feat: add comprehensive documentation for Python Detector Worker; include project overview, architecture, core components, and configuration details
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m47s
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m47s
This commit is contained in:
parent
f50585f26d
commit
e6716bbe73
1 changed files with 188 additions and 0 deletions
188
CLAUDE.md
Normal file
188
CLAUDE.md
Normal file
|
@ -0,0 +1,188 @@
|
|||
# Python Detector Worker - CLAUDE.md
|
||||
|
||||
## Project Overview
|
||||
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
|
||||
|
||||
## Architecture & Technology Stack
|
||||
- **Framework**: FastAPI with WebSocket support
|
||||
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
|
||||
- **Containerization**: Docker (Python 3.13-bookworm base)
|
||||
- **Data Storage**: Redis integration for action handling
|
||||
- **Communication**: WebSocket-based real-time protocol
|
||||
|
||||
## Core Components
|
||||
|
||||
### Main Application (`app.py`)
|
||||
- **FastAPI WebSocket server** for real-time communication
|
||||
- **Multi-camera stream management** with shared stream optimization
|
||||
- **HTTP REST endpoint** for image retrieval (`/camera/{camera_id}/image`)
|
||||
- **Threading-based frame readers** for RTSP streams and HTTP snapshots
|
||||
- **Model loading and inference** using MPTA (Machine Learning Pipeline Archive) format
|
||||
- **Session management** with display identifier mapping
|
||||
- **Resource monitoring** (CPU, memory, GPU usage via psutil)
|
||||
|
||||
### Pipeline System (`siwatsystem/pympta.py`)
|
||||
- **MPTA file handling** - ZIP archives containing model configurations
|
||||
- **Hierarchical pipeline execution** with detection → classification branching
|
||||
- **Redis action system** for image saving and message publishing
|
||||
- **Dynamic model loading** with GPU optimization
|
||||
- **Configurable trigger classes and confidence thresholds**
|
||||
|
||||
### Testing & Debugging
|
||||
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
|
||||
- **Pipeline webcam utility** (`pipeline_webcam.py`) for local testing with visual output
|
||||
- **RTSP streaming debug tool** (`debug/rtsp_webcam.py`) using GStreamer
|
||||
|
||||
## Code Conventions & Patterns
|
||||
|
||||
### Logging
|
||||
- **Structured logging** using Python's logging module
|
||||
- **File + console output** to `detector_worker.log`
|
||||
- **Debug level separation** for detailed troubleshooting
|
||||
- **Context-aware messages** with camera IDs and model information
|
||||
|
||||
### Error Handling
|
||||
- **Graceful failure handling** with retry mechanisms (configurable max_retries)
|
||||
- **Thread-safe operations** using locks for streams and models
|
||||
- **WebSocket disconnect handling** with proper cleanup
|
||||
- **Model loading validation** with detailed error reporting
|
||||
|
||||
### Configuration
|
||||
- **JSON configuration** (`config.json`) for runtime parameters:
|
||||
- `poll_interval_ms`: Frame processing interval
|
||||
- `max_streams`: Concurrent stream limit
|
||||
- `target_fps`: Target frame rate
|
||||
- `reconnect_interval_sec`: Stream reconnection delay
|
||||
- `max_retries`: Maximum retry attempts (-1 for unlimited)
|
||||
|
||||
### Threading Model
|
||||
- **Frame reader threads** for each camera stream (RTSP/HTTP)
|
||||
- **Shared stream optimization** - multiple subscriptions can reuse the same camera stream
|
||||
- **Async WebSocket handling** with concurrent task management
|
||||
- **Thread-safe data structures** with proper locking mechanisms
|
||||
|
||||
## WebSocket Protocol
|
||||
|
||||
### Message Types
|
||||
- **subscribe**: Start camera stream with model pipeline
|
||||
- **unsubscribe**: Stop camera stream processing
|
||||
- **requestState**: Request current worker status
|
||||
- **setSessionId**: Associate display with session identifier
|
||||
- **patchSession**: Update session data
|
||||
- **stateReport**: Periodic heartbeat with system metrics
|
||||
- **imageDetection**: Detection results with timestamp and model info
|
||||
|
||||
### Subscription Format
|
||||
```json
|
||||
{
|
||||
"type": "subscribe",
|
||||
"payload": {
|
||||
"subscriptionIdentifier": "display-001;cam-001",
|
||||
"rtspUrl": "rtsp://...", // OR snapshotUrl
|
||||
"snapshotUrl": "http://...",
|
||||
"snapshotInterval": 5000,
|
||||
"modelUrl": "http://...model.mpta",
|
||||
"modelId": 101,
|
||||
"modelName": "Vehicle Detection",
|
||||
"cropX1": 100, "cropY1": 200,
|
||||
"cropX2": 300, "cropY2": 400
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Model Pipeline (MPTA) Format
|
||||
|
||||
### Structure
|
||||
- **ZIP archive** containing models and configuration
|
||||
- **pipeline.json** - Main configuration file
|
||||
- **Model files** - YOLO .pt files for detection/classification
|
||||
- **Redis configuration** - Optional for action execution
|
||||
|
||||
### Pipeline Flow
|
||||
1. **Detection stage** - YOLO object detection with bounding boxes
|
||||
2. **Trigger evaluation** - Check if detected class matches trigger conditions
|
||||
3. **Classification stage** - Crop detected region and run classification model
|
||||
4. **Action execution** - Redis operations (image saving, message publishing)
|
||||
|
||||
### Branch Configuration
|
||||
```json
|
||||
{
|
||||
"modelId": "detector-v1",
|
||||
"modelFile": "detector.pt",
|
||||
"triggerClasses": ["car", "truck"],
|
||||
"minConfidence": 0.5,
|
||||
"branches": [{
|
||||
"modelId": "classifier-v1",
|
||||
"modelFile": "classifier.pt",
|
||||
"crop": true,
|
||||
"triggerClasses": ["car"],
|
||||
"minConfidence": 0.3,
|
||||
"actions": [...]
|
||||
}]
|
||||
}
|
||||
```
|
||||
|
||||
## Stream Management
|
||||
|
||||
### Shared Streams
|
||||
- Multiple subscriptions can share the same camera URL
|
||||
- Reference counting prevents premature stream termination
|
||||
- Automatic cleanup when last subscription ends
|
||||
|
||||
### Frame Processing
|
||||
- **Queue-based buffering** with single frame capacity (latest frame only)
|
||||
- **Configurable polling interval** based on target FPS
|
||||
- **Automatic reconnection** with exponential backoff
|
||||
|
||||
## Development & Testing
|
||||
|
||||
### Local Development
|
||||
```bash
|
||||
# Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Run the worker
|
||||
python app.py
|
||||
|
||||
# Test protocol compliance
|
||||
python test_protocol.py
|
||||
|
||||
# Test pipeline with webcam
|
||||
python pipeline_webcam.py --mpta-file path/to/model.mpta --video 0
|
||||
```
|
||||
|
||||
### Docker Deployment
|
||||
```bash
|
||||
# Build container
|
||||
docker build -t detector-worker .
|
||||
|
||||
# Run with volume mounts for models
|
||||
docker run -p 8000:8000 -v ./models:/app/models detector-worker
|
||||
```
|
||||
|
||||
### Testing Commands
|
||||
- **Protocol testing**: `python test_protocol.py`
|
||||
- **Pipeline validation**: `python pipeline_webcam.py --mpta-file <path> --video 0`
|
||||
- **RTSP debugging**: `python debug/rtsp_webcam.py`
|
||||
|
||||
## Dependencies
|
||||
- **fastapi[standard]**: Web framework with WebSocket support
|
||||
- **uvicorn**: ASGI server
|
||||
- **torch, torchvision**: PyTorch for ML inference
|
||||
- **ultralytics**: YOLO implementation
|
||||
- **opencv-python**: Computer vision operations
|
||||
- **websockets**: WebSocket client/server
|
||||
- **redis**: Redis client for action execution
|
||||
|
||||
## Security Considerations
|
||||
- Model files are loaded from trusted sources only
|
||||
- Redis connections use authentication when configured
|
||||
- WebSocket connections handle disconnects gracefully
|
||||
- Resource usage is monitored to prevent DoS
|
||||
|
||||
## Performance Optimizations
|
||||
- GPU acceleration when CUDA is available
|
||||
- Shared camera streams reduce resource usage
|
||||
- Frame queue optimization (single latest frame)
|
||||
- Model caching across subscriptions
|
||||
- Trigger class filtering for faster inference
|
Loading…
Add table
Add a link
Reference in a new issue