Update markdown
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m15s
Build Worker Base and Application Images / deploy-stack (push) Successful in 8s

This commit is contained in:
ziesorx 2025-08-10 20:51:16 +07:00
parent 1c21f417ce
commit cfc7503a14
3 changed files with 327 additions and 61 deletions

139
CLAUDE.md
View file

@ -1,13 +1,23 @@
# Python Detector Worker - CLAUDE.md
## Project Overview
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs advanced YOLO-based machine learning pipelines for multi-class object detection and parallel classification. The system features comprehensive database integration, Redis support, and hierarchical pipeline execution designed to work within a larger CMS (Content Management System) architecture.
### Key Features
- **Multi-Class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
- **Parallel Processing**: Concurrent execution of classification branches using ThreadPoolExecutor
- **Database Integration**: Automatic PostgreSQL schema management and record updates
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
- **Pipeline Synchronization**: Branch coordination with `waitForBranches` functionality
- **Dynamic Field Mapping**: Template-based field resolution for database operations
## Architecture & Technology Stack
- **Framework**: FastAPI with WebSocket support
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
- **Containerization**: Docker (Python 3.13-bookworm base)
- **Data Storage**: Redis integration for action handling
- **Data Storage**: Redis integration for action handling + PostgreSQL for persistent storage
- **Database**: Automatic schema management with gas_station_1 database
- **Parallel Processing**: ThreadPoolExecutor for concurrent classification
- **Communication**: WebSocket-based real-time protocol
## Core Components
@ -24,9 +34,20 @@ This is a FastAPI-based computer vision detection worker that processes video st
### Pipeline System (`siwatsystem/pympta.py`)
- **MPTA file handling** - ZIP archives containing model configurations
- **Hierarchical pipeline execution** with detection → classification branching
- **Redis action system** for image saving and message publishing
- **Multi-class detection** - Simultaneous detection of multiple classes (Car + Frontal)
- **Parallel processing** - Concurrent classification branches with ThreadPoolExecutor
- **Redis action system** - Image saving with region cropping and message publishing
- **PostgreSQL integration** - Automatic table creation and combined updates
- **Dynamic model loading** with GPU optimization
- **Configurable trigger classes and confidence thresholds**
- **Branch synchronization** - waitForBranches coordination for database updates
### Database System (`siwatsystem/database.py`)
- **DatabaseManager class** for PostgreSQL operations
- **Automatic table creation** with gas_station_1.car_frontal_info schema
- **Combined update operations** with field mapping from branch results
- **Session management** with UUID generation
- **Error handling** and connection management
### Testing & Debugging
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
@ -92,33 +113,61 @@ This is a FastAPI-based computer vision detection worker that processes video st
## Model Pipeline (MPTA) Format
### Structure
### Enhanced Structure
- **ZIP archive** containing models and configuration
- **pipeline.json** - Main configuration file
- **pipeline.json** - Main configuration file with Redis + PostgreSQL settings
- **Model files** - YOLO .pt files for detection/classification
- **Redis configuration** - Optional for action execution
- **Multi-model support** - Detection + multiple classification models
### Pipeline Flow
1. **Detection stage** - YOLO object detection with bounding boxes
2. **Trigger evaluation** - Check if detected class matches trigger conditions
3. **Classification stage** - Crop detected region and run classification model
4. **Action execution** - Redis operations (image saving, message publishing)
### Advanced Pipeline Flow
1. **Multi-class detection stage** - YOLO detection of Car + Frontal simultaneously
2. **Validation stage** - Check for expected classes (flexible matching)
3. **Database initialization** - Create initial record with session_id
4. **Redis actions** - Save cropped frontal images with expiration
5. **Parallel classification** - Concurrent brand and body type classification
6. **Branch synchronization** - Wait for all classification branches to complete
7. **Database update** - Combined update with all classification results
### Branch Configuration
### Enhanced Branch Configuration
```json
{
"modelId": "detector-v1",
"modelFile": "detector.pt",
"triggerClasses": ["car", "truck"],
"minConfidence": 0.5,
"branches": [{
"modelId": "classifier-v1",
"modelFile": "classifier.pt",
"crop": true,
"triggerClasses": ["car"],
"minConfidence": 0.3,
"actions": [...]
}]
"modelId": "car_frontal_detection_v1",
"modelFile": "car_frontal_detection_v1.pt",
"multiClass": true,
"expectedClasses": ["Car", "Frontal"],
"triggerClasses": ["Car", "Frontal"],
"minConfidence": 0.8,
"actions": [
{
"type": "redis_save_image",
"region": "Frontal",
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
"expire_seconds": 600
}
],
"branches": [
{
"modelId": "car_brand_cls_v1",
"modelFile": "car_brand_cls_v1.pt",
"parallel": true,
"crop": true,
"cropClass": "Frontal",
"triggerClasses": ["Frontal"],
"minConfidence": 0.85
}
],
"parallelActions": [
{
"type": "postgresql_update_combined",
"table": "car_frontal_info",
"key_field": "session_id",
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
"fields": {
"car_brand": "{car_brand_cls_v1.brand}",
"car_body_type": "{car_bodytype_cls_v1.body_type}"
}
}
]
}
```
@ -173,6 +222,9 @@ docker run -p 8000:8000 -v ./models:/app/models detector-worker
- **opencv-python**: Computer vision operations
- **websockets**: WebSocket client/server
- **redis**: Redis client for action execution
- **psycopg2-binary**: PostgreSQL database adapter
- **scipy**: Scientific computing for advanced algorithms
- **filterpy**: Kalman filtering and state estimation
## Security Considerations
- Model files are loaded from trusted sources only
@ -180,9 +232,46 @@ docker run -p 8000:8000 -v ./models:/app/models detector-worker
- WebSocket connections handle disconnects gracefully
- Resource usage is monitored to prevent DoS
## Database Integration
### Schema Management
The system automatically creates and manages PostgreSQL tables:
```sql
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
display_id VARCHAR(255),
captured_timestamp VARCHAR(255),
session_id VARCHAR(255) PRIMARY KEY,
license_character VARCHAR(255) DEFAULT NULL,
license_type VARCHAR(255) DEFAULT 'No model available',
car_brand VARCHAR(255) DEFAULT NULL,
car_model VARCHAR(255) DEFAULT NULL,
car_body_type VARCHAR(255) DEFAULT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
```
### Workflow
1. **Detection**: When both "Car" and "Frontal" are detected, create initial database record with UUID session_id
2. **Redis Storage**: Save cropped frontal image to Redis with session_id in key
3. **Parallel Processing**: Run brand and body type classification concurrently
4. **Synchronization**: Wait for all branches to complete using `waitForBranches`
5. **Database Update**: Update record with combined classification results using field mapping
### Field Mapping
Templates like `{car_brand_cls_v1.brand}` are resolved to actual classification results:
- `car_brand_cls_v1.brand` → "Honda"
- `car_bodytype_cls_v1.body_type` → "Sedan"
## Performance Optimizations
- GPU acceleration when CUDA is available
- Shared camera streams reduce resource usage
- Frame queue optimization (single latest frame)
- Model caching across subscriptions
- Trigger class filtering for faster inference
- Trigger class filtering for faster inference
- Parallel processing with ThreadPoolExecutor for classification branches
- Multi-class detection reduces inference passes
- Region-based cropping minimizes processing overhead
- Database connection pooling and prepared statements
- Redis image storage with automatic expiration

173
pympta.md
View file

@ -32,14 +32,15 @@ This modular structure allows for creating complex and efficient inference logic
## `pipeline.json` Specification
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition and an optional `redis` key for Redis configuration.
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition, optional `redis` key for Redis configuration, and optional `postgresql` key for database integration.
### Top-Level Object Structure
| Key | Type | Required | Description |
| ---------- | ------ | -------- | ------------------------------------------------------- |
| `pipeline` | Object | Yes | The root node object of the pipeline. |
| `redis` | Object | No | Configuration for connecting to a Redis server. |
| Key | Type | Required | Description |
| ------------ | ------ | -------- | ------------------------------------------------------- |
| `pipeline` | Object | Yes | The root node object of the pipeline. |
| `redis` | Object | No | Configuration for connecting to a Redis server. |
| `postgresql` | Object | No | Configuration for connecting to a PostgreSQL database. |
### Redis Configuration (`redis`)
@ -50,6 +51,16 @@ This file defines the entire pipeline logic. The root object contains a `pipelin
| `password` | String | No | The password for Redis authentication. |
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
### PostgreSQL Configuration (`postgresql`)
| Key | Type | Required | Description |
| ---------- | ------ | -------- | ------------------------------------------------------- |
| `host` | String | Yes | The hostname or IP address of the PostgreSQL server. |
| `port` | Number | Yes | The port number of the PostgreSQL server. |
| `database` | String | Yes | The database name to connect to. |
| `username` | String | Yes | The username for database authentication. |
| `password` | String | Yes | The password for database authentication. |
### Node Object Structure
| Key | Type | Required | Description |
@ -59,12 +70,17 @@ This file defines the entire pipeline logic. The root object contains a `pipelin
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
| `cropClass` | String | No | The specific class to use for cropping (e.g., "Frontal" for frontal view cropping). |
| `multiClass` | Boolean | No | If `true`, enables multi-class detection mode where multiple classes can be detected simultaneously. |
| `expectedClasses` | Array<String> | No | When `multiClass` is true, defines which classes are expected. At least one must be detected for processing to continue. |
| `parallel` | Boolean | No | If `true`, this branch will be processed in parallel with other parallel branches. |
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
| `parallelActions` | Array<Action> | No | A list of actions to execute after all specified branches have completed. |
### Action Object Structure
Actions allow the pipeline to interact with Redis. They are executed sequentially for a given detection.
Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.
#### Action Context & Dynamic Keys
@ -72,7 +88,12 @@ All actions have access to a dynamic context for formatting keys and messages. T
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
- `{timestamp}`: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
- `{uuid}`: A unique identifier (UUID4) for the detection event.
- `{filename}`: Generated filename with UUID.
- `{camera_id}`: Full camera subscription identifier.
- `{display_id}`: Display identifier extracted from subscription.
- `{session_id}`: Session ID for database operations.
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
#### `redis_save_image`
@ -83,6 +104,9 @@ Saves the current image frame (or cropped sub-image) to a Redis key.
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
| `type` | String | Yes | Must be `"redis_save_image"`. |
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
| `region` | String | No | Specific detected region to crop and save (e.g., "Frontal"). |
| `format` | String | No | Image format: "jpeg" or "png". Defaults to "jpeg". |
| `quality` | Number | No | JPEG quality (1-100). Defaults to 90. |
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
#### `redis_publish`
@ -95,35 +119,98 @@ Publishes a message to a Redis channel.
| `channel` | String | Yes | The Redis channel to publish the message to. |
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
### Example `pipeline.json` with Redis
#### `postgresql_update_combined`
This example demonstrates a pipeline that detects vehicles, saves a uniquely named image of each detection that expires in one hour, and then publishes a notification with the image key.
Updates PostgreSQL database with results from multiple branches after they complete.
| Key | Type | Required | Description |
| ------------------ | ------------- | -------- | ------------------------------------------------------------------------------------------------------- |
| `type` | String | Yes | Must be `"postgresql_update_combined"`. |
| `table` | String | Yes | The database table name (will be prefixed with `gas_station_1.` schema). |
| `key_field` | String | Yes | The field to use as the update key (typically "session_id"). |
| `key_value` | String | Yes | Template for the key value (e.g., "{session_id}"). |
| `waitForBranches` | Array<String> | Yes | List of branch model IDs to wait for completion before executing update. |
| `fields` | Object | Yes | Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").|
### Complete Example `pipeline.json`
This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:
```json
{
"redis": {
"host": "redis.local",
"host": "10.100.1.3",
"port": 6379,
"password": "your-super-secret-password"
"password": "your-redis-password",
"db": 0
},
"postgresql": {
"host": "10.100.1.3",
"port": 5432,
"database": "inference",
"username": "root",
"password": "your-db-password"
},
"pipeline": {
"modelId": "vehicle-detector",
"modelFile": "vehicle_model.pt",
"minConfidence": 0.6,
"triggerClasses": ["car", "truck"],
"modelId": "car_frontal_detection_v1",
"modelFile": "car_frontal_detection_v1.pt",
"crop": false,
"triggerClasses": ["Car", "Frontal"],
"minConfidence": 0.8,
"multiClass": true,
"expectedClasses": ["Car", "Frontal"],
"actions": [
{
"type": "redis_save_image",
"key": "detections:{class}:{timestamp_ms}:{uuid}",
"expire_seconds": 3600
"region": "Frontal",
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
"expire_seconds": 600,
"format": "jpeg",
"quality": 90
},
{
"type": "redis_publish",
"channel": "vehicle_events",
"message": "{\"event\":\"new_detection\",\"class\":\"{class}\",\"confidence\":{confidence},\"image_key\":\"{image_key}\"}"
"channel": "car_detections",
"message": "{\"event\":\"frontal_detected\"}"
}
],
"branches": []
"branches": [
{
"modelId": "car_brand_cls_v1",
"modelFile": "car_brand_cls_v1.pt",
"crop": true,
"cropClass": "Frontal",
"resizeTarget": [224, 224],
"triggerClasses": ["Frontal"],
"minConfidence": 0.85,
"parallel": true,
"branches": []
},
{
"modelId": "car_bodytype_cls_v1",
"modelFile": "car_bodytype_cls_v1.pt",
"crop": true,
"cropClass": "Car",
"resizeTarget": [224, 224],
"triggerClasses": ["Car"],
"minConfidence": 0.85,
"parallel": true,
"branches": []
}
],
"parallelActions": [
{
"type": "postgresql_update_combined",
"table": "car_frontal_info",
"key_field": "session_id",
"key_value": "{session_id}",
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
"fields": {
"car_brand": "{car_brand_cls_v1.brand}",
"car_body_type": "{car_bodytype_cls_v1.body_type}"
}
}
]
}
}
```
@ -134,7 +221,7 @@ The `pympta` module exposes two main functions.
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes a Redis connection if configured in `pipeline.json`.
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in `pipeline.json`.
- **Parameters:**
- `zip_source` (str): The file path to the local `.mpta` zip archive.
@ -142,7 +229,7 @@ Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory.
- **Returns:**
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
### `run_pipeline(frame, node: dict, return_bbox: bool = False)`
### `run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)`
Executes the inference pipeline on a single image frame.
@ -150,12 +237,43 @@ Executes the inference pipeline on a single image frame.
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
- `context` (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
- **Returns:**
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
## Database Integration
The pipeline system includes automatic PostgreSQL database management:
### Table Schema (`gas_station_1.car_frontal_info`)
The system automatically creates and manages the following table structure:
```sql
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
display_id VARCHAR(255),
captured_timestamp VARCHAR(255),
session_id VARCHAR(255) PRIMARY KEY,
license_character VARCHAR(255) DEFAULT NULL,
license_type VARCHAR(255) DEFAULT 'No model available',
car_brand VARCHAR(255) DEFAULT NULL,
car_model VARCHAR(255) DEFAULT NULL,
car_body_type VARCHAR(255) DEFAULT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
```
### Workflow
1. **Initial Record Creation**: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
2. **Redis Storage**: Vehicle images are stored in Redis with keys containing the session_id.
3. **Parallel Classification**: Brand and body type classification run concurrently.
4. **Database Update**: After all branches complete, the database record is updated with classification results.
## Usage Example
This snippet, inspired by `pipeline_webcam.py`, shows how to use `pympta` to load a pipeline and process an image from a webcam.
This snippet shows how to use `pympta` with the enhanced features:
```python
import cv2
@ -181,9 +299,14 @@ while True:
if not ret:
break
# 4. Run the pipeline on the current frame
# The function will handle the entire logic tree (e.g., find a car, then find its license plate).
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True)
# 4. Run the pipeline on the current frame with context
context = {
"camera_id": "display-001;cam-001",
"display_id": "display-001",
"session_id": None # Will be generated automatically
}
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)
# 5. Display the results
if detection_result:

View file

@ -2,6 +2,12 @@
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
The current Python Detector Worker implementation supports advanced computer vision pipelines with:
- Multi-class YOLO detection with parallel processing
- PostgreSQL database integration with automatic schema management
- Redis integration for image storage and pub/sub messaging
- Hierarchical pipeline execution with detection → classification branching
## 1. Connection
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
@ -25,14 +31,34 @@ To enable modularity and dynamic configuration, the backend will send you a URL
2. Extracting its contents.
3. Interpreting the contents to configure its internal pipeline.
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
**The current implementation supports comprehensive pipeline configurations including:**
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
- Scripts: Custom Python scripts for pre-processing or post-processing.
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
- **AI/ML Models**: YOLO models (.pt files) for detection and classification
- **Pipeline Configuration**: `pipeline.json` defining hierarchical detection→classification workflows
- **Multi-class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
- **Parallel Processing**: Concurrent execution of classification branches with ThreadPoolExecutor
- **Database Integration**: PostgreSQL configuration for automatic table creation and updates
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
- **Dynamic Field Mapping**: Template-based field resolution for database operations
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription.
**Enhanced MPTA Structure:**
```
pipeline.mpta/
├── pipeline.json # Main configuration with redis/postgresql settings
├── car_detection.pt # Primary YOLO detection model
├── brand_classifier.pt # Classification model for car brands
├── bodytype_classifier.pt # Classification model for body types
└── ...
```
The `pipeline.json` now supports advanced features like:
- Multi-class detection with `expectedClasses` validation
- Parallel branch processing with `parallel: true`
- Database actions with `postgresql_update_combined`
- Redis actions with region-specific image cropping
- Branch synchronization with `waitForBranches`
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription, including complex multi-stage AI pipelines with database persistence.
## 4. Messages from Worker to Backend
@ -79,6 +105,15 @@ Sent when the worker detects a relevant object. The `detection` object should be
- **Type:** `imageDetection`
**Enhanced Detection Capabilities:**
The current implementation supports multi-class detection with parallel classification processing. When a vehicle is detected, the system:
1. **Multi-Class Detection**: Simultaneously detects "Car" and "Frontal" classes
2. **Parallel Processing**: Runs brand and body type classification concurrently
3. **Database Integration**: Automatically creates and updates PostgreSQL records
4. **Redis Storage**: Saves cropped frontal images with expiration
**Payload Example:**
```json
@ -88,19 +123,38 @@ Sent when the worker detects a relevant object. The `detection` object should be
"timestamp": "2025-07-14T12:34:56.789Z",
"data": {
"detection": {
"carModel": "Civic",
"class": "Car",
"confidence": 0.92,
"carBrand": "Honda",
"carYear": 2023,
"carModel": "Civic",
"bodyType": "Sedan",
"licensePlateText": "ABCD1234",
"licensePlateConfidence": 0.95
"branch_results": {
"car_brand_cls_v1": {
"class": "Honda",
"confidence": 0.89,
"brand": "Honda"
},
"car_bodytype_cls_v1": {
"class": "Sedan",
"confidence": 0.85,
"body_type": "Sedan"
}
}
},
"modelId": 101,
"modelName": "US-LPR-and-Vehicle-ID"
"modelName": "Car Frontal Detection V1"
}
}
```
**Database Integration:**
Each detection automatically:
- Creates a record in `gas_station_1.car_frontal_info` table
- Generates a unique `session_id` for tracking
- Updates the record with classification results after parallel processing completes
- Stores cropped frontal images in Redis with the session_id as key
### 4.3. Patch Session
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.