Merge pull request 'dev' (#28) from dev into main
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 7s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 3m24s
Build Worker Base and Application Images / deploy-stack (push) Successful in 21s

Reviewed-on: #28
This commit is contained in:
Chawanwit Pornnatwuttigul 2025-10-20 10:09:29 +00:00
commit b34106dc68
4 changed files with 212 additions and 61 deletions

View file

@ -103,10 +103,4 @@ jobs:
- name: Deploy stack
run: |
echo "Pulling and starting containers on server..."
if [ "${{ github.ref_name }}" = "main" ]; then
echo "Deploying production stack..."
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.production.yml pull && docker compose -f docker-compose.production.yml up -d"
else
echo "Deploying staging stack..."
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.staging.yml pull && docker compose -f docker-compose.staging.yml up -d"
fi
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.staging.yml -f docker-compose.production.yml pull && docker compose -f docker-compose.staging.yml -f docker-compose.production.yml up -d"

View file

@ -35,6 +35,9 @@ class BranchProcessor:
# Branch models cache
self.branch_models: Dict[str, YOLOWrapper] = {}
# Dynamic field mapping: branch_id → output_field_name (e.g., {"car_brand_cls_v3": "brand"})
self.branch_output_fields: Dict[str, str] = {}
# Thread pool for parallel execution
self.executor = ThreadPoolExecutor(max_workers=4)
@ -68,6 +71,9 @@ class BranchProcessor:
self.redis_manager = redis_manager
self.db_manager = db_manager
# Parse field mappings from parallelActions to enable dynamic field extraction
self._parse_branch_output_fields(pipeline_config)
# Pre-load branch models if they exist
branches = getattr(pipeline_config, 'branches', [])
if branches:
@ -141,6 +147,46 @@ class BranchProcessor:
logger.error(f"Error loading branch model {getattr(branch_config, 'model_id', 'unknown')}: {e}")
return None
def _parse_branch_output_fields(self, pipeline_config: Any) -> None:
"""
Parse parallelActions.fields to determine what output field each branch produces.
Creates dynamic mapping from branch_id to output field name.
Example:
Input: parallelActions.fields = {"car_brand": "{car_brand_cls_v3.brand}"}
Output: self.branch_output_fields = {"car_brand_cls_v3": "brand"}
Args:
pipeline_config: Pipeline configuration object
"""
try:
if not pipeline_config or not hasattr(pipeline_config, 'parallel_actions'):
logger.debug("[FIELD MAPPING] No parallelActions found in pipeline config")
return
for action in pipeline_config.parallel_actions:
if action.type.value == 'postgresql_update_combined':
fields = action.params.get('fields', {})
# Parse each field template to extract branch_id and field_name
for db_field_name, template in fields.items():
# Template format: "{branch_id.field_name}"
if template.startswith('{') and template.endswith('}'):
var_name = template[1:-1] # Remove { }
if '.' in var_name:
branch_id, field_name = var_name.split('.', 1)
# Store the mapping
self.branch_output_fields[branch_id] = field_name
logger.info(f"[FIELD MAPPING] Branch '{branch_id}' → outputs field '{field_name}'")
logger.info(f"[FIELD MAPPING] Parsed {len(self.branch_output_fields)} branch output field mappings")
except Exception as e:
logger.error(f"[FIELD MAPPING] Error parsing branch output fields: {e}", exc_info=True)
async def execute_branches(self,
frame: np.ndarray,
branches: List[Any],
@ -347,13 +393,19 @@ class BranchProcessor:
trigger_classes = getattr(branch_config, 'trigger_classes', [])
logger.info(f"[DETECTED REGIONS] {branch_id}: Available parent detections: {list(detected_regions.keys())}")
for region_name, region_data in detected_regions.items():
logger.debug(f"[REGION DATA] {branch_id}: '{region_name}' -> bbox={region_data.get('bbox')}, conf={region_data.get('confidence')}")
# Handle both list (new) and single dict (backward compat)
if isinstance(region_data, list):
for i, region in enumerate(region_data):
logger.debug(f"[REGION DATA] {branch_id}: '{region_name}[{i}]' -> bbox={region.get('bbox')}, conf={region.get('confidence')}")
else:
logger.debug(f"[REGION DATA] {branch_id}: '{region_name}' -> bbox={region_data.get('bbox')}, conf={region_data.get('confidence')}")
if trigger_classes:
# Check if any parent detection matches our trigger classes
# Check if any parent detection matches our trigger classes (case-insensitive)
should_execute = False
for trigger_class in trigger_classes:
if trigger_class in detected_regions:
# Case-insensitive comparison for robustness
if trigger_class.lower() in [k.lower() for k in detected_regions.keys()]:
should_execute = True
logger.info(f"[TRIGGER CHECK] {branch_id}: Found '{trigger_class}' in parent detections - branch will execute")
break
@ -407,19 +459,24 @@ class BranchProcessor:
for crop_class in crop_classes:
if crop_class in detected_regions:
region = detected_regions[crop_class]
confidence = region.get('confidence', 0.0)
regions = detected_regions[crop_class]
# Only use detections above min_confidence
if confidence >= min_confidence:
# Handle both list (new) and single dict (backward compat)
if not isinstance(regions, list):
regions = [regions]
# Find largest bbox from all detections of this class
for region in regions:
confidence = region.get('confidence', 0.0)
bbox = region['bbox']
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) # width * height
# Choose biggest bbox among valid detections
# Choose biggest bbox among all available detections
if area > best_area:
best_region = region
best_class = crop_class
best_area = area
logger.debug(f"[CROP] Selected larger bbox for '{crop_class}': area={area:.0f}px², conf={confidence:.3f}")
if best_region:
bbox = best_region['bbox']
@ -437,7 +494,6 @@ class BranchProcessor:
logger.info(f"[INFERENCE START] {branch_id}: Running inference on {'cropped' if input_frame is not frame else 'full'} frame "
f"({input_frame.shape[1]}x{input_frame.shape[0]}) with confidence={min_confidence}")
# Use .predict() method for both detection and classification models
inference_start = time.time()
detection_results = model.model.predict(input_frame, conf=min_confidence, verbose=False)
@ -478,17 +534,25 @@ class BranchProcessor:
top_indices = probs.top5 # Get top 5 predictions
top_conf = probs.top5conf.cpu().numpy()
for idx, conf in zip(top_indices, top_conf):
if conf >= min_confidence:
class_name = model.model.names[int(idx)]
logger.debug(f"[CLASSIFICATION RESULT {len(branch_detections)+1}] {branch_id}: '{class_name}', conf={conf:.3f}")
# For classification: take only TOP-1 prediction (not all top-5)
# This prevents empty results when all top-5 predictions are below threshold
if len(top_indices) > 0 and len(top_conf) > 0:
top_idx = top_indices[0]
top_confidence = float(top_conf[0])
# Apply minConfidence threshold to top-1 only
if top_confidence >= min_confidence:
class_name = model.model.names[int(top_idx)]
logger.info(f"[CLASSIFICATION TOP-1] {branch_id}: '{class_name}', conf={top_confidence:.3f}")
# For classification, use full input frame dimensions as bbox
branch_detections.append({
'class_name': class_name,
'confidence': float(conf),
'confidence': top_confidence,
'bbox': [0, 0, input_frame.shape[1], input_frame.shape[0]]
})
else:
logger.warning(f"[CLASSIFICATION FILTERED] {branch_id}: Top prediction conf={top_confidence:.3f} < threshold={min_confidence}")
else:
logger.warning(f"[UNKNOWN MODEL] {branch_id}: Model results have no .boxes or .probs")
@ -499,22 +563,27 @@ class BranchProcessor:
logger.info(f"[FINAL RESULTS] {branch_id}: {len(branch_detections)} detections processed")
# Extract best result for classification models
# Determine output field name from dynamic mapping (parsed from parallelActions.fields)
output_field = self.branch_output_fields.get(branch_id)
# Always initialize the field (even if None) to ensure it exists for database update
if output_field:
result['result'][output_field] = None
logger.debug(f"[FIELD INIT] {branch_id}: Initialized field '{output_field}' = None")
# Extract best detection if available
if branch_detections:
best_detection = max(branch_detections, key=lambda x: x['confidence'])
logger.info(f"[BEST DETECTION] {branch_id}: '{best_detection['class_name']}' with confidence {best_detection['confidence']:.3f}")
# Add classification-style results for database operations
if 'brand' in branch_id.lower():
result['result']['brand'] = best_detection['class_name']
elif 'body' in branch_id.lower() or 'bodytype' in branch_id.lower():
result['result']['body_type'] = best_detection['class_name']
elif 'front_rear' in branch_id.lower():
result['result']['front_rear'] = best_detection['confidence']
logger.info(f"[CLASSIFICATION RESULT] {branch_id}: Extracted classification fields")
# Set the output field value using dynamic mapping
if output_field:
result['result'][output_field] = best_detection['class_name']
logger.info(f"[FIELD SET] {branch_id}: Set field '{output_field}' = '{best_detection['class_name']}'")
else:
logger.warning(f"[NO MAPPING] {branch_id}: No output field defined in parallelActions.fields")
else:
logger.warning(f"[NO RESULTS] {branch_id}: No detections found")
logger.warning(f"[NO RESULTS] {branch_id}: No detections found, field '{output_field}' remains None")
# Execute branch actions if this branch found valid detections
actions_executed = []
@ -631,10 +700,26 @@ class BranchProcessor:
bbox = None
if region_name and region_name in detected_regions:
# Crop the specified region
bbox = detected_regions[region_name]['bbox']
# Handle both list (new) and single dict (backward compat)
regions = detected_regions[region_name]
if isinstance(regions, list):
# Multiple detections - select largest bbox
if regions:
best_region = max(regions, key=lambda r: (r['bbox'][2] - r['bbox'][0]) * (r['bbox'][3] - r['bbox'][1]))
bbox = best_region['bbox']
else:
bbox = regions['bbox']
elif region_name and region_name.lower() == 'frontal' and 'front_rear' in detected_regions:
# Special case: "frontal" region maps to "front_rear" detection
bbox = detected_regions['front_rear']['bbox']
# Handle both list (new) and single dict (backward compat)
regions = detected_regions['front_rear']
if isinstance(regions, list):
# Multiple detections - select largest bbox
if regions:
best_region = max(regions, key=lambda r: (r['bbox'][2] - r['bbox'][0]) * (r['bbox'][3] - r['bbox'][1]))
bbox = best_region['bbox']
else:
bbox = regions['bbox']
if bbox is not None:
x1, y1, x2, y2 = [int(coord) for coord in bbox]

View file

@ -199,6 +199,8 @@ class DetectionPipeline:
Dictionary with extracted field values (e.g., {"car_brand": "Honda", "body_type": "Sedan"})
"""
extracted = {}
missing_fields = []
available_fields = []
try:
for db_field_name, template in self.field_mappings.items():
@ -215,12 +217,21 @@ class DetectionPipeline:
result_data = branch_data['result']
if isinstance(result_data, dict) and field_name in result_data:
extracted[field_name] = result_data[field_name]
available_fields.append(f"{field_name}={result_data[field_name]}")
logger.debug(f"[DYNAMIC EXTRACT] {field_name}={result_data[field_name]} from branch {branch_id}")
else:
missing_fields.append(f"{field_name} (field not in branch {branch_id})")
logger.debug(f"[DYNAMIC EXTRACT] Field '{field_name}' not found in branch {branch_id}")
else:
missing_fields.append(f"{field_name} (branch {branch_id} missing)")
logger.debug(f"[DYNAMIC EXTRACT] Branch '{branch_id}' not in results")
# Log summary of extraction
if available_fields:
logger.info(f"[FIELD EXTRACTION] Available fields: {', '.join(available_fields)}")
if missing_fields:
logger.warning(f"[FIELD EXTRACTION] Missing fields (will be null): {', '.join(missing_fields)}")
except Exception as e:
logger.error(f"Error extracting fields from branches: {e}", exc_info=True)
@ -338,7 +349,17 @@ class DetectionPipeline:
car_brand = extracted_fields.get('brand')
body_type = extracted_fields.get('body_type')
logger.info(f"[LICENSE PLATE] Extracted fields: brand={car_brand}, body_type={body_type}")
# Log extraction results
fields_status = []
if car_brand is not None:
fields_status.append(f"brand={car_brand}")
else:
fields_status.append("brand=null")
if body_type is not None:
fields_status.append(f"bodyType={body_type}")
else:
fields_status.append("bodyType=null")
logger.info(f"[LICENSE PLATE] Extracted fields: {', '.join(fields_status)}")
# Clean up stored results after use
del self.session_processing_results[session_id_for_lookup]
@ -367,7 +388,18 @@ class DetectionPipeline:
# Send message
await self.message_sender(detection_message)
logger.info(f"[COMBINED MESSAGE] Sent imageDetection with brand='{car_brand}', bodyType='{body_type}', license='{license_text}' to '{subscription_id}'")
# Log with indication of partial results
null_fields = []
if car_brand is None:
null_fields.append('brand')
if body_type is None:
null_fields.append('bodyType')
if null_fields:
logger.info(f"[COMBINED MESSAGE] Sent imageDetection with PARTIAL results (null: {', '.join(null_fields)}) - brand='{car_brand}', bodyType='{body_type}', license='{license_text}' to '{subscription_id}'")
else:
logger.info(f"[COMBINED MESSAGE] Sent imageDetection with brand='{car_brand}', bodyType='{body_type}', license='{license_text}' to '{subscription_id}'")
except Exception as e:
logger.error(f"Error sending license plate imageDetection message: {e}", exc_info=True)
@ -495,11 +527,13 @@ class DetectionPipeline:
}
valid_detections.append(detection_info)
# Store region for processing phase
detected_regions[class_name] = {
# Store region for processing phase (support multiple detections per class)
if class_name not in detected_regions:
detected_regions[class_name] = []
detected_regions[class_name].append({
'bbox': bbox,
'confidence': confidence
}
})
else:
logger.warning("[DETECTION PHASE] No boxes found in detection results")
@ -951,14 +985,26 @@ class DetectionPipeline:
if region_name and region_name in detected_regions:
# Crop the specified region
bbox = detected_regions[region_name]['bbox']
x1, y1, x2, y2 = [int(coord) for coord in bbox]
cropped = frame[y1:y2, x1:x2]
if cropped.size > 0:
image_to_save = cropped
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
# Handle both list (new) and single dict (backward compat)
regions = detected_regions[region_name]
if isinstance(regions, list):
# Multiple detections - select largest bbox
if regions:
best_region = max(regions, key=lambda r: (r['bbox'][2] - r['bbox'][0]) * (r['bbox'][3] - r['bbox'][1]))
bbox = best_region['bbox']
else:
bbox = None
else:
logger.warning(f"Empty crop for region '{region_name}', using full frame")
bbox = regions['bbox']
if bbox:
x1, y1, x2, y2 = [int(coord) for coord in bbox]
cropped = frame[y1:y2, x1:x2]
if cropped.size > 0:
image_to_save = cropped
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
else:
logger.warning(f"Empty crop for region '{region_name}', using full frame")
# Format key with context
key = action.params['key'].format(**context)
@ -1019,11 +1065,13 @@ class DetectionPipeline:
wait_for_branches = action.params.get('waitForBranches', [])
branch_results = context.get('branch_results', {})
# Check if all required branches have completed
for branch_id in wait_for_branches:
if branch_id not in branch_results:
logger.warning(f"Branch {branch_id} result not available for database update")
return {'status': 'error', 'message': f'Missing branch result: {branch_id}'}
# Log missing branches but don't block the update (allow partial results)
missing_branches = [b for b in wait_for_branches if b not in branch_results]
if missing_branches:
logger.warning(f"Some branches missing from results (will use null): {missing_branches}")
available_branches = [b for b in wait_for_branches if b in branch_results]
if available_branches:
logger.info(f"Available branches for database update: {available_branches}")
# Prepare fields for database update
table = action.params.get('table', 'car_frontal_info')

View file

@ -350,10 +350,21 @@ class TrackingPipelineIntegration:
'session_id': session_id
}
# Fetch high-quality 2K snapshot for detection phase (not RTSP frame)
# This ensures bbox coordinates match the frame used in processing phase
logger.info(f"[DETECTION PHASE] Fetching 2K snapshot for vehicle {vehicle.track_id}")
snapshot_frame = self._fetch_snapshot()
if snapshot_frame is None:
logger.warning(f"[DETECTION PHASE] Failed to fetch snapshot, falling back to RTSP frame")
snapshot_frame = frame # Fallback to RTSP if snapshot fails
else:
logger.info(f"[DETECTION PHASE] Using {snapshot_frame.shape[1]}x{snapshot_frame.shape[0]} snapshot for detection")
# Execute only the detection phase (first phase)
# This will run detection and send imageDetection message to backend
detection_result = await self.detection_pipeline.execute_detection_phase(
frame=frame,
frame=snapshot_frame, # Use 2K snapshot instead of RTSP frame
display_id=display_id,
subscription_id=subscription_id
)
@ -373,13 +384,13 @@ class TrackingPipelineIntegration:
if detection_result['message_sent']:
# Store for later processing when sessionId is received
self.pending_processing_data[display_id] = {
'frame': frame.copy(), # Store copy of frame for processing phase
'frame': snapshot_frame.copy(), # Store copy of 2K snapshot (not RTSP frame!)
'vehicle': vehicle,
'subscription_id': subscription_id,
'detection_result': detection_result,
'timestamp': time.time()
}
logger.info(f"Stored processing data for {display_id}, waiting for sessionId from backend")
logger.info(f"Stored processing data ({snapshot_frame.shape[1]}x{snapshot_frame.shape[0]} frame) for {display_id}, waiting for sessionId from backend")
return detection_result
@ -413,14 +424,27 @@ class TrackingPipelineIntegration:
logger.info(f"Executing processing phase for session {session_id}, vehicle {vehicle.track_id}")
# Capture high-quality snapshot for pipeline processing
logger.info(f"[PROCESSING PHASE] Fetching 2K snapshot for session {session_id}")
frame = self._fetch_snapshot()
# Reuse the snapshot from detection phase OR fetch fresh one if detection used RTSP fallback
detection_frame = processing_data['frame']
frame_height = detection_frame.shape[0]
if frame is None:
logger.warning(f"[PROCESSING PHASE] Failed to capture snapshot, falling back to RTSP frame")
# Fall back to RTSP frame if snapshot fails
frame = processing_data['frame']
# Check if detection phase used 2K snapshot (height > 1000) or RTSP fallback (height = 720)
if frame_height >= 1000:
# Detection used 2K snapshot - reuse it for consistent coordinates
logger.info(f"[PROCESSING PHASE] Reusing 2K snapshot from detection phase ({detection_frame.shape[1]}x{detection_frame.shape[0]})")
frame = detection_frame
else:
# Detection used RTSP fallback - need to fetch fresh 2K snapshot
logger.warning(f"[PROCESSING PHASE] Detection used RTSP fallback ({detection_frame.shape[1]}x{detection_frame.shape[0]}), fetching fresh 2K snapshot")
frame = self._fetch_snapshot()
if frame is None:
logger.error(f"[PROCESSING PHASE] Failed to fetch snapshot and detection used RTSP - coordinate mismatch will occur!")
logger.error(f"[PROCESSING PHASE] Cannot proceed with mismatched coordinates. Aborting processing phase.")
return # Cannot process safely - bbox coordinates won't match frame resolution
else:
logger.warning(f"[PROCESSING PHASE] Fetched fresh 2K snapshot ({frame.shape[1]}x{frame.shape[0]}), but coordinates may not match exactly")
logger.warning(f"[PROCESSING PHASE] Re-running detection on fresh snapshot is recommended but not implemented yet")
# Extract detected regions from detection phase result if available
detected_regions = detection_result.get('detected_regions', {})