fix-bug/frontal-detector
This commit is contained in:
		
							parent
							
								
									0c6fc7a394
								
							
						
					
					
						commit
						c01f449d0d
					
				
					 2 changed files with 103 additions and 49 deletions
				
			
		
							
								
								
									
										2
									
								
								.gitignore
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
										
									
									
										vendored
									
									
								
							| 
						 | 
					@ -15,3 +15,5 @@ feeder/
 | 
				
			||||||
.venv/
 | 
					.venv/
 | 
				
			||||||
.vscode/
 | 
					.vscode/
 | 
				
			||||||
dist/
 | 
					dist/
 | 
				
			||||||
 | 
					websocket_comm.log
 | 
				
			||||||
 | 
					temp_debug/
 | 
				
			||||||
| 
						 | 
					@ -61,12 +61,27 @@ def crop_region_by_class(frame, regions_dict, class_name):
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    bbox = regions_dict[class_name]['bbox']
 | 
					    bbox = regions_dict[class_name]['bbox']
 | 
				
			||||||
    x1, y1, x2, y2 = bbox
 | 
					    x1, y1, x2, y2 = bbox
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # TEMP DEBUG: Diagnostic logging for crop issues
 | 
				
			||||||
 | 
					    frame_h, frame_w = frame.shape[:2]
 | 
				
			||||||
 | 
					    logger.info(f"🔍 CROP DEBUG: Frame dimensions: {frame_w}x{frame_h}")
 | 
				
			||||||
 | 
					    logger.info(f"🔍 CROP DEBUG: Original bbox: {bbox}")
 | 
				
			||||||
 | 
					    logger.info(f"🔍 CROP DEBUG: Bbox dimensions: {x2-x1}x{y2-y1}")
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Check if bbox is within frame bounds
 | 
				
			||||||
 | 
					    if x1 < 0 or y1 < 0 or x2 > frame_w or y2 > frame_h:
 | 
				
			||||||
 | 
					        logger.warning(f"🔍 CROP DEBUG: Bbox extends beyond frame! Clipping...")
 | 
				
			||||||
 | 
					        x1, y1 = max(0, x1), max(0, y1)
 | 
				
			||||||
 | 
					        x2, y2 = min(frame_w, x2), min(frame_h, y2)
 | 
				
			||||||
 | 
					        logger.info(f"🔍 CROP DEBUG: Clipped bbox: ({x1}, {y1}, {x2}, {y2})")
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
    cropped = frame[y1:y2, x1:x2]
 | 
					    cropped = frame[y1:y2, x1:x2]
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if cropped.size == 0:
 | 
					    if cropped.size == 0:
 | 
				
			||||||
        logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
 | 
					        logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
 | 
				
			||||||
        return None
 | 
					        return None
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					    logger.info(f"🔍 CROP DEBUG: Successful crop shape: {cropped.shape}")
 | 
				
			||||||
    return cropped
 | 
					    return cropped
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def format_action_context(base_context, additional_context=None):
 | 
					def format_action_context(base_context, additional_context=None):
 | 
				
			||||||
| 
						 | 
					@ -113,6 +128,7 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manage
 | 
				
			||||||
        "crop": node_config.get("crop", False),
 | 
					        "crop": node_config.get("crop", False),
 | 
				
			||||||
        "cropClass": node_config.get("cropClass"),
 | 
					        "cropClass": node_config.get("cropClass"),
 | 
				
			||||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
					        "minConfidence": node_config.get("minConfidence", None),
 | 
				
			||||||
 | 
					        "frontalMinConfidence": node_config.get("frontalMinConfidence", None),
 | 
				
			||||||
        "minBboxAreaRatio": node_config.get("minBboxAreaRatio", 0.0),
 | 
					        "minBboxAreaRatio": node_config.get("minBboxAreaRatio", 0.0),
 | 
				
			||||||
        "multiClass": node_config.get("multiClass", False),
 | 
					        "multiClass": node_config.get("multiClass", False),
 | 
				
			||||||
        "expectedClasses": node_config.get("expectedClasses", []),
 | 
					        "expectedClasses": node_config.get("expectedClasses", []),
 | 
				
			||||||
| 
						 | 
					@ -634,8 +650,7 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
                logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs")
 | 
					                logger.info(f"Camera {camera_id}: 🔄 Reset YOLO tracker - new cars will get fresh track IDs")
 | 
				
			||||||
            session_state["reset_tracker_on_resume"] = False  # Clear the flag
 | 
					            session_state["reset_tracker_on_resume"] = False  # Clear the flag
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # Get tracking zone from runtime context (camera-specific)
 | 
					        # Tracking zones removed - process all detections
 | 
				
			||||||
        tracking_zone = context.get("trackingZone", []) if context else []
 | 
					 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # Prepare class filtering
 | 
					        # Prepare class filtering
 | 
				
			||||||
        trigger_class_indices = node.get("triggerClassIndices")
 | 
					        trigger_class_indices = node.get("triggerClassIndices")
 | 
				
			||||||
| 
						 | 
					@ -643,19 +658,13 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, stability_threshold: {stability_threshold}, classes: {node.get('triggerClasses', 'all')}")
 | 
					        logger.debug(f"Running detection for {node['modelId']} - tracking: {tracking_enabled}, stability_threshold: {stability_threshold}, classes: {node.get('triggerClasses', 'all')}")
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        if tracking_enabled and tracking_zone:
 | 
					        # Use predict for detection-only models (frontal detection), track for main detection models
 | 
				
			||||||
            # Use tracking with zone validation
 | 
					        model_id = node.get("modelId", "")
 | 
				
			||||||
            logger.debug(f"Using tracking with ReID config: {reid_config_path}")
 | 
					        use_tracking = tracking_enabled and not ("frontal" in model_id.lower() or "detection" in model_id.lower())
 | 
				
			||||||
            res = node["model"].track(
 | 
					        
 | 
				
			||||||
                frame,
 | 
					        if use_tracking:
 | 
				
			||||||
                stream=False,
 | 
					            # Use tracking for main detection models (yolo11m, etc.)
 | 
				
			||||||
                persist=True,
 | 
					            logger.debug(f"Using tracking for {model_id}")
 | 
				
			||||||
                tracker=reid_config_path,
 | 
					 | 
				
			||||||
                **class_filter
 | 
					 | 
				
			||||||
            )[0]
 | 
					 | 
				
			||||||
        elif tracking_enabled:
 | 
					 | 
				
			||||||
            # Use tracking without zone restriction
 | 
					 | 
				
			||||||
            logger.debug("Using tracking without zone restriction")
 | 
					 | 
				
			||||||
            res = node["model"].track(
 | 
					            res = node["model"].track(
 | 
				
			||||||
                frame,
 | 
					                frame,
 | 
				
			||||||
                stream=False,
 | 
					                stream=False,
 | 
				
			||||||
| 
						 | 
					@ -663,8 +672,8 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
                **class_filter
 | 
					                **class_filter
 | 
				
			||||||
            )[0]
 | 
					            )[0]
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            # Use detection only (no tracking)
 | 
					            # Use detection only for frontal detection and other detection-only models
 | 
				
			||||||
            logger.debug("Using detection only (tracking disabled)")
 | 
					            logger.debug(f"Using prediction only for {model_id}")
 | 
				
			||||||
            res = node["model"].predict(
 | 
					            res = node["model"].predict(
 | 
				
			||||||
                frame,
 | 
					                frame,
 | 
				
			||||||
                stream=False,
 | 
					                stream=False,
 | 
				
			||||||
| 
						 | 
					@ -673,6 +682,12 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # Process detection results
 | 
					        # Process detection results
 | 
				
			||||||
        candidate_detections = []
 | 
					        candidate_detections = []
 | 
				
			||||||
 | 
					        # Use frontalMinConfidence for frontal detection models, otherwise use minConfidence
 | 
				
			||||||
 | 
					        model_id = node.get("modelId", "")
 | 
				
			||||||
 | 
					        if "frontal" in model_id.lower() and "frontalMinConfidence" in node:
 | 
				
			||||||
 | 
					            min_confidence = node.get("frontalMinConfidence", 0.0)
 | 
				
			||||||
 | 
					            logger.debug(f"Using frontalMinConfidence={min_confidence} for {model_id}")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
            min_confidence = node.get("minConfidence", 0.0)
 | 
					            min_confidence = node.get("minConfidence", 0.0)
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        if res.boxes is None or len(res.boxes) == 0:
 | 
					        if res.boxes is None or len(res.boxes) == 0:
 | 
				
			||||||
| 
						 | 
					@ -716,15 +731,7 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
                logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - confidence {conf:.3f} < {min_confidence}")
 | 
					                logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - confidence {conf:.3f} < {min_confidence}")
 | 
				
			||||||
                continue
 | 
					                continue
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            # Apply tracking zone validation if enabled
 | 
					            # Tracking zone validation removed - process all detections
 | 
				
			||||||
            if tracking_enabled and tracking_zone:
 | 
					 | 
				
			||||||
                bbox_center_x = (x1 + x2) // 2
 | 
					 | 
				
			||||||
                bbox_center_y = (y1 + y2) // 2
 | 
					 | 
				
			||||||
                
 | 
					 | 
				
			||||||
                # Check if detection center is within tracking zone
 | 
					 | 
				
			||||||
                if not _point_in_polygon((bbox_center_x, bbox_center_y), tracking_zone):
 | 
					 | 
				
			||||||
                    logger.debug(f"❌ Camera {camera_id}: Detection {i+1} REJECTED - outside tracking zone")
 | 
					 | 
				
			||||||
                    continue
 | 
					 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            # Create detection object
 | 
					            # Create detection object
 | 
				
			||||||
            detection = {
 | 
					            detection = {
 | 
				
			||||||
| 
						 | 
					@ -757,6 +764,11 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
        for i, detection in enumerate(candidate_detections):
 | 
					        for i, detection in enumerate(candidate_detections):
 | 
				
			||||||
            logger.debug(f"🏆 Camera {camera_id}: Candidate {i+1}: {detection['class']} conf={detection['confidence']:.3f} track_id={detection['id']}")
 | 
					            logger.debug(f"🏆 Camera {camera_id}: Candidate {i+1}: {detection['class']} conf={detection['confidence']:.3f} track_id={detection['id']}")
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
					        # TEMP DEBUG: Show all candidate detections before selection
 | 
				
			||||||
 | 
					        logger.info(f"🔍 TEMP DEBUG: Found {len(candidate_detections)} candidate detections:")
 | 
				
			||||||
 | 
					        for i, det in enumerate(candidate_detections):
 | 
				
			||||||
 | 
					            logger.info(f"🔍 TEMP DEBUG: Candidate {i+1}: {det['class']} conf={det['confidence']:.3f} bbox={det['bbox']}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        # Find the single highest confidence detection across all detected classes
 | 
					        # Find the single highest confidence detection across all detected classes
 | 
				
			||||||
        best_detection = max(candidate_detections, key=lambda x: x["confidence"])
 | 
					        best_detection = max(candidate_detections, key=lambda x: x["confidence"])
 | 
				
			||||||
        original_class = best_detection["class"]
 | 
					        original_class = best_detection["class"]
 | 
				
			||||||
| 
						 | 
					@ -808,6 +820,25 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
        logger.info(f"✅ Camera {camera_id}: DETECTION COMPLETE - tracking single car: track_id={track_id}, conf={best_detection['confidence']:.3f}")
 | 
					        logger.info(f"✅ Camera {camera_id}: DETECTION COMPLETE - tracking single car: track_id={track_id}, conf={best_detection['confidence']:.3f}")
 | 
				
			||||||
        logger.debug(f"📊 Camera {camera_id}: Detection summary: {len(res.boxes)} raw → {len(candidate_detections)} candidates → 1 selected")
 | 
					        logger.debug(f"📊 Camera {camera_id}: Detection summary: {len(res.boxes)} raw → {len(candidate_detections)} candidates → 1 selected")
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
					        # TEMP DEBUG: Save vehicle crop immediately after yolo detection
 | 
				
			||||||
 | 
					        if node.get("modelId") in ["yolo11n", "yolo11m"] and regions_dict:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                import datetime
 | 
				
			||||||
 | 
					                os.makedirs("temp_debug", exist_ok=True)
 | 
				
			||||||
 | 
					                timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3]
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                for class_name, region_data in regions_dict.items():
 | 
				
			||||||
 | 
					                    bbox = region_data['bbox']
 | 
				
			||||||
 | 
					                    x1, y1, x2, y2 = bbox
 | 
				
			||||||
 | 
					                    cropped = frame[y1:y2, x1:x2]
 | 
				
			||||||
 | 
					                    if cropped.size > 0:
 | 
				
			||||||
 | 
					                        model_name = node.get("modelId", "yolo")
 | 
				
			||||||
 | 
					                        debug_path = f"temp_debug/{model_name}_{class_name}_crop_{timestamp}.jpg"
 | 
				
			||||||
 | 
					                        cv2.imwrite(debug_path, cropped)
 | 
				
			||||||
 | 
					                        logger.info(f"🚗 TEMP DEBUG: Saved {model_name} {class_name} crop to {debug_path}")
 | 
				
			||||||
 | 
					            except Exception as e:
 | 
				
			||||||
 | 
					                logger.error(f"🚗 TEMP DEBUG: Failed to save {node.get('modelId', 'yolo')} crop: {e}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        # Update track-based stability tracking for the single selected car
 | 
					        # Update track-based stability tracking for the single selected car
 | 
				
			||||||
        camera_id = context.get("camera_id", "unknown") if context else "unknown"
 | 
					        camera_id = context.get("camera_id", "unknown") if context else "unknown"
 | 
				
			||||||
        model_id = node.get("modelId", "unknown")
 | 
					        model_id = node.get("modelId", "unknown")
 | 
				
			||||||
| 
						 | 
					@ -826,28 +857,6 @@ def run_detection_with_tracking(frame, node, context=None):
 | 
				
			||||||
        logger.debug(f"Detection error traceback: {traceback.format_exc()}")
 | 
					        logger.debug(f"Detection error traceback: {traceback.format_exc()}")
 | 
				
			||||||
        return [], {}, {"validation_complete": False, "stable_tracks": [], "current_tracks": []}
 | 
					        return [], {}, {"validation_complete": False, "stable_tracks": [], "current_tracks": []}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def _point_in_polygon(point, polygon):
 | 
					 | 
				
			||||||
    """Check if a point is inside a polygon using ray casting algorithm."""
 | 
					 | 
				
			||||||
    if not polygon or len(polygon) < 3:
 | 
					 | 
				
			||||||
        return True  # No zone restriction if invalid polygon
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    x, y = point
 | 
					 | 
				
			||||||
    n = len(polygon)
 | 
					 | 
				
			||||||
    inside = False
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    p1x, p1y = polygon[0]
 | 
					 | 
				
			||||||
    for i in range(1, n + 1):
 | 
					 | 
				
			||||||
        p2x, p2y = polygon[i % n]
 | 
					 | 
				
			||||||
        if y > min(p1y, p2y):
 | 
					 | 
				
			||||||
            if y <= max(p1y, p2y):
 | 
					 | 
				
			||||||
                if x <= max(p1x, p2x):
 | 
					 | 
				
			||||||
                    if p1y != p2y:
 | 
					 | 
				
			||||||
                        xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
 | 
					 | 
				
			||||||
                    if p1x == p2x or x <= xinters:
 | 
					 | 
				
			||||||
                        inside = not inside
 | 
					 | 
				
			||||||
        p1x, p1y = p2x, p2y
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    return inside
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_camera_stability_data(camera_id, model_id):
 | 
					def get_camera_stability_data(camera_id, model_id):
 | 
				
			||||||
    """Get or create stability tracking data for a specific camera and model."""
 | 
					    """Get or create stability tracking data for a specific camera and model."""
 | 
				
			||||||
| 
						 | 
					@ -1424,6 +1433,49 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None, valid
 | 
				
			||||||
            # Normal detection stage - Using structured detection function
 | 
					            # Normal detection stage - Using structured detection function
 | 
				
			||||||
            all_detections, regions_dict, track_validation_result = run_detection_with_tracking(frame, node, context)
 | 
					            all_detections, regions_dict, track_validation_result = run_detection_with_tracking(frame, node, context)
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
					        # TEMP DEBUG: Save only specific crops
 | 
				
			||||||
 | 
					        if regions_dict:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                import datetime
 | 
				
			||||||
 | 
					                os.makedirs("temp_debug", exist_ok=True)
 | 
				
			||||||
 | 
					                timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
 | 
				
			||||||
 | 
					                model_id = node.get("modelId", "unknown")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                # Save vehicle crop from yolo model (any vehicle: car, truck, bus, motorcycle)
 | 
				
			||||||
 | 
					                if model_id in ["yolo11n", "yolo11m"]:
 | 
				
			||||||
 | 
					                    # Look for any vehicle class in regions_dict
 | 
				
			||||||
 | 
					                    vehicle_classes = ["car", "truck", "bus", "motorcycle"]
 | 
				
			||||||
 | 
					                    found_vehicle = None
 | 
				
			||||||
 | 
					                    for vehicle_class in vehicle_classes:
 | 
				
			||||||
 | 
					                        if vehicle_class in regions_dict:
 | 
				
			||||||
 | 
					                            found_vehicle = vehicle_class
 | 
				
			||||||
 | 
					                            break
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                        bbox = regions_dict[found_vehicle]['bbox']
 | 
				
			||||||
 | 
					                        x1, y1, x2, y2 = bbox
 | 
				
			||||||
 | 
					                        cropped = frame[y1:y2, x1:x2]
 | 
				
			||||||
 | 
					                        if cropped.size > 0:
 | 
				
			||||||
 | 
					                            debug_path = f"temp_debug/{found_vehicle}_crop_{timestamp}.jpg"
 | 
				
			||||||
 | 
					                            cv2.imwrite(debug_path, cropped)
 | 
				
			||||||
 | 
					                            logger.info(f"🚗 TEMP DEBUG: Saved {found_vehicle} crop to {debug_path}")
 | 
				
			||||||
 | 
					                        else:
 | 
				
			||||||
 | 
					                            logger.warning(f"🚗 TEMP DEBUG: Empty {found_vehicle} crop with bbox {bbox}")
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        logger.warning(f"🚗 TEMP DEBUG: {model_id} detected but no vehicle classes found. Available: {list(regions_dict.keys())}")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                # Save frontal crop from frontal_detection_v1
 | 
				
			||||||
 | 
					                elif model_id == "frontal_detection_v1" and "frontal" in regions_dict:
 | 
				
			||||||
 | 
					                    bbox = regions_dict["frontal"]['bbox']
 | 
				
			||||||
 | 
					                    x1, y1, x2, y2 = bbox
 | 
				
			||||||
 | 
					                    cropped = frame[y1:y2, x1:x2]
 | 
				
			||||||
 | 
					                    if cropped.size > 0:
 | 
				
			||||||
 | 
					                        debug_path = f"temp_debug/frontal_crop_{timestamp}.jpg"
 | 
				
			||||||
 | 
					                        cv2.imwrite(debug_path, cropped)
 | 
				
			||||||
 | 
					                        logger.info(f"🔍 TEMP DEBUG: Saved frontal crop to {debug_path}")
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					            except Exception as e:
 | 
				
			||||||
 | 
					                logger.error(f"🔍 TEMP DEBUG: Failed to save crops: {e}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        if not all_detections:
 | 
					        if not all_detections:
 | 
				
			||||||
            logger.debug("No detections from structured detection function - sending 'none' detection")
 | 
					            logger.debug("No detections from structured detection function - sending 'none' detection")
 | 
				
			||||||
            none_detection = {
 | 
					            none_detection = {
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue