Merge branch 'dev'
Some checks are pending
Build Worker Base and Application Images / deploy-stack (push) Blocked by required conditions
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 3m12s
Some checks are pending
Build Worker Base and Application Images / deploy-stack (push) Blocked by required conditions
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 3m12s
This commit is contained in:
commit
cc604841d0
10 changed files with 840 additions and 477 deletions
41
app.py
41
app.py
|
@ -6,8 +6,9 @@ import json
|
|||
import logging
|
||||
import os
|
||||
import time
|
||||
import cv2
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI, WebSocket, HTTPException, Request
|
||||
from fastapi import FastAPI, WebSocket, HTTPException
|
||||
from fastapi.responses import Response
|
||||
|
||||
# Import new modular communication system
|
||||
|
@ -27,8 +28,8 @@ logging.basicConfig(
|
|||
logger = logging.getLogger("detector_worker")
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
# Store cached frames for REST API access (temporary storage)
|
||||
latest_frames = {}
|
||||
# Frames are now stored in the shared cache buffer from core.streaming.buffers
|
||||
# latest_frames = {} # Deprecated - using shared_cache_buffer instead
|
||||
|
||||
# Lifespan event handler (modern FastAPI approach)
|
||||
@asynccontextmanager
|
||||
|
@ -49,7 +50,7 @@ async def lifespan(app: FastAPI):
|
|||
worker_state.set_subscriptions([])
|
||||
worker_state.session_ids.clear()
|
||||
worker_state.progression_stages.clear()
|
||||
latest_frames.clear()
|
||||
# latest_frames.clear() # No longer needed - frames are in shared_cache_buffer
|
||||
logger.info("Detector Worker shutdown complete")
|
||||
|
||||
# Create FastAPI application with detailed WebSocket logging
|
||||
|
@ -90,8 +91,8 @@ from core.streaming import initialize_stream_manager
|
|||
initialize_stream_manager(max_streams=config.get('max_streams', 10))
|
||||
logger.info(f"Initialized stream manager with max_streams={config.get('max_streams', 10)}")
|
||||
|
||||
# Store cached frames for REST API access (temporary storage)
|
||||
latest_frames = {}
|
||||
# Frames are now stored in the shared cache buffer from core.streaming.buffers
|
||||
# latest_frames = {} # Deprecated - using shared_cache_buffer instead
|
||||
|
||||
logger.info("Starting detector worker application (refactored)")
|
||||
logger.info(f"Configuration: Target FPS: {config.get('target_fps', 10)}, "
|
||||
|
@ -150,21 +151,26 @@ async def get_camera_image(camera_id: str):
|
|||
detail=f"Camera {camera_id} not found or not active"
|
||||
)
|
||||
|
||||
# Check if we have a cached frame for this camera
|
||||
if camera_id not in latest_frames:
|
||||
logger.warning(f"No cached frame available for camera '{camera_id}'")
|
||||
# Extract actual camera_id from subscription identifier (displayId;cameraId)
|
||||
# Frames are stored using just the camera_id part
|
||||
actual_camera_id = camera_id.split(';')[-1] if ';' in camera_id else camera_id
|
||||
|
||||
# Get frame from the shared cache buffer
|
||||
from core.streaming.buffers import shared_cache_buffer
|
||||
|
||||
# Only show buffer debug info if camera not found (to reduce log spam)
|
||||
available_cameras = shared_cache_buffer.frame_buffer.get_camera_list()
|
||||
|
||||
frame = shared_cache_buffer.get_frame(actual_camera_id)
|
||||
if frame is None:
|
||||
logger.warning(f"\033[93m[API] No frame for '{actual_camera_id}' - Available: {available_cameras}\033[0m")
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"No frame available for camera {camera_id}"
|
||||
detail=f"No frame available for camera {actual_camera_id}"
|
||||
)
|
||||
|
||||
frame = latest_frames[camera_id]
|
||||
logger.debug(f"Retrieved cached frame for camera '{camera_id}', shape: {frame.shape}")
|
||||
# Successful frame retrieval - log only occasionally to avoid spam
|
||||
|
||||
# TODO: This import will be replaced in Phase 3 (Streaming System)
|
||||
# For now, we need to handle the case where OpenCV is not available
|
||||
try:
|
||||
import cv2
|
||||
# Encode frame as JPEG
|
||||
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||
if not success:
|
||||
|
@ -172,9 +178,6 @@ async def get_camera_image(camera_id: str):
|
|||
|
||||
# Return image as binary response
|
||||
return Response(content=buffer_img.tobytes(), media_type="image/jpeg")
|
||||
except ImportError:
|
||||
logger.error("OpenCV not available for image encoding")
|
||||
raise HTTPException(status_code=500, detail="Image processing not available")
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
|
|
|
@ -297,18 +297,18 @@ class WebSocketHandler:
|
|||
async def _reconcile_subscriptions_with_tracking(self, target_subscriptions) -> dict:
|
||||
"""Reconcile subscriptions with tracking integration."""
|
||||
try:
|
||||
# First, we need to create tracking integrations for each unique model
|
||||
# Create separate tracking integrations for each subscription (camera isolation)
|
||||
tracking_integrations = {}
|
||||
|
||||
for subscription_payload in target_subscriptions:
|
||||
subscription_id = subscription_payload['subscriptionIdentifier']
|
||||
model_id = subscription_payload['modelId']
|
||||
|
||||
# Create tracking integration if not already created
|
||||
if model_id not in tracking_integrations:
|
||||
# Create separate tracking integration per subscription for camera isolation
|
||||
# Get pipeline configuration for this model
|
||||
pipeline_parser = model_manager.get_pipeline_config(model_id)
|
||||
if pipeline_parser:
|
||||
# Create tracking integration with message sender
|
||||
# Create tracking integration with message sender (separate instance per camera)
|
||||
tracking_integration = TrackingPipelineIntegration(
|
||||
pipeline_parser, model_manager, model_id, self._send_message
|
||||
)
|
||||
|
@ -316,12 +316,12 @@ class WebSocketHandler:
|
|||
# Initialize tracking model
|
||||
success = await tracking_integration.initialize_tracking_model()
|
||||
if success:
|
||||
tracking_integrations[model_id] = tracking_integration
|
||||
logger.info(f"[Tracking] Created tracking integration for model {model_id}")
|
||||
tracking_integrations[subscription_id] = tracking_integration
|
||||
logger.info(f"[Tracking] Created isolated tracking integration for subscription {subscription_id} (model {model_id})")
|
||||
else:
|
||||
logger.warning(f"[Tracking] Failed to initialize tracking for model {model_id}")
|
||||
logger.warning(f"[Tracking] Failed to initialize tracking for subscription {subscription_id} (model {model_id})")
|
||||
else:
|
||||
logger.warning(f"[Tracking] No pipeline config found for model {model_id}")
|
||||
logger.warning(f"[Tracking] No pipeline config found for model {model_id} in subscription {subscription_id}")
|
||||
|
||||
# Now reconcile with StreamManager, adding tracking integrations
|
||||
current_subscription_ids = set()
|
||||
|
@ -377,8 +377,10 @@ class WebSocketHandler:
|
|||
camera_id = subscription_id.split(';')[-1]
|
||||
model_id = payload['modelId']
|
||||
|
||||
# Get tracking integration for this model
|
||||
tracking_integration = tracking_integrations.get(model_id)
|
||||
logger.info(f"[SUBSCRIPTION_MAPPING] subscription_id='{subscription_id}' → camera_id='{camera_id}'")
|
||||
|
||||
# Get tracking integration for this subscription (camera-isolated)
|
||||
tracking_integration = tracking_integrations.get(subscription_id)
|
||||
|
||||
# Extract crop coordinates if present
|
||||
crop_coords = None
|
||||
|
@ -410,7 +412,7 @@ class WebSocketHandler:
|
|||
)
|
||||
|
||||
if success and tracking_integration:
|
||||
logger.info(f"[Tracking] Subscription {subscription_id} configured with tracking for model {model_id}")
|
||||
logger.info(f"[Tracking] Subscription {subscription_id} configured with isolated tracking for model {model_id}")
|
||||
|
||||
return success
|
||||
|
||||
|
@ -547,10 +549,6 @@ class WebSocketHandler:
|
|||
# Update tracking integrations with session ID
|
||||
shared_stream_manager.set_session_id(display_identifier, session_id)
|
||||
|
||||
# Save snapshot image after getting sessionId
|
||||
if session_id:
|
||||
await self._save_snapshot(display_identifier, session_id)
|
||||
|
||||
async def _handle_set_progression_stage(self, message: SetProgressionStageMessage) -> None:
|
||||
"""Handle setProgressionStage message."""
|
||||
display_identifier = message.payload.displayIdentifier
|
||||
|
@ -566,6 +564,10 @@ class WebSocketHandler:
|
|||
if session_id:
|
||||
shared_stream_manager.set_progression_stage(session_id, stage)
|
||||
|
||||
# Save snapshot image when progression stage is car_fueling
|
||||
if stage == 'car_fueling' and session_id:
|
||||
await self._save_snapshot(display_identifier, session_id)
|
||||
|
||||
# If stage indicates session is cleared/finished, clear from tracking
|
||||
if stage in ['finished', 'cleared', 'idle']:
|
||||
# Get session ID for this display and clear it
|
||||
|
|
|
@ -60,6 +60,8 @@ class YOLOWrapper:
|
|||
|
||||
self.model = None
|
||||
self._class_names = []
|
||||
|
||||
|
||||
self._load_model()
|
||||
|
||||
logger.info(f"Initialized YOLO wrapper for {model_id} on {self.device}")
|
||||
|
@ -115,6 +117,7 @@ class YOLOWrapper:
|
|||
logger.error(f"Failed to extract class names: {str(e)}")
|
||||
self._class_names = {}
|
||||
|
||||
|
||||
def infer(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
|
@ -222,55 +225,30 @@ class YOLOWrapper:
|
|||
|
||||
return detections
|
||||
|
||||
|
||||
def track(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
confidence_threshold: float = 0.5,
|
||||
trigger_classes: Optional[List[str]] = None,
|
||||
persist: bool = True
|
||||
persist: bool = True,
|
||||
camera_id: Optional[str] = None
|
||||
) -> InferenceResult:
|
||||
"""
|
||||
Run tracking on an image
|
||||
Run detection (tracking will be handled by external tracker)
|
||||
|
||||
Args:
|
||||
image: Input image as numpy array (BGR format)
|
||||
confidence_threshold: Minimum confidence for detections
|
||||
trigger_classes: List of class names to filter
|
||||
persist: Whether to persist tracks across frames
|
||||
persist: Ignored - tracking handled externally
|
||||
camera_id: Ignored - tracking handled externally
|
||||
|
||||
Returns:
|
||||
InferenceResult containing detections with track IDs
|
||||
InferenceResult containing detections (no track IDs from YOLO)
|
||||
"""
|
||||
if self.model is None:
|
||||
raise RuntimeError(f"Model {self.model_id} not loaded")
|
||||
|
||||
try:
|
||||
import time
|
||||
start_time = time.time()
|
||||
|
||||
# Run tracking
|
||||
results = self.model.track(
|
||||
image,
|
||||
conf=confidence_threshold,
|
||||
persist=persist,
|
||||
verbose=False
|
||||
)
|
||||
|
||||
inference_time = time.time() - start_time
|
||||
|
||||
# Parse results
|
||||
detections = self._parse_results(results[0], trigger_classes)
|
||||
|
||||
return InferenceResult(
|
||||
detections=detections,
|
||||
image_shape=(image.shape[0], image.shape[1]),
|
||||
inference_time=inference_time,
|
||||
model_id=self.model_id
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Tracking failed for model {self.model_id}: {str(e)}", exc_info=True)
|
||||
raise
|
||||
# Just do detection - no YOLO tracking
|
||||
return self.infer(image, confidence_threshold, trigger_classes)
|
||||
|
||||
def predict_classification(
|
||||
self,
|
||||
|
@ -350,6 +328,7 @@ class YOLOWrapper:
|
|||
"""Get the number of classes the model can detect"""
|
||||
return len(self._class_names)
|
||||
|
||||
|
||||
def clear_cache(self) -> None:
|
||||
"""Clear the model cache"""
|
||||
with self._cache_lock:
|
||||
|
|
|
@ -46,13 +46,7 @@ class FrameBuffer:
|
|||
|
||||
frame_data = self._frames[camera_id]
|
||||
|
||||
# Check if frame is too old
|
||||
age = time.time() - frame_data['timestamp']
|
||||
if age > self.max_age_seconds:
|
||||
logger.debug(f"Frame for camera {camera_id} is {age:.1f}s old, discarding")
|
||||
del self._frames[camera_id]
|
||||
return None
|
||||
|
||||
# Return frame regardless of age - frames persist until replaced
|
||||
return frame_data['frame'].copy()
|
||||
|
||||
def get_frame_info(self, camera_id: str) -> Optional[Dict[str, Any]]:
|
||||
|
@ -64,10 +58,7 @@ class FrameBuffer:
|
|||
frame_data = self._frames[camera_id]
|
||||
age = time.time() - frame_data['timestamp']
|
||||
|
||||
if age > self.max_age_seconds:
|
||||
del self._frames[camera_id]
|
||||
return None
|
||||
|
||||
# Return frame info regardless of age - frames persist until replaced
|
||||
return {
|
||||
'timestamp': frame_data['timestamp'],
|
||||
'age': age,
|
||||
|
@ -95,24 +86,10 @@ class FrameBuffer:
|
|||
logger.debug(f"Cleared all frames ({count} cameras)")
|
||||
|
||||
def get_camera_list(self) -> list:
|
||||
"""Get list of cameras with valid frames."""
|
||||
"""Get list of cameras with frames - all frames persist until replaced."""
|
||||
with self._lock:
|
||||
current_time = time.time()
|
||||
valid_cameras = []
|
||||
expired_cameras = []
|
||||
|
||||
for camera_id, frame_data in self._frames.items():
|
||||
age = current_time - frame_data['timestamp']
|
||||
if age <= self.max_age_seconds:
|
||||
valid_cameras.append(camera_id)
|
||||
else:
|
||||
expired_cameras.append(camera_id)
|
||||
|
||||
# Clean up expired frames
|
||||
for camera_id in expired_cameras:
|
||||
del self._frames[camera_id]
|
||||
|
||||
return valid_cameras
|
||||
# Return all cameras that have frames - no age-based filtering
|
||||
return list(self._frames.keys())
|
||||
|
||||
def get_stats(self) -> Dict[str, Any]:
|
||||
"""Get buffer statistics."""
|
||||
|
@ -120,8 +97,8 @@ class FrameBuffer:
|
|||
current_time = time.time()
|
||||
stats = {
|
||||
'total_cameras': len(self._frames),
|
||||
'valid_cameras': 0,
|
||||
'expired_cameras': 0,
|
||||
'recent_cameras': 0,
|
||||
'stale_cameras': 0,
|
||||
'total_memory_mb': 0,
|
||||
'cameras': {}
|
||||
}
|
||||
|
@ -130,16 +107,17 @@ class FrameBuffer:
|
|||
age = current_time - frame_data['timestamp']
|
||||
size_mb = frame_data.get('size_mb', 0)
|
||||
|
||||
# All frames are valid/available, but categorize by freshness for monitoring
|
||||
if age <= self.max_age_seconds:
|
||||
stats['valid_cameras'] += 1
|
||||
stats['recent_cameras'] += 1
|
||||
else:
|
||||
stats['expired_cameras'] += 1
|
||||
stats['stale_cameras'] += 1
|
||||
|
||||
stats['total_memory_mb'] += size_mb
|
||||
|
||||
stats['cameras'][camera_id] = {
|
||||
'age': age,
|
||||
'valid': age <= self.max_age_seconds,
|
||||
'recent': age <= self.max_age_seconds, # Recent but all frames available
|
||||
'shape': frame_data['shape'],
|
||||
'dtype': frame_data['dtype'],
|
||||
'size_mb': size_mb
|
||||
|
|
|
@ -130,6 +130,7 @@ class StreamManager:
|
|||
try:
|
||||
if stream_config.rtsp_url:
|
||||
# RTSP stream using FFmpeg subprocess with CUDA acceleration
|
||||
logger.info(f"\033[94m[RTSP] Starting {camera_id}\033[0m")
|
||||
reader = FFmpegRTSPReader(
|
||||
camera_id=camera_id,
|
||||
rtsp_url=stream_config.rtsp_url,
|
||||
|
@ -138,10 +139,11 @@ class StreamManager:
|
|||
reader.set_frame_callback(self._frame_callback)
|
||||
reader.start()
|
||||
self._streams[camera_id] = reader
|
||||
logger.info(f"Started FFmpeg RTSP stream for camera {camera_id}")
|
||||
logger.info(f"\033[92m[RTSP] {camera_id} connected\033[0m")
|
||||
|
||||
elif stream_config.snapshot_url:
|
||||
# HTTP snapshot stream
|
||||
logger.info(f"\033[95m[HTTP] Starting {camera_id}\033[0m")
|
||||
reader = HTTPSnapshotReader(
|
||||
camera_id=camera_id,
|
||||
snapshot_url=stream_config.snapshot_url,
|
||||
|
@ -151,7 +153,7 @@ class StreamManager:
|
|||
reader.set_frame_callback(self._frame_callback)
|
||||
reader.start()
|
||||
self._streams[camera_id] = reader
|
||||
logger.info(f"Started HTTP snapshot stream for camera {camera_id}")
|
||||
logger.info(f"\033[92m[HTTP] {camera_id} connected\033[0m")
|
||||
|
||||
else:
|
||||
logger.error(f"No valid URL provided for camera {camera_id}")
|
||||
|
@ -169,8 +171,9 @@ class StreamManager:
|
|||
try:
|
||||
self._streams[camera_id].stop()
|
||||
del self._streams[camera_id]
|
||||
shared_cache_buffer.clear_camera(camera_id)
|
||||
logger.info(f"Stopped stream for camera {camera_id}")
|
||||
# DON'T clear frames - they should persist until replaced
|
||||
# shared_cache_buffer.clear_camera(camera_id) # REMOVED - frames should persist
|
||||
logger.info(f"Stopped stream for camera {camera_id} (frames preserved in buffer)")
|
||||
except Exception as e:
|
||||
logger.error(f"Error stopping stream for camera {camera_id}: {e}")
|
||||
|
||||
|
@ -179,6 +182,16 @@ class StreamManager:
|
|||
try:
|
||||
# Store frame in shared buffer
|
||||
shared_cache_buffer.put_frame(camera_id, frame)
|
||||
# Quieter frame callback logging - only log occasionally
|
||||
if hasattr(self, '_frame_log_count'):
|
||||
self._frame_log_count += 1
|
||||
else:
|
||||
self._frame_log_count = 1
|
||||
|
||||
# Log every 100 frames to avoid spam
|
||||
if self._frame_log_count % 100 == 0:
|
||||
available_cameras = shared_cache_buffer.frame_buffer.get_camera_list()
|
||||
logger.info(f"\033[96m[BUFFER] {len(available_cameras)} active cameras: {', '.join(available_cameras)}\033[0m")
|
||||
|
||||
# Process tracking for subscriptions with tracking integration
|
||||
self._process_tracking_for_camera(camera_id, frame)
|
||||
|
@ -376,20 +389,51 @@ class StreamManager:
|
|||
logger.debug(f"Set session {session_id} for display {display_id}")
|
||||
|
||||
def clear_session_id(self, session_id: str):
|
||||
"""Clear session ID from tracking integrations."""
|
||||
"""Clear session ID from the specific tracking integration handling this session."""
|
||||
with self._lock:
|
||||
# Find the subscription that's handling this session
|
||||
session_subscription = None
|
||||
for subscription_info in self._subscriptions.values():
|
||||
if subscription_info.tracking_integration:
|
||||
# Check if this integration is handling the given session_id
|
||||
integration = subscription_info.tracking_integration
|
||||
if session_id in integration.session_vehicles:
|
||||
session_subscription = subscription_info
|
||||
break
|
||||
|
||||
if session_subscription and session_subscription.tracking_integration:
|
||||
session_subscription.tracking_integration.clear_session_id(session_id)
|
||||
logger.debug(f"Cleared session {session_id} from subscription {session_subscription.subscription_id}")
|
||||
else:
|
||||
logger.warning(f"No tracking integration found for session {session_id}, broadcasting to all subscriptions")
|
||||
# Fallback: broadcast to all (original behavior)
|
||||
for subscription_info in self._subscriptions.values():
|
||||
if subscription_info.tracking_integration:
|
||||
subscription_info.tracking_integration.clear_session_id(session_id)
|
||||
logger.debug(f"Cleared session {session_id}")
|
||||
|
||||
def set_progression_stage(self, session_id: str, stage: str):
|
||||
"""Set progression stage for tracking integrations."""
|
||||
"""Set progression stage for the specific tracking integration handling this session."""
|
||||
with self._lock:
|
||||
# Find the subscription that's handling this session
|
||||
session_subscription = None
|
||||
for subscription_info in self._subscriptions.values():
|
||||
if subscription_info.tracking_integration:
|
||||
# Check if this integration is handling the given session_id
|
||||
# We need to check the integration's active sessions
|
||||
integration = subscription_info.tracking_integration
|
||||
if session_id in integration.session_vehicles:
|
||||
session_subscription = subscription_info
|
||||
break
|
||||
|
||||
if session_subscription and session_subscription.tracking_integration:
|
||||
session_subscription.tracking_integration.set_progression_stage(session_id, stage)
|
||||
logger.debug(f"Set progression stage for session {session_id}: {stage} on subscription {session_subscription.subscription_id}")
|
||||
else:
|
||||
logger.warning(f"No tracking integration found for session {session_id}, broadcasting to all subscriptions")
|
||||
# Fallback: broadcast to all (original behavior)
|
||||
for subscription_info in self._subscriptions.values():
|
||||
if subscription_info.tracking_integration:
|
||||
subscription_info.tracking_integration.set_progression_stage(session_id, stage)
|
||||
logger.debug(f"Set progression stage for session {session_id}: {stage}")
|
||||
|
||||
def get_tracking_stats(self) -> Dict[str, Any]:
|
||||
"""Get tracking statistics from all subscriptions."""
|
||||
|
|
|
@ -12,8 +12,7 @@ import os
|
|||
import subprocess
|
||||
# import fcntl # No longer needed with atomic file operations
|
||||
from typing import Optional, Callable
|
||||
from watchdog.observers import Observer
|
||||
from watchdog.events import FileSystemEventHandler
|
||||
# Removed watchdog imports - no longer using file watching
|
||||
|
||||
# Suppress FFMPEG/H.264 error messages if needed
|
||||
# Set this environment variable to reduce noise from decoder errors
|
||||
|
@ -22,31 +21,42 @@ os.environ["OPENCV_FFMPEG_LOGLEVEL"] = "-8" # Suppress FFMPEG warnings
|
|||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Suppress noisy watchdog debug logs
|
||||
logging.getLogger('watchdog.observers.inotify_buffer').setLevel(logging.CRITICAL)
|
||||
logging.getLogger('watchdog.observers.fsevents').setLevel(logging.CRITICAL)
|
||||
logging.getLogger('fsevents').setLevel(logging.CRITICAL)
|
||||
# Color codes for pretty logging
|
||||
class Colors:
|
||||
GREEN = '\033[92m'
|
||||
YELLOW = '\033[93m'
|
||||
RED = '\033[91m'
|
||||
BLUE = '\033[94m'
|
||||
PURPLE = '\033[95m'
|
||||
CYAN = '\033[96m'
|
||||
WHITE = '\033[97m'
|
||||
BOLD = '\033[1m'
|
||||
END = '\033[0m'
|
||||
|
||||
def log_success(camera_id: str, message: str):
|
||||
"""Log success messages in green"""
|
||||
logger.info(f"{Colors.GREEN}[{camera_id}] {message}{Colors.END}")
|
||||
|
||||
def log_warning(camera_id: str, message: str):
|
||||
"""Log warnings in yellow"""
|
||||
logger.warning(f"{Colors.YELLOW}[{camera_id}] {message}{Colors.END}")
|
||||
|
||||
def log_error(camera_id: str, message: str):
|
||||
"""Log errors in red"""
|
||||
logger.error(f"{Colors.RED}[{camera_id}] {message}{Colors.END}")
|
||||
|
||||
def log_info(camera_id: str, message: str):
|
||||
"""Log info in cyan"""
|
||||
logger.info(f"{Colors.CYAN}[{camera_id}] {message}{Colors.END}")
|
||||
|
||||
# Removed watchdog logging configuration - no longer using file watching
|
||||
|
||||
|
||||
class FrameFileHandler(FileSystemEventHandler):
|
||||
"""File system event handler for frame file changes."""
|
||||
|
||||
def __init__(self, callback):
|
||||
self.callback = callback
|
||||
self.last_modified = 0
|
||||
|
||||
def on_modified(self, event):
|
||||
if event.is_directory:
|
||||
return
|
||||
# Debounce rapid file changes
|
||||
current_time = time.time()
|
||||
if current_time - self.last_modified > 0.01: # 10ms debounce
|
||||
self.last_modified = current_time
|
||||
self.callback()
|
||||
# Removed FrameFileHandler - no longer using file watching
|
||||
|
||||
|
||||
class FFmpegRTSPReader:
|
||||
"""RTSP stream reader using subprocess FFmpeg with CUDA hardware acceleration and file watching."""
|
||||
"""RTSP stream reader using subprocess FFmpeg piping frames directly to buffer."""
|
||||
|
||||
def __init__(self, camera_id: str, rtsp_url: str, max_retries: int = 3):
|
||||
self.camera_id = camera_id
|
||||
|
@ -56,10 +66,8 @@ class FFmpegRTSPReader:
|
|||
self.stop_event = threading.Event()
|
||||
self.thread = None
|
||||
self.frame_callback: Optional[Callable] = None
|
||||
self.observer = None
|
||||
self.frame_ready_event = threading.Event()
|
||||
|
||||
# Stream specs
|
||||
# Expected stream specs (for reference, actual dimensions read from PPM header)
|
||||
self.width = 1280
|
||||
self.height = 720
|
||||
|
||||
|
@ -76,7 +84,7 @@ class FFmpegRTSPReader:
|
|||
self.stop_event.clear()
|
||||
self.thread = threading.Thread(target=self._read_frames, daemon=True)
|
||||
self.thread.start()
|
||||
logger.info(f"Started FFmpeg reader for camera {self.camera_id}")
|
||||
log_success(self.camera_id, "Stream started")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the FFmpeg subprocess reader."""
|
||||
|
@ -89,171 +97,138 @@ class FFmpegRTSPReader:
|
|||
self.process.kill()
|
||||
if self.thread:
|
||||
self.thread.join(timeout=5.0)
|
||||
logger.info(f"Stopped FFmpeg reader for camera {self.camera_id}")
|
||||
log_info(self.camera_id, "Stream stopped")
|
||||
|
||||
# Removed _probe_stream_info - BMP headers contain dimensions
|
||||
|
||||
def _start_ffmpeg_process(self):
|
||||
"""Start FFmpeg subprocess writing timestamped frames for atomic reads."""
|
||||
# Create temp file paths for this camera
|
||||
self.frame_dir = "/tmp/frame"
|
||||
os.makedirs(self.frame_dir, exist_ok=True)
|
||||
|
||||
# Use strftime pattern - FFmpeg writes each frame with unique timestamp
|
||||
# This ensures each file is complete when written
|
||||
camera_id_safe = self.camera_id.replace(' ', '_')
|
||||
self.frame_prefix = f"camera_{camera_id_safe}"
|
||||
# Using strftime pattern with microseconds for unique filenames
|
||||
self.frame_pattern = f"{self.frame_dir}/{self.frame_prefix}_%Y%m%d_%H%M%S_%f.ppm"
|
||||
|
||||
"""Start FFmpeg subprocess outputting BMP frames to stdout pipe."""
|
||||
cmd = [
|
||||
'ffmpeg',
|
||||
# DO NOT REMOVE
|
||||
'-hwaccel', 'cuda',
|
||||
'-hwaccel_device', '0',
|
||||
# '-hwaccel', 'cuda',
|
||||
# '-hwaccel_device', '0',
|
||||
'-rtsp_transport', 'tcp',
|
||||
'-i', self.rtsp_url,
|
||||
'-f', 'image2',
|
||||
'-strftime', '1', # Enable strftime pattern expansion
|
||||
'-pix_fmt', 'rgb24', # PPM uses RGB not BGR
|
||||
'-f', 'image2pipe', # Output images to pipe
|
||||
'-vcodec', 'bmp', # BMP format with header containing dimensions
|
||||
# Use native stream resolution and framerate
|
||||
'-an', # No audio
|
||||
'-y', # Overwrite output file
|
||||
self.frame_pattern # Write timestamped frames
|
||||
'-' # Output to stdout
|
||||
]
|
||||
|
||||
try:
|
||||
# Log the FFmpeg command for debugging
|
||||
logger.info(f"Starting FFmpeg for camera {self.camera_id} with command: {' '.join(cmd)}")
|
||||
|
||||
# Start FFmpeg detached - we don't need to communicate with it
|
||||
# Start FFmpeg with stdout pipe to read frames directly
|
||||
self.process = subprocess.Popen(
|
||||
cmd,
|
||||
stdout=subprocess.DEVNULL,
|
||||
stderr=subprocess.DEVNULL
|
||||
stdout=subprocess.PIPE, # Capture stdout for frame data
|
||||
stderr=subprocess.DEVNULL,
|
||||
bufsize=0 # Unbuffered for real-time processing
|
||||
)
|
||||
logger.info(f"Started FFmpeg process PID {self.process.pid} for camera {self.camera_id} -> {self.frame_pattern}")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start FFmpeg for camera {self.camera_id}: {e}")
|
||||
log_error(self.camera_id, f"FFmpeg startup failed: {e}")
|
||||
return False
|
||||
|
||||
def _setup_file_watcher(self):
|
||||
"""Setup file system watcher for frame directory."""
|
||||
# Setup file watcher for the frame directory
|
||||
handler = FrameFileHandler(lambda: self._on_file_changed())
|
||||
self.observer = Observer()
|
||||
self.observer.schedule(handler, self.frame_dir, recursive=False)
|
||||
self.observer.start()
|
||||
logger.info(f"Started file watcher for {self.frame_dir} with pattern {self.frame_prefix}*.ppm")
|
||||
def _read_bmp_frame(self, pipe):
|
||||
"""Read BMP frame from pipe - BMP header contains dimensions."""
|
||||
try:
|
||||
# Read BMP header (14 bytes file header + 40 bytes info header = 54 bytes minimum)
|
||||
header_data = b''
|
||||
bytes_to_read = 54
|
||||
|
||||
def _on_file_changed(self):
|
||||
"""Called when a new frame file is created."""
|
||||
# Signal that a new frame might be available
|
||||
self.frame_ready_event.set()
|
||||
while len(header_data) < bytes_to_read:
|
||||
chunk = pipe.read(bytes_to_read - len(header_data))
|
||||
if not chunk:
|
||||
return None # Silent end of stream
|
||||
header_data += chunk
|
||||
|
||||
# Parse BMP header
|
||||
if header_data[:2] != b'BM':
|
||||
return None # Invalid format, skip frame silently
|
||||
|
||||
# Extract file size from header (bytes 2-5)
|
||||
import struct
|
||||
file_size = struct.unpack('<L', header_data[2:6])[0]
|
||||
|
||||
# Extract width and height from info header (bytes 18-21 and 22-25)
|
||||
width = struct.unpack('<L', header_data[18:22])[0]
|
||||
height = struct.unpack('<L', header_data[22:26])[0]
|
||||
|
||||
# Read remaining file data
|
||||
remaining_size = file_size - 54
|
||||
remaining_data = b''
|
||||
|
||||
while len(remaining_data) < remaining_size:
|
||||
chunk = pipe.read(remaining_size - len(remaining_data))
|
||||
if not chunk:
|
||||
return None # Stream ended silently
|
||||
remaining_data += chunk
|
||||
|
||||
# Complete BMP data
|
||||
bmp_data = header_data + remaining_data
|
||||
|
||||
# Use OpenCV to decode BMP directly from memory
|
||||
frame_array = np.frombuffer(bmp_data, dtype=np.uint8)
|
||||
frame = cv2.imdecode(frame_array, cv2.IMREAD_COLOR)
|
||||
|
||||
if frame is None:
|
||||
return None # Decode failed silently
|
||||
|
||||
return frame
|
||||
|
||||
except Exception:
|
||||
return None # Error reading frame silently
|
||||
|
||||
def _read_frames(self):
|
||||
"""Reactively read frames when file changes."""
|
||||
"""Read frames directly from FFmpeg stdout pipe."""
|
||||
frame_count = 0
|
||||
last_log_time = time.time()
|
||||
# Remove unused variable: bytes_per_frame = self.width * self.height * 3
|
||||
restart_check_interval = 10 # Check FFmpeg status every 10 seconds
|
||||
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
# Start FFmpeg if not running
|
||||
if not self.process or self.process.poll() is not None:
|
||||
if self.process and self.process.poll() is not None:
|
||||
logger.warning(f"FFmpeg process died for camera {self.camera_id}, restarting...")
|
||||
log_warning(self.camera_id, "Stream disconnected, reconnecting...")
|
||||
|
||||
if not self._start_ffmpeg_process():
|
||||
time.sleep(5.0)
|
||||
continue
|
||||
|
||||
# Wait for FFmpeg to start writing frame files
|
||||
wait_count = 0
|
||||
while wait_count < 30:
|
||||
# Check if any frame files exist
|
||||
import glob
|
||||
frame_files = glob.glob(f"{self.frame_dir}/{self.frame_prefix}*.ppm")
|
||||
if frame_files:
|
||||
logger.info(f"Found {len(frame_files)} initial frame files for {self.camera_id}")
|
||||
break
|
||||
time.sleep(1.0)
|
||||
wait_count += 1
|
||||
|
||||
if wait_count >= 30:
|
||||
logger.error(f"No frame files created after 30s for {self.camera_id}")
|
||||
logger.error(f"Expected pattern: {self.frame_dir}/{self.frame_prefix}*.ppm")
|
||||
# Read frames directly from FFmpeg stdout
|
||||
try:
|
||||
if self.process and self.process.stdout:
|
||||
# Read BMP frame data
|
||||
frame = self._read_bmp_frame(self.process.stdout)
|
||||
if frame is None:
|
||||
continue
|
||||
|
||||
# Setup file watcher
|
||||
self._setup_file_watcher()
|
||||
|
||||
# Wait for file change event (or timeout for health check)
|
||||
if self.frame_ready_event.wait(timeout=restart_check_interval):
|
||||
self.frame_ready_event.clear()
|
||||
|
||||
# Read latest complete frame file
|
||||
try:
|
||||
import glob
|
||||
# Find all frame files for this camera
|
||||
frame_files = glob.glob(f"{self.frame_dir}/{self.frame_prefix}*.ppm")
|
||||
|
||||
if frame_files:
|
||||
# Sort by filename (which includes timestamp) and get the latest
|
||||
frame_files.sort()
|
||||
latest_frame = frame_files[-1]
|
||||
|
||||
# Read the latest frame (it's complete since FFmpeg wrote it atomically)
|
||||
frame = cv2.imread(latest_frame)
|
||||
|
||||
if frame is not None and frame.shape == (self.height, self.width, 3):
|
||||
# Call frame callback directly
|
||||
# Call frame callback
|
||||
if self.frame_callback:
|
||||
self.frame_callback(self.camera_id, frame)
|
||||
|
||||
frame_count += 1
|
||||
|
||||
# Log progress
|
||||
# Log progress every 60 seconds (quieter)
|
||||
current_time = time.time()
|
||||
if current_time - last_log_time >= 30:
|
||||
logger.info(f"Camera {self.camera_id}: {frame_count} frames processed")
|
||||
if current_time - last_log_time >= 60:
|
||||
log_success(self.camera_id, f"{frame_count} frames captured ({frame.shape[1]}x{frame.shape[0]})")
|
||||
last_log_time = current_time
|
||||
|
||||
# Clean up old frame files to prevent disk filling
|
||||
# Keep only the latest 5 frames
|
||||
if len(frame_files) > 5:
|
||||
for old_file in frame_files[:-5]:
|
||||
try:
|
||||
os.remove(old_file)
|
||||
except:
|
||||
pass
|
||||
except Exception:
|
||||
# Process might have died, let it restart on next iteration
|
||||
if self.process:
|
||||
self.process.terminate()
|
||||
self.process = None
|
||||
time.sleep(1.0)
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Camera {self.camera_id}: Error reading frames: {e}")
|
||||
pass
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Camera {self.camera_id}: Error in reactive frame reading: {e}")
|
||||
except Exception:
|
||||
time.sleep(1.0)
|
||||
|
||||
# Cleanup
|
||||
if self.observer:
|
||||
self.observer.stop()
|
||||
self.observer.join()
|
||||
if self.process:
|
||||
self.process.terminate()
|
||||
# Clean up all frame files for this camera
|
||||
try:
|
||||
if hasattr(self, 'frame_prefix') and hasattr(self, 'frame_dir'):
|
||||
import glob
|
||||
frame_files = glob.glob(f"{self.frame_dir}/{self.frame_prefix}*.ppm")
|
||||
for frame_file in frame_files:
|
||||
try:
|
||||
os.remove(frame_file)
|
||||
except:
|
||||
pass
|
||||
except:
|
||||
pass
|
||||
logger.info(f"Reactive FFmpeg reader ended for camera {self.camera_id}")
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
|
408
core/tracking/bot_sort_tracker.py
Normal file
408
core/tracking/bot_sort_tracker.py
Normal file
|
@ -0,0 +1,408 @@
|
|||
"""
|
||||
BoT-SORT Multi-Object Tracker with Camera Isolation
|
||||
Based on BoT-SORT: Robust Associations Multi-Pedestrian Tracking
|
||||
"""
|
||||
|
||||
import logging
|
||||
import time
|
||||
import numpy as np
|
||||
from typing import Dict, List, Optional, Tuple, Any
|
||||
from dataclasses import dataclass
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
from filterpy.kalman import KalmanFilter
|
||||
import cv2
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrackState:
|
||||
"""Track state enumeration"""
|
||||
TENTATIVE = "tentative" # New track, not confirmed yet
|
||||
CONFIRMED = "confirmed" # Confirmed track
|
||||
DELETED = "deleted" # Track to be deleted
|
||||
|
||||
|
||||
class Track:
|
||||
"""
|
||||
Individual track representation with Kalman filter for motion prediction
|
||||
"""
|
||||
|
||||
def __init__(self, detection, track_id: int, camera_id: str):
|
||||
"""
|
||||
Initialize a new track
|
||||
|
||||
Args:
|
||||
detection: Initial detection (bbox, confidence, class)
|
||||
track_id: Unique track identifier within camera
|
||||
camera_id: Camera identifier
|
||||
"""
|
||||
self.track_id = track_id
|
||||
self.camera_id = camera_id
|
||||
self.state = TrackState.TENTATIVE
|
||||
|
||||
# Time tracking
|
||||
self.start_time = time.time()
|
||||
self.last_update_time = time.time()
|
||||
|
||||
# Appearance and motion
|
||||
self.bbox = detection.bbox # [x1, y1, x2, y2]
|
||||
self.confidence = detection.confidence
|
||||
self.class_name = detection.class_name
|
||||
|
||||
# Track management
|
||||
self.hit_streak = 1
|
||||
self.time_since_update = 0
|
||||
self.age = 1
|
||||
|
||||
# Kalman filter for motion prediction
|
||||
self.kf = self._create_kalman_filter()
|
||||
self._update_kalman_filter(detection.bbox)
|
||||
|
||||
# Track history
|
||||
self.history = [detection.bbox]
|
||||
self.max_history = 10
|
||||
|
||||
def _create_kalman_filter(self) -> KalmanFilter:
|
||||
"""Create Kalman filter for bbox tracking (x, y, w, h, vx, vy, vw, vh)"""
|
||||
kf = KalmanFilter(dim_x=8, dim_z=4)
|
||||
|
||||
# State transition matrix (constant velocity model)
|
||||
kf.F = np.array([
|
||||
[1, 0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 1, 0, 0],
|
||||
[0, 0, 1, 0, 0, 0, 1, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1]
|
||||
])
|
||||
|
||||
# Measurement matrix (observe x, y, w, h)
|
||||
kf.H = np.array([
|
||||
[1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0, 0]
|
||||
])
|
||||
|
||||
# Process noise
|
||||
kf.Q *= 0.01
|
||||
|
||||
# Measurement noise
|
||||
kf.R *= 10
|
||||
|
||||
# Initial covariance
|
||||
kf.P *= 100
|
||||
|
||||
return kf
|
||||
|
||||
def _update_kalman_filter(self, bbox: List[float]):
|
||||
"""Update Kalman filter with new bbox"""
|
||||
# Convert [x1, y1, x2, y2] to [cx, cy, w, h]
|
||||
x1, y1, x2, y2 = bbox
|
||||
cx = (x1 + x2) / 2
|
||||
cy = (y1 + y2) / 2
|
||||
w = x2 - x1
|
||||
h = y2 - y1
|
||||
|
||||
# Properly assign to column vector
|
||||
self.kf.x[:4, 0] = [cx, cy, w, h]
|
||||
|
||||
def predict(self) -> np.ndarray:
|
||||
"""Predict next position using Kalman filter"""
|
||||
self.kf.predict()
|
||||
|
||||
# Convert back to [x1, y1, x2, y2] format
|
||||
cx, cy, w, h = self.kf.x[:4, 0] # Extract from column vector
|
||||
x1 = cx - w/2
|
||||
y1 = cy - h/2
|
||||
x2 = cx + w/2
|
||||
y2 = cy + h/2
|
||||
|
||||
return np.array([x1, y1, x2, y2])
|
||||
|
||||
def update(self, detection):
|
||||
"""Update track with new detection"""
|
||||
self.last_update_time = time.time()
|
||||
self.time_since_update = 0
|
||||
self.hit_streak += 1
|
||||
self.age += 1
|
||||
|
||||
# Update track properties
|
||||
self.bbox = detection.bbox
|
||||
self.confidence = detection.confidence
|
||||
|
||||
# Update Kalman filter
|
||||
x1, y1, x2, y2 = detection.bbox
|
||||
cx = (x1 + x2) / 2
|
||||
cy = (y1 + y2) / 2
|
||||
w = x2 - x1
|
||||
h = y2 - y1
|
||||
|
||||
self.kf.update([cx, cy, w, h])
|
||||
|
||||
# Update history
|
||||
self.history.append(detection.bbox)
|
||||
if len(self.history) > self.max_history:
|
||||
self.history.pop(0)
|
||||
|
||||
# Update state
|
||||
if self.state == TrackState.TENTATIVE and self.hit_streak >= 3:
|
||||
self.state = TrackState.CONFIRMED
|
||||
|
||||
def mark_missed(self):
|
||||
"""Mark track as missed in this frame"""
|
||||
self.time_since_update += 1
|
||||
self.age += 1
|
||||
|
||||
if self.time_since_update > 5: # Delete after 5 missed frames
|
||||
self.state = TrackState.DELETED
|
||||
|
||||
def is_confirmed(self) -> bool:
|
||||
"""Check if track is confirmed"""
|
||||
return self.state == TrackState.CONFIRMED
|
||||
|
||||
def is_deleted(self) -> bool:
|
||||
"""Check if track should be deleted"""
|
||||
return self.state == TrackState.DELETED
|
||||
|
||||
|
||||
class CameraTracker:
|
||||
"""
|
||||
BoT-SORT tracker for a single camera
|
||||
"""
|
||||
|
||||
def __init__(self, camera_id: str, max_disappeared: int = 10):
|
||||
"""
|
||||
Initialize camera tracker
|
||||
|
||||
Args:
|
||||
camera_id: Unique camera identifier
|
||||
max_disappeared: Maximum frames a track can be missed before deletion
|
||||
"""
|
||||
self.camera_id = camera_id
|
||||
self.max_disappeared = max_disappeared
|
||||
|
||||
# Track management
|
||||
self.tracks: Dict[int, Track] = {}
|
||||
self.next_id = 1
|
||||
self.frame_count = 0
|
||||
|
||||
logger.info(f"Initialized BoT-SORT tracker for camera {camera_id}")
|
||||
|
||||
def update(self, detections: List) -> List[Track]:
|
||||
"""
|
||||
Update tracker with new detections
|
||||
|
||||
Args:
|
||||
detections: List of Detection objects
|
||||
|
||||
Returns:
|
||||
List of active confirmed tracks
|
||||
"""
|
||||
self.frame_count += 1
|
||||
|
||||
# Predict all existing tracks
|
||||
for track in self.tracks.values():
|
||||
track.predict()
|
||||
|
||||
# Associate detections to tracks
|
||||
matched_tracks, unmatched_detections, unmatched_tracks = self._associate(detections)
|
||||
|
||||
# Update matched tracks
|
||||
for track_id, detection in matched_tracks:
|
||||
self.tracks[track_id].update(detection)
|
||||
|
||||
# Mark unmatched tracks as missed
|
||||
for track_id in unmatched_tracks:
|
||||
self.tracks[track_id].mark_missed()
|
||||
|
||||
# Create new tracks for unmatched detections
|
||||
for detection in unmatched_detections:
|
||||
track = Track(detection, self.next_id, self.camera_id)
|
||||
self.tracks[self.next_id] = track
|
||||
self.next_id += 1
|
||||
|
||||
# Remove deleted tracks
|
||||
tracks_to_remove = [tid for tid, track in self.tracks.items() if track.is_deleted()]
|
||||
for tid in tracks_to_remove:
|
||||
del self.tracks[tid]
|
||||
|
||||
# Return confirmed tracks
|
||||
confirmed_tracks = [track for track in self.tracks.values() if track.is_confirmed()]
|
||||
|
||||
return confirmed_tracks
|
||||
|
||||
def _associate(self, detections: List) -> Tuple[List[Tuple[int, Any]], List[Any], List[int]]:
|
||||
"""
|
||||
Associate detections to existing tracks using IoU distance
|
||||
|
||||
Returns:
|
||||
(matched_tracks, unmatched_detections, unmatched_tracks)
|
||||
"""
|
||||
if not detections or not self.tracks:
|
||||
return [], detections, list(self.tracks.keys())
|
||||
|
||||
# Calculate IoU distance matrix
|
||||
track_ids = list(self.tracks.keys())
|
||||
cost_matrix = np.zeros((len(track_ids), len(detections)))
|
||||
|
||||
for i, track_id in enumerate(track_ids):
|
||||
track = self.tracks[track_id]
|
||||
predicted_bbox = track.predict()
|
||||
|
||||
for j, detection in enumerate(detections):
|
||||
iou = self._calculate_iou(predicted_bbox, detection.bbox)
|
||||
cost_matrix[i, j] = 1 - iou # Convert IoU to distance
|
||||
|
||||
# Solve assignment problem
|
||||
row_indices, col_indices = linear_sum_assignment(cost_matrix)
|
||||
|
||||
# Filter matches by IoU threshold
|
||||
iou_threshold = 0.3
|
||||
matched_tracks = []
|
||||
matched_detection_indices = set()
|
||||
matched_track_indices = set()
|
||||
|
||||
for row, col in zip(row_indices, col_indices):
|
||||
if cost_matrix[row, col] <= (1 - iou_threshold):
|
||||
track_id = track_ids[row]
|
||||
detection = detections[col]
|
||||
matched_tracks.append((track_id, detection))
|
||||
matched_detection_indices.add(col)
|
||||
matched_track_indices.add(row)
|
||||
|
||||
# Find unmatched detections and tracks
|
||||
unmatched_detections = [detections[i] for i in range(len(detections))
|
||||
if i not in matched_detection_indices]
|
||||
unmatched_tracks = [track_ids[i] for i in range(len(track_ids))
|
||||
if i not in matched_track_indices]
|
||||
|
||||
return matched_tracks, unmatched_detections, unmatched_tracks
|
||||
|
||||
def _calculate_iou(self, bbox1: np.ndarray, bbox2: List[float]) -> float:
|
||||
"""Calculate IoU between two bounding boxes"""
|
||||
x1_1, y1_1, x2_1, y2_1 = bbox1
|
||||
x1_2, y1_2, x2_2, y2_2 = bbox2
|
||||
|
||||
# Calculate intersection area
|
||||
x1_i = max(x1_1, x1_2)
|
||||
y1_i = max(y1_1, y1_2)
|
||||
x2_i = min(x2_1, x2_2)
|
||||
y2_i = min(y2_1, y2_2)
|
||||
|
||||
if x2_i <= x1_i or y2_i <= y1_i:
|
||||
return 0.0
|
||||
|
||||
intersection = (x2_i - x1_i) * (y2_i - y1_i)
|
||||
|
||||
# Calculate union area
|
||||
area1 = (x2_1 - x1_1) * (y2_1 - y1_1)
|
||||
area2 = (x2_2 - x1_2) * (y2_2 - y1_2)
|
||||
union = area1 + area2 - intersection
|
||||
|
||||
return intersection / union if union > 0 else 0.0
|
||||
|
||||
|
||||
class MultiCameraBoTSORT:
|
||||
"""
|
||||
Multi-camera BoT-SORT tracker with complete camera isolation
|
||||
"""
|
||||
|
||||
def __init__(self, trigger_classes: List[str], min_confidence: float = 0.6):
|
||||
"""
|
||||
Initialize multi-camera tracker
|
||||
|
||||
Args:
|
||||
trigger_classes: List of class names to track
|
||||
min_confidence: Minimum detection confidence threshold
|
||||
"""
|
||||
self.trigger_classes = trigger_classes
|
||||
self.min_confidence = min_confidence
|
||||
|
||||
# Camera-specific trackers
|
||||
self.camera_trackers: Dict[str, CameraTracker] = {}
|
||||
|
||||
logger.info(f"Initialized MultiCameraBoTSORT with classes={trigger_classes}, "
|
||||
f"min_confidence={min_confidence}")
|
||||
|
||||
def get_or_create_tracker(self, camera_id: str) -> CameraTracker:
|
||||
"""Get or create tracker for specific camera"""
|
||||
if camera_id not in self.camera_trackers:
|
||||
self.camera_trackers[camera_id] = CameraTracker(camera_id)
|
||||
logger.info(f"Created new tracker for camera {camera_id}")
|
||||
|
||||
return self.camera_trackers[camera_id]
|
||||
|
||||
def update(self, camera_id: str, inference_result) -> List[Dict]:
|
||||
"""
|
||||
Update tracker for specific camera with detections
|
||||
|
||||
Args:
|
||||
camera_id: Camera identifier
|
||||
inference_result: InferenceResult with detections
|
||||
|
||||
Returns:
|
||||
List of track information dictionaries
|
||||
"""
|
||||
# Filter detections by confidence and trigger classes
|
||||
filtered_detections = []
|
||||
|
||||
if hasattr(inference_result, 'detections') and inference_result.detections:
|
||||
for detection in inference_result.detections:
|
||||
if (detection.confidence >= self.min_confidence and
|
||||
detection.class_name in self.trigger_classes):
|
||||
filtered_detections.append(detection)
|
||||
|
||||
# Get camera tracker and update
|
||||
tracker = self.get_or_create_tracker(camera_id)
|
||||
confirmed_tracks = tracker.update(filtered_detections)
|
||||
|
||||
# Convert tracks to output format
|
||||
track_results = []
|
||||
for track in confirmed_tracks:
|
||||
track_results.append({
|
||||
'track_id': track.track_id,
|
||||
'camera_id': track.camera_id,
|
||||
'bbox': track.bbox,
|
||||
'confidence': track.confidence,
|
||||
'class_name': track.class_name,
|
||||
'hit_streak': track.hit_streak,
|
||||
'age': track.age
|
||||
})
|
||||
|
||||
return track_results
|
||||
|
||||
def get_statistics(self) -> Dict[str, Any]:
|
||||
"""Get tracking statistics across all cameras"""
|
||||
stats = {}
|
||||
total_tracks = 0
|
||||
|
||||
for camera_id, tracker in self.camera_trackers.items():
|
||||
camera_stats = {
|
||||
'active_tracks': len([t for t in tracker.tracks.values() if t.is_confirmed()]),
|
||||
'total_tracks': len(tracker.tracks),
|
||||
'frame_count': tracker.frame_count
|
||||
}
|
||||
stats[camera_id] = camera_stats
|
||||
total_tracks += camera_stats['active_tracks']
|
||||
|
||||
stats['summary'] = {
|
||||
'total_cameras': len(self.camera_trackers),
|
||||
'total_active_tracks': total_tracks
|
||||
}
|
||||
|
||||
return stats
|
||||
|
||||
def reset_camera(self, camera_id: str):
|
||||
"""Reset tracking for specific camera"""
|
||||
if camera_id in self.camera_trackers:
|
||||
del self.camera_trackers[camera_id]
|
||||
logger.info(f"Reset tracking for camera {camera_id}")
|
||||
|
||||
def reset_all(self):
|
||||
"""Reset all camera trackers"""
|
||||
self.camera_trackers.clear()
|
||||
logger.info("Reset all camera trackers")
|
|
@ -63,7 +63,7 @@ class TrackingPipelineIntegration:
|
|||
self.pending_processing_data: Dict[str, Dict] = {} # display_id -> processing data (waiting for session ID)
|
||||
|
||||
# Additional validators for enhanced flow control
|
||||
self.permanently_processed: Dict[int, float] = {} # track_id -> process_time (never process again)
|
||||
self.permanently_processed: Dict[str, float] = {} # "camera_id:track_id" -> process_time (never process again)
|
||||
self.progression_stages: Dict[str, str] = {} # session_id -> current_stage
|
||||
self.last_detection_time: Dict[str, float] = {} # display_id -> last_detection_timestamp
|
||||
self.abandonment_timeout = 3.0 # seconds to wait before declaring car abandoned
|
||||
|
@ -183,7 +183,7 @@ class TrackingPipelineIntegration:
|
|||
|
||||
# Run tracking model
|
||||
if self.tracking_model:
|
||||
# Run inference with tracking
|
||||
# Run detection-only (tracking handled by our own tracker)
|
||||
tracking_results = self.tracking_model.track(
|
||||
frame,
|
||||
confidence_threshold=self.tracker.min_confidence,
|
||||
|
@ -486,7 +486,10 @@ class TrackingPipelineIntegration:
|
|||
self.session_vehicles[session_id] = track_id
|
||||
|
||||
# Mark vehicle as permanently processed (won't process again even after session clear)
|
||||
self.permanently_processed[track_id] = time.time()
|
||||
# Use composite key to distinguish same track IDs across different cameras
|
||||
camera_id = display_id # Using display_id as camera_id for isolation
|
||||
permanent_key = f"{camera_id}:{track_id}"
|
||||
self.permanently_processed[permanent_key] = time.time()
|
||||
|
||||
# Remove from pending
|
||||
del self.pending_vehicles[display_id]
|
||||
|
@ -667,6 +670,7 @@ class TrackingPipelineIntegration:
|
|||
self.executor.shutdown(wait=False)
|
||||
self.reset_tracking()
|
||||
|
||||
|
||||
# Cleanup detection pipeline
|
||||
if self.detection_pipeline:
|
||||
self.detection_pipeline.cleanup()
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
Vehicle Tracking Module - Continuous tracking with front_rear_detection model
|
||||
Implements vehicle identification, persistence, and motion analysis.
|
||||
Vehicle Tracking Module - BoT-SORT based tracking with camera isolation
|
||||
Implements vehicle identification, persistence, and motion analysis using external tracker.
|
||||
"""
|
||||
import logging
|
||||
import time
|
||||
|
@ -10,6 +10,8 @@ from dataclasses import dataclass, field
|
|||
import numpy as np
|
||||
from threading import Lock
|
||||
|
||||
from .bot_sort_tracker import MultiCameraBoTSORT
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
@ -17,6 +19,7 @@ logger = logging.getLogger(__name__)
|
|||
class TrackedVehicle:
|
||||
"""Represents a tracked vehicle with all its state information."""
|
||||
track_id: int
|
||||
camera_id: str
|
||||
first_seen: float
|
||||
last_seen: float
|
||||
session_id: Optional[str] = None
|
||||
|
@ -30,6 +33,8 @@ class TrackedVehicle:
|
|||
processed_pipeline: bool = False
|
||||
last_position_history: List[Tuple[float, float]] = field(default_factory=list)
|
||||
avg_confidence: float = 0.0
|
||||
hit_streak: int = 0
|
||||
age: int = 0
|
||||
|
||||
def update_position(self, bbox: Tuple[int, int, int, int], confidence: float):
|
||||
"""Update vehicle position and confidence."""
|
||||
|
@ -73,7 +78,7 @@ class TrackedVehicle:
|
|||
|
||||
class VehicleTracker:
|
||||
"""
|
||||
Main vehicle tracking implementation using YOLO tracking capabilities.
|
||||
Main vehicle tracking implementation using BoT-SORT with camera isolation.
|
||||
Manages continuous tracking, vehicle identification, and state persistence.
|
||||
"""
|
||||
|
||||
|
@ -88,18 +93,19 @@ class VehicleTracker:
|
|||
self.trigger_classes = self.config.get('trigger_classes', self.config.get('triggerClasses', ['frontal']))
|
||||
self.min_confidence = self.config.get('minConfidence', 0.6)
|
||||
|
||||
# Tracking state
|
||||
self.tracked_vehicles: Dict[int, TrackedVehicle] = {}
|
||||
self.next_track_id = 1
|
||||
# BoT-SORT multi-camera tracker
|
||||
self.bot_sort = MultiCameraBoTSORT(self.trigger_classes, self.min_confidence)
|
||||
|
||||
# Tracking state - maintain compatibility with existing code
|
||||
self.tracked_vehicles: Dict[str, Dict[int, TrackedVehicle]] = {} # camera_id -> {track_id: vehicle}
|
||||
self.lock = Lock()
|
||||
|
||||
# Tracking parameters
|
||||
self.stability_threshold = 0.7
|
||||
self.min_stable_frames = 5
|
||||
self.position_tolerance = 50 # pixels
|
||||
self.timeout_seconds = 2.0
|
||||
|
||||
logger.info(f"VehicleTracker initialized with trigger_classes={self.trigger_classes}, "
|
||||
logger.info(f"VehicleTracker initialized with BoT-SORT: trigger_classes={self.trigger_classes}, "
|
||||
f"min_confidence={self.min_confidence}")
|
||||
|
||||
def process_detections(self,
|
||||
|
@ -107,10 +113,10 @@ class VehicleTracker:
|
|||
display_id: str,
|
||||
frame: np.ndarray) -> List[TrackedVehicle]:
|
||||
"""
|
||||
Process YOLO detection results and update tracking state.
|
||||
Process detection results using BoT-SORT tracking.
|
||||
|
||||
Args:
|
||||
results: YOLO detection results with tracking
|
||||
results: Detection results (InferenceResult)
|
||||
display_id: Display identifier for this stream
|
||||
frame: Current frame being processed
|
||||
|
||||
|
@ -118,108 +124,67 @@ class VehicleTracker:
|
|||
List of currently tracked vehicles
|
||||
"""
|
||||
current_time = time.time()
|
||||
active_tracks = []
|
||||
|
||||
# Extract camera_id from display_id for tracking isolation
|
||||
camera_id = display_id # Using display_id as camera_id for isolation
|
||||
|
||||
with self.lock:
|
||||
# Clean up expired tracks
|
||||
expired_ids = [
|
||||
track_id for track_id, vehicle in self.tracked_vehicles.items()
|
||||
if vehicle.is_expired(self.timeout_seconds)
|
||||
]
|
||||
for track_id in expired_ids:
|
||||
logger.debug(f"Removing expired track {track_id}")
|
||||
del self.tracked_vehicles[track_id]
|
||||
# Update BoT-SORT tracker
|
||||
track_results = self.bot_sort.update(camera_id, results)
|
||||
|
||||
# Process new detections from InferenceResult
|
||||
if hasattr(results, 'detections') and results.detections:
|
||||
# Process detections from InferenceResult
|
||||
for detection in results.detections:
|
||||
# Skip if confidence is too low
|
||||
if detection.confidence < self.min_confidence:
|
||||
continue
|
||||
# Ensure camera tracking dict exists
|
||||
if camera_id not in self.tracked_vehicles:
|
||||
self.tracked_vehicles[camera_id] = {}
|
||||
|
||||
# Check if class is in trigger classes
|
||||
if detection.class_name not in self.trigger_classes:
|
||||
continue
|
||||
# Update tracked vehicles based on BoT-SORT results
|
||||
current_tracks = {}
|
||||
active_tracks = []
|
||||
|
||||
# Use track_id if available, otherwise generate one
|
||||
track_id = detection.track_id if detection.track_id is not None else self.next_track_id
|
||||
if detection.track_id is None:
|
||||
self.next_track_id += 1
|
||||
for track_result in track_results:
|
||||
track_id = track_result['track_id']
|
||||
|
||||
# Get bounding box from Detection object
|
||||
x1, y1, x2, y2 = detection.bbox
|
||||
bbox = (int(x1), int(y1), int(x2), int(y2))
|
||||
# Create or update TrackedVehicle
|
||||
if track_id in self.tracked_vehicles[camera_id]:
|
||||
# Update existing vehicle
|
||||
vehicle = self.tracked_vehicles[camera_id][track_id]
|
||||
vehicle.update_position(track_result['bbox'], track_result['confidence'])
|
||||
vehicle.hit_streak = track_result['hit_streak']
|
||||
vehicle.age = track_result['age']
|
||||
|
||||
# Update or create tracked vehicle
|
||||
confidence = detection.confidence
|
||||
if track_id in self.tracked_vehicles:
|
||||
# Update existing track
|
||||
vehicle = self.tracked_vehicles[track_id]
|
||||
vehicle.update_position(bbox, confidence)
|
||||
vehicle.display_id = display_id
|
||||
|
||||
# Check stability
|
||||
stability = vehicle.calculate_stability()
|
||||
if stability > self.stability_threshold:
|
||||
vehicle.stable_frames += 1
|
||||
if vehicle.stable_frames >= self.min_stable_frames:
|
||||
# Update stability based on hit_streak
|
||||
if vehicle.hit_streak >= self.min_stable_frames:
|
||||
vehicle.is_stable = True
|
||||
else:
|
||||
vehicle.stable_frames = max(0, vehicle.stable_frames - 1)
|
||||
if vehicle.stable_frames < self.min_stable_frames:
|
||||
vehicle.is_stable = False
|
||||
vehicle.stable_frames = vehicle.hit_streak
|
||||
|
||||
logger.debug(f"Updated track {track_id}: conf={confidence:.2f}, "
|
||||
f"stable={vehicle.is_stable}, stability={stability:.2f}")
|
||||
logger.debug(f"Updated track {track_id}: conf={vehicle.confidence:.2f}, "
|
||||
f"stable={vehicle.is_stable}, hit_streak={vehicle.hit_streak}")
|
||||
else:
|
||||
# Create new track
|
||||
# Create new vehicle
|
||||
x1, y1, x2, y2 = track_result['bbox']
|
||||
vehicle = TrackedVehicle(
|
||||
track_id=track_id,
|
||||
camera_id=camera_id,
|
||||
first_seen=current_time,
|
||||
last_seen=current_time,
|
||||
display_id=display_id,
|
||||
confidence=confidence,
|
||||
bbox=bbox,
|
||||
confidence=track_result['confidence'],
|
||||
bbox=tuple(track_result['bbox']),
|
||||
center=((x1 + x2) / 2, (y1 + y2) / 2),
|
||||
total_frames=1
|
||||
total_frames=1,
|
||||
hit_streak=track_result['hit_streak'],
|
||||
age=track_result['age']
|
||||
)
|
||||
vehicle.last_position_history.append(vehicle.center)
|
||||
self.tracked_vehicles[track_id] = vehicle
|
||||
logger.info(f"New vehicle tracked: ID={track_id}, display={display_id}")
|
||||
logger.info(f"New vehicle tracked: ID={track_id}, camera={camera_id}, display={display_id}")
|
||||
|
||||
active_tracks.append(self.tracked_vehicles[track_id])
|
||||
current_tracks[track_id] = vehicle
|
||||
active_tracks.append(vehicle)
|
||||
|
||||
# Update the camera's tracked vehicles
|
||||
self.tracked_vehicles[camera_id] = current_tracks
|
||||
|
||||
return active_tracks
|
||||
|
||||
def _find_closest_track(self, center: Tuple[float, float]) -> Optional[TrackedVehicle]:
|
||||
"""
|
||||
Find the closest existing track to a given position.
|
||||
|
||||
Args:
|
||||
center: Center position to match
|
||||
|
||||
Returns:
|
||||
Closest tracked vehicle if within tolerance, None otherwise
|
||||
"""
|
||||
min_distance = float('inf')
|
||||
closest_track = None
|
||||
|
||||
for vehicle in self.tracked_vehicles.values():
|
||||
if vehicle.is_expired(0.5): # Shorter timeout for matching
|
||||
continue
|
||||
|
||||
distance = np.sqrt(
|
||||
(center[0] - vehicle.center[0]) ** 2 +
|
||||
(center[1] - vehicle.center[1]) ** 2
|
||||
)
|
||||
|
||||
if distance < min_distance and distance < self.position_tolerance:
|
||||
min_distance = distance
|
||||
closest_track = vehicle
|
||||
|
||||
return closest_track
|
||||
|
||||
def get_stable_vehicles(self, display_id: Optional[str] = None) -> List[TrackedVehicle]:
|
||||
"""
|
||||
Get all stable vehicles, optionally filtered by display.
|
||||
|
@ -231,11 +196,15 @@ class VehicleTracker:
|
|||
List of stable tracked vehicles
|
||||
"""
|
||||
with self.lock:
|
||||
stable = [
|
||||
v for v in self.tracked_vehicles.values()
|
||||
if v.is_stable and not v.is_expired(self.timeout_seconds)
|
||||
and (display_id is None or v.display_id == display_id)
|
||||
]
|
||||
stable = []
|
||||
camera_id = display_id # Using display_id as camera_id
|
||||
|
||||
if camera_id in self.tracked_vehicles:
|
||||
for vehicle in self.tracked_vehicles[camera_id].values():
|
||||
if (vehicle.is_stable and not vehicle.is_expired(self.timeout_seconds) and
|
||||
(display_id is None or vehicle.display_id == display_id)):
|
||||
stable.append(vehicle)
|
||||
|
||||
return stable
|
||||
|
||||
def get_vehicle_by_session(self, session_id: str) -> Optional[TrackedVehicle]:
|
||||
|
@ -249,7 +218,9 @@ class VehicleTracker:
|
|||
Tracked vehicle if found, None otherwise
|
||||
"""
|
||||
with self.lock:
|
||||
for vehicle in self.tracked_vehicles.values():
|
||||
# Search across all cameras
|
||||
for camera_vehicles in self.tracked_vehicles.values():
|
||||
for vehicle in camera_vehicles.values():
|
||||
if vehicle.session_id == session_id:
|
||||
return vehicle
|
||||
return None
|
||||
|
@ -263,11 +234,14 @@ class VehicleTracker:
|
|||
session_id: Session ID assigned to this vehicle
|
||||
"""
|
||||
with self.lock:
|
||||
if track_id in self.tracked_vehicles:
|
||||
vehicle = self.tracked_vehicles[track_id]
|
||||
# Search across all cameras for the track_id
|
||||
for camera_vehicles in self.tracked_vehicles.values():
|
||||
if track_id in camera_vehicles:
|
||||
vehicle = camera_vehicles[track_id]
|
||||
vehicle.processed_pipeline = True
|
||||
vehicle.session_id = session_id
|
||||
logger.info(f"Marked vehicle {track_id} as processed with session {session_id}")
|
||||
return
|
||||
|
||||
def clear_session(self, session_id: str):
|
||||
"""
|
||||
|
@ -277,7 +251,9 @@ class VehicleTracker:
|
|||
session_id: Session ID to clear
|
||||
"""
|
||||
with self.lock:
|
||||
for vehicle in self.tracked_vehicles.values():
|
||||
# Search across all cameras
|
||||
for camera_vehicles in self.tracked_vehicles.values():
|
||||
for vehicle in camera_vehicles.values():
|
||||
if vehicle.session_id == session_id:
|
||||
logger.info(f"Clearing session {session_id} from vehicle {vehicle.track_id}")
|
||||
vehicle.session_id = None
|
||||
|
@ -287,20 +263,31 @@ class VehicleTracker:
|
|||
"""Reset all tracking state."""
|
||||
with self.lock:
|
||||
self.tracked_vehicles.clear()
|
||||
self.next_track_id = 1
|
||||
self.bot_sort.reset_all()
|
||||
logger.info("Vehicle tracking state reset")
|
||||
|
||||
def get_statistics(self) -> Dict:
|
||||
"""Get tracking statistics."""
|
||||
with self.lock:
|
||||
total = len(self.tracked_vehicles)
|
||||
stable = sum(1 for v in self.tracked_vehicles.values() if v.is_stable)
|
||||
processed = sum(1 for v in self.tracked_vehicles.values() if v.processed_pipeline)
|
||||
total = 0
|
||||
stable = 0
|
||||
processed = 0
|
||||
all_confidences = []
|
||||
|
||||
# Aggregate stats across all cameras
|
||||
for camera_vehicles in self.tracked_vehicles.values():
|
||||
total += len(camera_vehicles)
|
||||
for vehicle in camera_vehicles.values():
|
||||
if vehicle.is_stable:
|
||||
stable += 1
|
||||
if vehicle.processed_pipeline:
|
||||
processed += 1
|
||||
all_confidences.append(vehicle.avg_confidence)
|
||||
|
||||
return {
|
||||
'total_tracked': total,
|
||||
'stable_vehicles': stable,
|
||||
'processed_vehicles': processed,
|
||||
'avg_confidence': np.mean([v.avg_confidence for v in self.tracked_vehicles.values()])
|
||||
if self.tracked_vehicles else 0.0
|
||||
'avg_confidence': np.mean(all_confidences) if all_confidences else 0.0,
|
||||
'bot_sort_stats': self.bot_sort.get_statistics()
|
||||
}
|
|
@ -36,8 +36,14 @@ class ValidationResult:
|
|||
|
||||
class StableCarValidator:
|
||||
"""
|
||||
Validates whether a tracked vehicle is stable (fueling) or just passing by.
|
||||
Uses multiple criteria including position stability, duration, and movement patterns.
|
||||
Validates whether a tracked vehicle should be processed through the pipeline.
|
||||
|
||||
Updated for BoT-SORT integration: Trusts the sophisticated BoT-SORT tracking algorithm
|
||||
for stability determination and focuses on business logic validation:
|
||||
- Duration requirements for processing
|
||||
- Confidence thresholds
|
||||
- Session management and cooldowns
|
||||
- Camera isolation with composite keys
|
||||
"""
|
||||
|
||||
def __init__(self, config: Optional[Dict] = None):
|
||||
|
@ -169,7 +175,10 @@ class StableCarValidator:
|
|||
|
||||
def _determine_vehicle_state(self, vehicle: TrackedVehicle) -> VehicleState:
|
||||
"""
|
||||
Determine the current state of the vehicle based on movement patterns.
|
||||
Determine the current state of the vehicle based on BoT-SORT tracking results.
|
||||
|
||||
BoT-SORT provides sophisticated tracking, so we trust its stability determination
|
||||
and focus on business logic validation.
|
||||
|
||||
Args:
|
||||
vehicle: The tracked vehicle
|
||||
|
@ -177,53 +186,44 @@ class StableCarValidator:
|
|||
Returns:
|
||||
Current vehicle state
|
||||
"""
|
||||
# Not enough data
|
||||
if len(vehicle.last_position_history) < 3:
|
||||
return VehicleState.UNKNOWN
|
||||
|
||||
# Calculate velocity
|
||||
velocity = self._calculate_velocity(vehicle)
|
||||
|
||||
# Get position zones
|
||||
x_position = vehicle.center[0] / self.frame_width
|
||||
y_position = vehicle.center[1] / self.frame_height
|
||||
|
||||
# Check if vehicle is stable
|
||||
stability = vehicle.calculate_stability()
|
||||
if stability > 0.7 and velocity < self.velocity_threshold:
|
||||
# Check if it's been stable long enough
|
||||
# Trust BoT-SORT's stability determination
|
||||
if vehicle.is_stable:
|
||||
# Check if it's been stable long enough for processing
|
||||
duration = time.time() - vehicle.first_seen
|
||||
if duration > self.min_stable_duration and vehicle.stable_frames >= self.min_stable_frames:
|
||||
if duration >= self.min_stable_duration:
|
||||
return VehicleState.STABLE
|
||||
else:
|
||||
return VehicleState.ENTERING
|
||||
|
||||
# Check if vehicle is entering or leaving
|
||||
# For non-stable vehicles, use simplified state determination
|
||||
if len(vehicle.last_position_history) < 2:
|
||||
return VehicleState.UNKNOWN
|
||||
|
||||
# Calculate velocity for movement classification
|
||||
velocity = self._calculate_velocity(vehicle)
|
||||
|
||||
# Basic movement classification
|
||||
if velocity > self.velocity_threshold:
|
||||
# Determine direction based on position history
|
||||
positions = np.array(vehicle.last_position_history)
|
||||
if len(positions) >= 2:
|
||||
direction = positions[-1] - positions[0]
|
||||
# Vehicle is moving - classify as passing by or entering/leaving
|
||||
x_position = vehicle.center[0] / self.frame_width
|
||||
|
||||
# Entering: moving towards center
|
||||
if x_position < self.entering_zone_ratio or x_position > (1 - self.entering_zone_ratio):
|
||||
if abs(direction[0]) > abs(direction[1]): # Horizontal movement
|
||||
if (x_position < 0.5 and direction[0] > 0) or (x_position > 0.5 and direction[0] < 0):
|
||||
# Simple heuristic: vehicles near edges are entering/leaving, center vehicles are passing
|
||||
if x_position < 0.2 or x_position > 0.8:
|
||||
return VehicleState.ENTERING
|
||||
|
||||
# Leaving: moving away from center
|
||||
if 0.3 < x_position < 0.7: # In center zone
|
||||
if abs(direction[0]) > abs(direction[1]): # Horizontal movement
|
||||
if abs(direction[0]) > 10: # Significant movement
|
||||
return VehicleState.LEAVING
|
||||
|
||||
else:
|
||||
return VehicleState.PASSING_BY
|
||||
|
||||
return VehicleState.UNKNOWN
|
||||
# Low velocity but not marked stable by tracker - likely entering
|
||||
return VehicleState.ENTERING
|
||||
|
||||
def _validate_stable_vehicle(self, vehicle: TrackedVehicle) -> ValidationResult:
|
||||
"""
|
||||
Perform detailed validation of a stable vehicle.
|
||||
Perform business logic validation of a stable vehicle.
|
||||
|
||||
Since BoT-SORT already determined the vehicle is stable, we focus on:
|
||||
- Duration requirements for processing
|
||||
- Confidence thresholds
|
||||
- Business logic constraints
|
||||
|
||||
Args:
|
||||
vehicle: The stable vehicle to validate
|
||||
|
@ -231,7 +231,7 @@ class StableCarValidator:
|
|||
Returns:
|
||||
Detailed validation result
|
||||
"""
|
||||
# Check duration
|
||||
# Check duration (business requirement)
|
||||
duration = time.time() - vehicle.first_seen
|
||||
if duration < self.min_stable_duration:
|
||||
return ValidationResult(
|
||||
|
@ -243,18 +243,7 @@ class StableCarValidator:
|
|||
track_id=vehicle.track_id
|
||||
)
|
||||
|
||||
# Check frame count
|
||||
if vehicle.stable_frames < self.min_stable_frames:
|
||||
return ValidationResult(
|
||||
is_valid=False,
|
||||
state=VehicleState.STABLE,
|
||||
confidence=0.6,
|
||||
reason=f"Not enough stable frames ({vehicle.stable_frames} < {self.min_stable_frames})",
|
||||
should_process=False,
|
||||
track_id=vehicle.track_id
|
||||
)
|
||||
|
||||
# Check confidence
|
||||
# Check confidence (business requirement)
|
||||
if vehicle.avg_confidence < self.min_confidence:
|
||||
return ValidationResult(
|
||||
is_valid=False,
|
||||
|
@ -265,28 +254,19 @@ class StableCarValidator:
|
|||
track_id=vehicle.track_id
|
||||
)
|
||||
|
||||
# Check position variance
|
||||
variance = self._calculate_position_variance(vehicle)
|
||||
if variance > self.position_variance_threshold:
|
||||
return ValidationResult(
|
||||
is_valid=False,
|
||||
state=VehicleState.STABLE,
|
||||
confidence=0.7,
|
||||
reason=f"Position variance too high ({variance:.1f} > {self.position_variance_threshold})",
|
||||
should_process=False,
|
||||
track_id=vehicle.track_id
|
||||
)
|
||||
# Trust BoT-SORT's stability determination - skip position variance check
|
||||
# BoT-SORT's sophisticated tracking already ensures consistent positioning
|
||||
|
||||
# Check state history consistency
|
||||
# Simplified state history check - just ensure recent stability
|
||||
if vehicle.track_id in self.validation_history:
|
||||
history = self.validation_history[vehicle.track_id][-5:] # Last 5 states
|
||||
history = self.validation_history[vehicle.track_id][-3:] # Last 3 states
|
||||
stable_count = sum(1 for s in history if s == VehicleState.STABLE)
|
||||
if stable_count < 3:
|
||||
if len(history) >= 2 and stable_count == 0: # Only fail if clear instability
|
||||
return ValidationResult(
|
||||
is_valid=False,
|
||||
state=VehicleState.STABLE,
|
||||
confidence=0.7,
|
||||
reason="Inconsistent state history",
|
||||
reason="Recent state history shows instability",
|
||||
should_process=False,
|
||||
track_id=vehicle.track_id
|
||||
)
|
||||
|
@ -298,7 +278,7 @@ class StableCarValidator:
|
|||
is_valid=True,
|
||||
state=VehicleState.STABLE,
|
||||
confidence=vehicle.avg_confidence,
|
||||
reason="Vehicle is stable and ready for processing",
|
||||
reason="Vehicle is stable and ready for processing (BoT-SORT validated)",
|
||||
should_process=True,
|
||||
track_id=vehicle.track_id
|
||||
)
|
||||
|
@ -354,23 +334,26 @@ class StableCarValidator:
|
|||
def should_skip_same_car(self,
|
||||
vehicle: TrackedVehicle,
|
||||
session_cleared: bool = False,
|
||||
permanently_processed: Dict[int, float] = None) -> bool:
|
||||
permanently_processed: Dict[str, float] = None) -> bool:
|
||||
"""
|
||||
Determine if we should skip processing for the same car after session clear.
|
||||
|
||||
Args:
|
||||
vehicle: The tracked vehicle
|
||||
session_cleared: Whether the session was recently cleared
|
||||
permanently_processed: Dict of permanently processed vehicles
|
||||
permanently_processed: Dict of permanently processed vehicles (camera_id:track_id -> time)
|
||||
|
||||
Returns:
|
||||
True if we should skip this vehicle
|
||||
"""
|
||||
# Check if this vehicle was permanently processed (never process again)
|
||||
if permanently_processed and vehicle.track_id in permanently_processed:
|
||||
process_time = permanently_processed[vehicle.track_id]
|
||||
if permanently_processed:
|
||||
# Create composite key using camera_id and track_id
|
||||
permanent_key = f"{vehicle.camera_id}:{vehicle.track_id}"
|
||||
if permanent_key in permanently_processed:
|
||||
process_time = permanently_processed[permanent_key]
|
||||
time_since = time.time() - process_time
|
||||
logger.debug(f"Skipping permanently processed vehicle {vehicle.track_id} "
|
||||
logger.debug(f"Skipping permanently processed vehicle {vehicle.track_id} on camera {vehicle.camera_id} "
|
||||
f"(processed {time_since:.1f}s ago)")
|
||||
return True
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue