallelActions"]:
 | 
			
		||||
        try:
 | 
			
		||||
            action_type = action.get("type")
 | 
			
		||||
            logger.debug(f"Processing parallel action: {action_type}")
 | 
			
		||||
            
 | 
			
		||||
            if action_type == "postgresql_update_combined":
 | 
			
		||||
                # Check if all required branches have completed
 | 
			
		||||
                wait_for_branches = action.get("waitForBranches", [])
 | 
			
		||||
                missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
 | 
			
		||||
                
 | 
			
		||||
                if missing_branches:
 | 
			
		||||
                    logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                logger.info(f"All required branches completed: {wait_for_branches}")
 | 
			
		||||
                
 | 
			
		||||
                # Execute the database update
 | 
			
		||||
                execute_postgresql_update_combined(node, action, detection_result, branch_results)
 | 
			
		||||
            else:
 | 
			
		||||
                logger.warning(f"Unknown parallel action type: {action_type}")
 | 
			
		||||
                
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
 | 
			
		||||
            import traceback
 | 
			
		||||
            logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
 | 
			
		||||
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
 | 
			
		||||
    """Execute a PostgreSQL update with combined branch results."""
 | 
			
		||||
    if not node.get("db_manager"):
 | 
			
		||||
        logger.error("No database manager available for postgresql_update_combined action")
 | 
			
		||||
        return
 | 
			
		||||
        
 | 
			
		||||
    try:
 | 
			
		||||
        table = action["table"]
 | 
			
		||||
        key_field = action["key_field"]
 | 
			
		||||
        key_value_template = action["key_value"]
 | 
			
		||||
        fields = action["fields"]
 | 
			
		||||
        
 | 
			
		||||
        # Create context for key value formatting
 | 
			
		||||
        action_context = {**detection_result}
 | 
			
		||||
        key_value = key_value_template.format(**action_context)
 | 
			
		||||
        
 | 
			
		||||
        logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
 | 
			
		||||
        
 | 
			
		||||
        # Process field mappings
 | 
			
		||||
        mapped_fields = {}
 | 
			
		||||
        for db_field, value_template in fields.items():
 | 
			
		||||
            try:
 | 
			
		||||
                mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
 | 
			
		||||
                if mapped_value is not None:
 | 
			
		||||
                    mapped_fields[db_field] = mapped_value
 | 
			
		||||
                    logger.debug(f"Mapped field: {db_field} = {mapped_value}")
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
 | 
			
		||||
        
 | 
			
		||||
        if not mapped_fields:
 | 
			
		||||
            logger.warning("No fields mapped successfully, skipping database update")
 | 
			
		||||
            return
 | 
			
		||||
            
 | 
			
		||||
        # Execute the database update
 | 
			
		||||
        success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
 | 
			
		||||
        
 | 
			
		||||
        if success:
 | 
			
		||||
            logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
 | 
			
		||||
        else:
 | 
			
		||||
            logger.error(f"Failed to update database: {table}")
 | 
			
		||||
            
 | 
			
		||||
    except KeyError as e:
 | 
			
		||||
        logger.error(f"Missing required field in postgresql_update_combined action: {e}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error in postgresql_update_combined action: {e}")
 | 
			
		||||
        import traceback
 | 
			
		||||
        logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
 | 
			
		||||
def resolve_field_mapping(value_template, branch_results, action_context):
 | 
			
		||||
    """Resolve field mapping templates like {car_brand_cls_v1.brand}."""
 | 
			
		||||
    try:
 | 
			
		||||
        # Handle simple context variables first (non-branch references)
 | 
			
		||||
        if not '.' in value_template:
 | 
			
		||||
            return value_template.format(**action_context)
 | 
			
		||||
        
 | 
			
		||||
        # Handle branch result references like {model_id.field}
 | 
			
		||||
        import re
 | 
			
		||||
        branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
 | 
			
		||||
        
 | 
			
		||||
        resolved_template = value_template
 | 
			
		||||
        for ref in branch_refs:
 | 
			
		||||
            try:
 | 
			
		||||
                model_id, field_name = ref.split('.', 1)
 | 
			
		||||
                
 | 
			
		||||
                if model_id in branch_results:
 | 
			
		||||
                    branch_data = branch_results[model_id]
 | 
			
		||||
                    if field_name in branch_data:
 | 
			
		||||
                        field_value = branch_data[field_name]
 | 
			
		||||
                        resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
 | 
			
		||||
                        logger.debug(f"Resolved {ref} to {field_value}")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
 | 
			
		||||
                        return None
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
 | 
			
		||||
                    return None
 | 
			
		||||
            except ValueError as e:
 | 
			
		||||
                logger.error(f"Invalid branch reference format: {ref}")
 | 
			
		||||
                return None
 | 
			
		||||
        
 | 
			
		||||
        # Format any remaining simple variables
 | 
			
		||||
        try:
 | 
			
		||||
            final_value = resolved_template.format(**action_context)
 | 
			
		||||
            return final_value
 | 
			
		||||
        except KeyError as e:
 | 
			
		||||
            logger.warning(f"Could not resolve context variable in template: {e}")
 | 
			
		||||
            return resolved_template
 | 
			
		||||
            
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error resolving field mapping '{value_template}': {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
 | 
			
		||||
    """
 | 
			
		||||
    Enhanced pipeline that supports:
 | 
			
		||||
    - Multi-class detection (detecting multiple classes simultaneously)
 | 
			
		||||
    - Parallel branch processing
 | 
			
		||||
    - Region-based actions and cropping
 | 
			
		||||
    - Context passing for session/camera information
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        task = getattr(node["model"], "task", None)
 | 
			
		||||
 | 
			
		||||
        # ─── Classification stage ───────────────────────────────────
 | 
			
		||||
        if task == "classify":
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            if not results:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            r = results[0]
 | 
			
		||||
            probs = r.probs
 | 
			
		||||
            if probs is None:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            top1_idx = int(probs.top1)
 | 
			
		||||
            top1_conf = float(probs.top1conf)
 | 
			
		||||
            class_name = node["model"].names[top1_idx]
 | 
			
		||||
 | 
			
		||||
            det = {
 | 
			
		||||
                "class": class_name,
 | 
			
		||||
                "confidence": top1_conf,
 | 
			
		||||
                "id": None,
 | 
			
		||||
                class_name: class_name  # Add class name as key for backward compatibility
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            # Add specific field mappings for database operations based on model type
 | 
			
		||||
            model_id = node.get("modelId", "").lower()
 | 
			
		||||
            if "brand" in model_id or "brand_cls" in model_id:
 | 
			
		||||
                det["brand"] = class_name
 | 
			
		||||
            elif "bodytype" in model_id or "body" in model_id:
 | 
			
		||||
                det["body_type"] = class_name
 | 
			
		||||
            elif "color" in model_id:
 | 
			
		||||
                det["color"] = class_name
 | 
			
		||||
            
 | 
			
		||||
            execute_actions(node, frame, det)
 | 
			
		||||
            return (det, None) if return_bbox else det
 | 
			
		||||
 | 
			
		||||
        # ─── Detection stage - Multi-class support ──────────────────
 | 
			
		||||
        tk = node["triggerClassIndices"]
 | 
			
		||||
        logger.debug(f"Running detection for node {node['modelId']} with trigger classes: {node.get('triggerClasses', [])} (indices: {tk})")
 | 
			
		||||
        logger.debug(f"Node configuration: minConfidence={node['minConfidence']}, multiClass={node.get('multiClass', False)}")
 | 
			
		||||
        
 | 
			
		||||
        res = node["model"].track(
 | 
			
		||||
            frame,
 | 
			
		||||
            stream=False,
 | 
			
		||||
            persist=True,
 | 
			
		||||
            **({"classes": tk} if tk else {})
 | 
			
		||||
        )[0]
 | 
			
		||||
 | 
			
		||||
        # Collect all detections above confidence threshold
 | 
			
		||||
        all_detections = []
 | 
			
		||||
        all_boxes = []
 | 
			
		||||
        regions_dict = {}
 | 
			
		||||
        
 | 
			
		||||
        logger.debug(f"Raw detection results from model: {len(res.boxes) if res.boxes is not None else 0} detections")
 | 
			
		||||
        
 | 
			
		||||
        for i, box in enumerate(res.boxes):
 | 
			
		||||
            conf = float(box.cpu().conf[0])
 | 
			
		||||
            cid = int(box.cpu().cls[0])
 | 
			
		||||
            name = node["model"].names[cid]
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"Detection {i}: class='{name}' (id={cid}), confidence={conf:.3f}, threshold={node['minConfidence']}")
 | 
			
		||||
            
 | 
			
		||||
            if conf < node["minConfidence"]:
 | 
			
		||||
                logger.debug(f"  -> REJECTED: confidence {conf:.3f} < threshold {node['minConfidence']}")
 | 
			
		||||
                continue
 | 
			
		||||
                
 | 
			
		||||
            xy = box.cpu().xyxy[0]
 | 
			
		||||
            x1, y1, x2, y2 = map(int, xy)
 | 
			
		||||
            bbox = (x1, y1, x2, y2)
 | 
			
		||||
            
 | 
			
		||||
            detection = {
 | 
			
		||||
                "class": name,
 | 
			
		||||
                "confidence": conf,
 | 
			
		||||
                "id": box.id.item() if hasattr(box, "id") else None,
 | 
			
		||||
                "bbox": bbox
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            all_detections.append(detection)
 | 
			
		||||
            all_boxes.append(bbox)
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"  -> ACCEPTED: {name} with confidence {conf:.3f}, bbox={bbox}")
 | 
			
		||||
            
 | 
			
		||||
            # Store highest confidence detection for each class
 | 
			
		||||
            if name not in regions_dict or conf > regions_dict[name]["confidence"]:
 | 
			
		||||
                regions_dict[name] = {
 | 
			
		||||
                    "bbox": bbox,
 | 
			
		||||
                    "confidence": conf,
 | 
			
		||||
                    "detection": detection
 | 
			
		||||
                }
 | 
			
		||||
                logger.debug(f"  -> Updated regions_dict['{name}'] with confidence {conf:.3f}")
 | 
			
		||||
 | 
			
		||||
        logger.info(f"Detection summary: {len(all_detections)} accepted detections from {len(res.boxes) if res.boxes is not None else 0} total")
 | 
			
		||||
        logger.info(f"Detected classes: {list(regions_dict.keys())}")
 | 
			
		||||
 | 
			
		||||
        if not all_detections:
 | 
			
		||||
            logger.warning("No detections above confidence threshold - returning null")
 | 
			
		||||
            return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
        # ─── Multi-class validation ─────────────────────────────────
 | 
			
		||||
        if node.get("multiClass", False) and node.get("expectedClasses"):
 | 
			
		||||
            expected_classes = node["expectedClasses"]
 | 
			
		||||
            detected_classes = list(regions_dict.keys())
 | 
			
		||||
            
 | 
			
		||||
            logger.info(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
 | 
			
		||||
            
 | 
			
		||||
            # Check if at least one expected class is detected (flexible mode)
 | 
			
		||||
            matching_classes = [cls for cls in expected_classes if cls in detected_classes]
 | 
			
		||||
            missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"Matching classes: {matching_classes}, Missing classes: {missing_classes}")
 | 
			
		||||
            
 | 
			
		||||
            if not matching_classes:
 | 
			
		||||
                # No expected classes found at all
 | 
			
		||||
                logger.warning(f"PIPELINE REJECTED: No expected classes detected. Expected: {expected_classes}, Detected: {detected_classes}")
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
            
 | 
			
		||||
            if missing_classes:
 | 
			
		||||
                logger.info(f"Partial multi-class detection: {matching_classes} found, {missing_classes} missing")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.info(f"Complete multi-class detection success: {detected_classes}")
 | 
			
		||||
        else:
 | 
			
		||||
            logger.debug("No multi-class validation - proceeding with all detections")
 | 
			
		||||
 | 
			
		||||
        # ─── Execute actions with region information ────────────────
 | 
			
		||||
        detection_result = {
 | 
			
		||||
            "detections": all_detections,
 | 
			
		||||
            "regions": regions_dict,
 | 
			
		||||
            **(context or {})
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        # ─── Create initial database record when Car+Frontal detected ────
 | 
			
		||||
        if node.get("db_manager") and node.get("multiClass", False):
 | 
			
		||||
            # Only create database record if we have both Car and Frontal
 | 
			
		||||
            has_car = "Car" in regions_dict
 | 
			
		||||
            has_frontal = "Frontal" in regions_dict
 | 
			
		||||
            
 | 
			
		||||
            if has_car and has_frontal:
 | 
			
		||||
                # Generate UUID session_id since client session is None for now
 | 
			
		||||
                import uuid as uuid_lib
 | 
			
		||||
                from datetime import datetime
 | 
			
		||||
                generated_session_id = str(uuid_lib.uuid4())
 | 
			
		||||
                
 | 
			
		||||
                # Insert initial detection record
 | 
			
		||||
                display_id = detection_result.get("display_id", "unknown")
 | 
			
		||||
                timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
 | 
			
		||||
                
 | 
			
		||||
                inserted_session_id = node["db_manager"].insert_initial_detection(
 | 
			
		||||
                    display_id=display_id,
 | 
			
		||||
                    captured_timestamp=timestamp,
 | 
			
		||||
                    session_id=generated_session_id
 | 
			
		||||
                )
 | 
			
		||||
                
 | 
			
		||||
                if inserted_session_id:
 | 
			
		||||
                    # Update detection_result with the generated session_id for actions and branches
 | 
			
		||||
                    detection_result["session_id"] = inserted_session_id
 | 
			
		||||
                    detection_result["timestamp"] = timestamp  # Update with proper timestamp
 | 
			
		||||
                    logger.info(f"Created initial database record with session_id: {inserted_session_id}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"Database record not created - missing required classes. Has Car: {has_car}, Has Frontal: {has_frontal}")
 | 
			
		||||
        
 | 
			
		||||
        execute_actions(node, frame, detection_result, regions_dict)
 | 
			
		||||
 | 
			
		||||
        # ─── Parallel branch processing ─────────────────────────────
 | 
			
		||||
        if node["branches"]:
 | 
			
		||||
            branch_results = {}
 | 
			
		||||
            
 | 
			
		||||
            # Filter branches that should be triggered
 | 
			
		||||
            active_branches = []
 | 
			
		||||
            for br in node["branches"]:
 | 
			
		||||
                trigger_classes = br.get("triggerClasses", [])
 | 
			
		||||
                min_conf = br.get("minConfidence", 0)
 | 
			
		||||
                
 | 
			
		||||
                logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
 | 
			
		||||
                
 | 
			
		||||
                # Check if any detected class matches branch trigger
 | 
			
		||||
                branch_triggered = False
 | 
			
		||||
                for det_class in regions_dict:
 | 
			
		||||
                    det_confidence = regions_dict[det_class]["confidence"]
 | 
			
		||||
                    logger.debug(f"  Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
 | 
			
		||||
                    
 | 
			
		||||
                    if (det_class in trigger_classes and det_confidence >= min_conf):
 | 
			
		||||
                        active_branches.append(br)
 | 
			
		||||
                        branch_triggered = True
 | 
			
		||||
                        logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
 | 
			
		||||
                        break
 | 
			
		||||
                
 | 
			
		||||
                if not branch_triggered:
 | 
			
		||||
                    logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
 | 
			
		||||
            
 | 
			
		||||
            if active_branches:
 | 
			
		||||
                if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
 | 
			
		||||
                    # Run branches in parallel
 | 
			
		||||
                    with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
 | 
			
		||||
                        futures = {}
 | 
			
		||||
                        
 | 
			
		||||
                        for br in active_branches:
 | 
			
		||||
                            crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
			
		||||
                            sub_frame = frame
 | 
			
		||||
                            
 | 
			
		||||
                            logger.info(f"Starting parallel branch: {br['modelId']}, crop_class: {crop_class}")
 | 
			
		||||
                            
 | 
			
		||||
                            if br.get("crop", False) and crop_class:
 | 
			
		||||
                                cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
			
		||||
                                if cropped is not None:
 | 
			
		||||
                                    sub_frame = cv2.resize(cropped, (224, 224))
 | 
			
		||||
                                    logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
 | 
			
		||||
                                    continue
 | 
			
		||||
                            
 | 
			
		||||
                            future = executor.submit(run_pipeline, sub_frame, br, True, context)
 | 
			
		||||
                            futures[future] = br
 | 
			
		||||
                        
 | 
			
		||||
                        # Collect results
 | 
			
		||||
                        for future in concurrent.futures.as_completed(futures):
 | 
			
		||||
                            br = futures[future]
 | 
			
		||||
                            try:
 | 
			
		||||
                                result, _ = future.result()
 | 
			
		||||
                                if result:
 | 
			
		||||
                                    branch_results[br["modelId"]] = result
 | 
			
		||||
                                    logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
			
		||||
                            except Exception as e:
 | 
			
		||||
                                logger.error(f"Branch {br['modelId']} failed: {e}")
 | 
			
		||||
                else:
 | 
			
		||||
                    # Run branches sequentially  
 | 
			
		||||
                    for br in active_branches:
 | 
			
		||||
                        crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
			
		||||
                        sub_frame = frame
 | 
			
		||||
                        
 | 
			
		||||
                        logger.info(f"Starting sequential branch: {br['modelId']}, crop_class: {crop_class}")
 | 
			
		||||
                        
 | 
			
		||||
                        if br.get("crop", False) and crop_class:
 | 
			
		||||
                            cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
			
		||||
                            if cropped is not None:
 | 
			
		||||
                                sub_frame = cv2.resize(cropped, (224, 224))
 | 
			
		||||
                                logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
 | 
			
		||||
                            else:
 | 
			
		||||
                                logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
 | 
			
		||||
                                continue
 | 
			
		||||
                        
 | 
			
		||||
                        try:
 | 
			
		||||
                            result, _ = run_pipeline(sub_frame, br, True, context)
 | 
			
		||||
                            if result:
 | 
			
		||||
                                branch_results[br["modelId"]] = result
 | 
			
		||||
                                logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
			
		||||
                            else:
 | 
			
		||||
                                logger.warning(f"Branch {br['modelId']} returned no result")
 | 
			
		||||
                        except Exception as e:
 | 
			
		||||
                            logger.error(f"Error in sequential branch {br['modelId']}: {e}")
 | 
			
		||||
                            import traceback
 | 
			
		||||
                            logger.debug(f"Branch error traceback: {traceback.format_exc()}")
 | 
			
		||||
 | 
			
		||||
            # Store branch results in detection_result for parallel actions
 | 
			
		||||
            detection_result["branch_results"] = branch_results
 | 
			
		||||
 | 
			
		||||
        # ─── Execute Parallel Actions ───────────────────────────────
 | 
			
		||||
        if node.get("parallelActions") and "branch_results" in detection_result:
 | 
			
		||||
            execute_parallel_actions(node, frame, detection_result, regions_dict)
 | 
			
		||||
 | 
			
		||||
        # ─── Return detection result ────────────────────────────────
 | 
			
		||||
        primary_detection = max(all_detections, key=lambda x: x["confidence"])
 | 
			
		||||
        primary_bbox = primary_detection["bbox"]
 | 
			
		||||
        
 | 
			
		||||
        # Add branch results to primary detection for compatibility
 | 
			
		||||
        if "branch_results" in detection_result:
 | 
			
		||||
            primary_detection["branch_results"] = detection_result["branch_results"]
 | 
			
		||||
        
 | 
			
		||||
        return (primary_detection, primary_bbox) if return_bbox else primary_detection
 | 
			
		||||
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        traceback.print_exc()
 | 
			
		||||
        return (None, None) if return_bbox else None
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue