new logic
This commit is contained in:
		
							parent
							
								
									192b96d658
								
							
						
					
					
						commit
						aa4e0463d4
					
				
					 4 changed files with 303 additions and 129 deletions
				
			
		
							
								
								
									
										143
									
								
								debug.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										143
									
								
								debug.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,143 @@
 | 
			
		|||
import argparse
 | 
			
		||||
import os
 | 
			
		||||
import cv2
 | 
			
		||||
import time
 | 
			
		||||
import logging
 | 
			
		||||
import shutil
 | 
			
		||||
import threading  # added threading
 | 
			
		||||
import yaml  # for silencing YOLO
 | 
			
		||||
 | 
			
		||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
 | 
			
		||||
 | 
			
		||||
# Configure logging
 | 
			
		||||
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
 | 
			
		||||
 | 
			
		||||
# Silence YOLO logging
 | 
			
		||||
os.environ["YOLO_VERBOSE"] = "False"
 | 
			
		||||
for logger_name in ["ultralytics", "ultralytics.hub", "ultralytics.yolo.utils"]:
 | 
			
		||||
    logging.getLogger(logger_name).setLevel(logging.WARNING)
 | 
			
		||||
 | 
			
		||||
# Global variables for frame sharing
 | 
			
		||||
global_frame = None
 | 
			
		||||
global_ret = False
 | 
			
		||||
capture_running = False
 | 
			
		||||
 | 
			
		||||
def video_capture_loop(cap):
 | 
			
		||||
    global global_frame, global_ret, capture_running
 | 
			
		||||
    while capture_running:
 | 
			
		||||
        global_ret, global_frame = cap.read()
 | 
			
		||||
        time.sleep(0.01)  # slight delay to reduce CPU usage
 | 
			
		||||
 | 
			
		||||
def clear_cache(cache_dir: str):
 | 
			
		||||
    if os.path.exists(cache_dir):
 | 
			
		||||
        shutil.rmtree(cache_dir)
 | 
			
		||||
 | 
			
		||||
def log_pipeline_flow(frame, model_tree, level=0):
 | 
			
		||||
    """
 | 
			
		||||
    Wrapper around run_pipeline that logs the model flow and detection results.
 | 
			
		||||
    Returns the same output as the original run_pipeline function.
 | 
			
		||||
    """
 | 
			
		||||
    indent = "  " * level
 | 
			
		||||
    model_id = model_tree.get("modelId", "unknown")
 | 
			
		||||
    logging.info(f"{indent}→ Running model: {model_id}")
 | 
			
		||||
    
 | 
			
		||||
    detection, bbox = run_pipeline(frame, model_tree, return_bbox=True)
 | 
			
		||||
    
 | 
			
		||||
    if detection:
 | 
			
		||||
        confidence = detection.get("confidence", 0) * 100
 | 
			
		||||
        class_name = detection.get("class", "unknown")
 | 
			
		||||
        object_id = detection.get("id", "N/A")
 | 
			
		||||
        
 | 
			
		||||
        logging.info(f"{indent}✓ Detected: {class_name} (ID: {object_id}, confidence: {confidence:.1f}%)")
 | 
			
		||||
        
 | 
			
		||||
        # Check if any branches were triggered
 | 
			
		||||
        triggered = False
 | 
			
		||||
        for branch in model_tree.get("branches", []):
 | 
			
		||||
            trigger_classes = branch.get("triggerClasses", [])
 | 
			
		||||
            min_conf = branch.get("minConfidence", 0)
 | 
			
		||||
            
 | 
			
		||||
            if class_name in trigger_classes and detection.get("confidence", 0) >= min_conf:
 | 
			
		||||
                triggered = True
 | 
			
		||||
                if branch.get("crop", False) and bbox:
 | 
			
		||||
                    x1, y1, x2, y2 = bbox
 | 
			
		||||
                    cropped_frame = frame[y1:y2, x1:x2]
 | 
			
		||||
                    logging.info(f"{indent}  ⌊ Triggering branch with cropped region {x1},{y1} to {x2},{y2}")
 | 
			
		||||
                    branch_result = log_pipeline_flow(cropped_frame, branch, level + 1)
 | 
			
		||||
                else:
 | 
			
		||||
                    logging.info(f"{indent}  ⌊ Triggering branch with full frame")
 | 
			
		||||
                    branch_result = log_pipeline_flow(frame, branch, level + 1)
 | 
			
		||||
                
 | 
			
		||||
                if branch_result[0]:  # If branch detection successful, return it
 | 
			
		||||
                    return branch_result
 | 
			
		||||
        
 | 
			
		||||
        if not triggered and model_tree.get("branches"):
 | 
			
		||||
            logging.info(f"{indent}  ⌊ No branches triggered")
 | 
			
		||||
    else:
 | 
			
		||||
        logging.info(f"{indent}✗ No detection for {model_id}")
 | 
			
		||||
    
 | 
			
		||||
    return detection, bbox
 | 
			
		||||
 | 
			
		||||
def main(mpta_file: str, video_source: str):
 | 
			
		||||
    global capture_running
 | 
			
		||||
    CACHE_DIR = os.path.join(".", ".mptacache")
 | 
			
		||||
    clear_cache(CACHE_DIR)
 | 
			
		||||
    logging.info(f"Loading pipeline from local file: {mpta_file}")
 | 
			
		||||
    model_tree = load_pipeline_from_zip(mpta_file, CACHE_DIR)
 | 
			
		||||
    if model_tree is None:
 | 
			
		||||
        logging.error("Failed to load pipeline.")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    cap = cv2.VideoCapture(video_source)
 | 
			
		||||
    if not cap.isOpened():
 | 
			
		||||
        logging.error(f"Cannot open video source {video_source}")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Start video capture in a separate thread
 | 
			
		||||
    capture_running = True
 | 
			
		||||
    capture_thread = threading.Thread(target=video_capture_loop, args=(cap,))
 | 
			
		||||
    capture_thread.start()
 | 
			
		||||
 | 
			
		||||
    logging.info("Press 'q' to exit.")
 | 
			
		||||
    try:
 | 
			
		||||
        while True:
 | 
			
		||||
            # Use the global frame and ret updated by the thread
 | 
			
		||||
            if not global_ret or global_frame is None:
 | 
			
		||||
                continue  # wait until a frame is available
 | 
			
		||||
            
 | 
			
		||||
            frame = global_frame.copy()  # local copy to work with
 | 
			
		||||
 | 
			
		||||
            # Replace run_pipeline with our logging version
 | 
			
		||||
            detection, bbox = log_pipeline_flow(frame, model_tree)
 | 
			
		||||
 | 
			
		||||
            # Stop if "honda" is detected
 | 
			
		||||
            if detection and detection.get("class", "").lower() == "toyota":
 | 
			
		||||
                logging.info("Detected 'toyota'. Stopping pipeline.")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
            if bbox:
 | 
			
		||||
                x1, y1, x2, y2 = bbox
 | 
			
		||||
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
 | 
			
		||||
                label = detection["class"] if detection else "Detection"
 | 
			
		||||
                cv2.putText(frame, label, (x1, y1 - 10),
 | 
			
		||||
                            cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
 | 
			
		||||
 | 
			
		||||
            cv2.imshow("Pipeline Webcam", frame)
 | 
			
		||||
            if cv2.waitKey(1) & 0xFF == ord('q'):
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    finally:
 | 
			
		||||
        # Stop capture thread and cleanup
 | 
			
		||||
        capture_running = False
 | 
			
		||||
        capture_thread.join()
 | 
			
		||||
        cap.release()
 | 
			
		||||
        cv2.destroyAllWindows()
 | 
			
		||||
        clear_cache(CACHE_DIR)
 | 
			
		||||
        logging.info("Cleaned up .mptacache directory on shutdown.")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(description="Run pipeline webcam utility.")
 | 
			
		||||
    parser.add_argument("--mpta-file", type=str, required=True, help="Path to the local pipeline mpta (ZIP) file.")
 | 
			
		||||
    parser.add_argument("--video", type=str, default="0", help="Video source (default webcam index 0).")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    video_source = int(args.video) if args.video.isdigit() else args.video
 | 
			
		||||
    main(args.mpta_file, video_source)
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								demoa.mpta
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								demoa.mpta
									
										
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										23
									
								
								pipeline.log
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								pipeline.log
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,23 @@
 | 
			
		|||
2025-05-12 18:10:04,590 [INFO] Loading pipeline from local file: demoa.mpta
 | 
			
		||||
2025-05-12 18:10:04,610 [INFO] Copied local .mpta file from demoa.mpta to .\.mptacache\pipeline.mpta
 | 
			
		||||
2025-05-12 18:10:04,901 [INFO] Extracted .mpta file to .\.mptacache
 | 
			
		||||
2025-05-12 18:10:04,905 [INFO] Loading model for node DetectionDraft from .\.mptacache\demoa\DetectionDraft.pt
 | 
			
		||||
2025-05-12 18:10:05,083 [INFO] Loading model for node ClassificationDraft from .\.mptacache\demoa\ClassificationDraft.pt
 | 
			
		||||
2025-05-12 18:10:08,035 [INFO] Press 'q' to exit.
 | 
			
		||||
2025-05-12 18:10:12,217 [INFO] Cleaned up .mptacache directory on shutdown.
 | 
			
		||||
2025-05-12 18:13:08,465 [INFO] Loading pipeline from local file: demoa.mpta
 | 
			
		||||
2025-05-12 18:13:08,512 [INFO] Copied local .mpta file from demoa.mpta to .\.mptacache\pipeline.mpta
 | 
			
		||||
2025-05-12 18:13:08,769 [INFO] Extracted .mpta file to .\.mptacache
 | 
			
		||||
2025-05-12 18:13:08,773 [INFO] Loading model for node DetectionDraft from .\.mptacache\demoa\DetectionDraft.pt
 | 
			
		||||
2025-05-12 18:13:09,083 [INFO] Loading model for node ClassificationDraft from .\.mptacache\demoa\ClassificationDraft.pt
 | 
			
		||||
2025-05-12 18:13:12,187 [INFO] Press 'q' to exit.
 | 
			
		||||
2025-05-12 18:13:14,146 [INFO] → Running model: DetectionDraft
 | 
			
		||||
2025-05-12 18:13:17,119 [INFO] Cleaned up .mptacache directory on shutdown.
 | 
			
		||||
2025-05-12 18:14:25,665 [INFO] Loading pipeline from local file: demoa.mpta
 | 
			
		||||
2025-05-12 18:14:25,687 [INFO] Copied local .mpta file from demoa.mpta to .\.mptacache\pipeline.mpta
 | 
			
		||||
2025-05-12 18:14:25,953 [INFO] Extracted .mpta file to .\.mptacache
 | 
			
		||||
2025-05-12 18:14:25,957 [INFO] Loading model for node DetectionDraft from .\.mptacache\demoa\DetectionDraft.pt
 | 
			
		||||
2025-05-12 18:14:26,138 [INFO] Loading model for node ClassificationDraft from .\.mptacache\demoa\ClassificationDraft.pt
 | 
			
		||||
2025-05-12 18:14:29,171 [INFO] Press 'q' to exit.
 | 
			
		||||
2025-05-12 18:14:30,146 [INFO] → Running model: DetectionDraft
 | 
			
		||||
2025-05-12 18:14:32,080 [INFO] Cleaned up .mptacache directory on shutdown.
 | 
			
		||||
| 
						 | 
				
			
			@ -3,172 +3,180 @@ import json
 | 
			
		|||
import logging
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import requests
 | 
			
		||||
import zipfile
 | 
			
		||||
import shutil
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
        logging.error(f"Model file {model_path} not found.")
 | 
			
		||||
        raise FileNotFoundError(f"Model file {model_path} not found.")
 | 
			
		||||
    logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    logging.info(f"Loading model {node_config['modelId']} from {model_path}")
 | 
			
		||||
    model = YOLO(model_path)
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        model.to("cuda")
 | 
			
		||||
    node = {
 | 
			
		||||
 | 
			
		||||
    # map triggerClasses names → indices for YOLO
 | 
			
		||||
    names = model.names  # idx -> class name
 | 
			
		||||
    trigger_names = node_config.get("triggerClasses", [])
 | 
			
		||||
    trigger_inds = [i for i, nm in names.items() if nm in trigger_names]
 | 
			
		||||
 | 
			
		||||
    return {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
        "triggerClasses": node_config.get("triggerClasses", []),
 | 
			
		||||
        "triggerClasses": trigger_names,
 | 
			
		||||
        "triggerClassIndices": trigger_inds,
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", 0.0),
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": []
 | 
			
		||||
        "branches": [
 | 
			
		||||
            load_pipeline_node(child, mpta_dir)
 | 
			
		||||
            for child in node_config.get("branches", [])
 | 
			
		||||
        ]
 | 
			
		||||
    }
 | 
			
		||||
    for child in node_config.get("branches", []):
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir))
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		||||
    os.makedirs(target_dir, exist_ok=True)
 | 
			
		||||
    zip_path = os.path.join(target_dir, "pipeline.mpta")
 | 
			
		||||
    
 | 
			
		||||
    # Parse the source; only local files are supported here.
 | 
			
		||||
    parsed = urlparse(zip_source)
 | 
			
		||||
    if parsed.scheme in ("", "file"):
 | 
			
		||||
        local_path = parsed.path if parsed.scheme == "file" else zip_source
 | 
			
		||||
        if os.path.exists(local_path):
 | 
			
		||||
            try:
 | 
			
		||||
                shutil.copy(local_path, zip_path)
 | 
			
		||||
                logging.info(f"Copied local .mpta file from {local_path} to {zip_path}")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Failed to copy local .mpta file from {local_path}: {e}")
 | 
			
		||||
                return None
 | 
			
		||||
        else:
 | 
			
		||||
            logging.error(f"Local file {local_path} does not exist.")
 | 
			
		||||
        local = parsed.path if parsed.scheme == "file" else zip_source
 | 
			
		||||
        if not os.path.exists(local):
 | 
			
		||||
            logging.error(f"Local file {local} does not exist.")
 | 
			
		||||
            return None
 | 
			
		||||
        shutil.copy(local, zip_path)
 | 
			
		||||
    else:
 | 
			
		||||
        logging.error("HTTP download functionality has been moved. Use a local file path here.")
 | 
			
		||||
        logging.error("HTTP download not supported; use local file.")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
			
		||||
            zip_ref.extractall(target_dir)
 | 
			
		||||
        logging.info(f"Extracted .mpta file to {target_dir}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Failed to extract .mpta file: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    finally:
 | 
			
		||||
        if os.path.exists(zip_path):
 | 
			
		||||
            os.remove(zip_path)
 | 
			
		||||
    pipeline_name = os.path.basename(zip_source)
 | 
			
		||||
    pipeline_name = os.path.splitext(pipeline_name)[0]
 | 
			
		||||
    mpta_dir = os.path.join(target_dir, pipeline_name)
 | 
			
		||||
    pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(pipeline_json_path):
 | 
			
		||||
        logging.error("pipeline.json not found in the .mpta file")
 | 
			
		||||
    with zipfile.ZipFile(zip_path, "r") as z:
 | 
			
		||||
        z.extractall(target_dir)
 | 
			
		||||
    os.remove(zip_path)
 | 
			
		||||
 | 
			
		||||
    base = os.path.splitext(os.path.basename(zip_source))[0]
 | 
			
		||||
    mpta_dir = os.path.join(target_dir, base)
 | 
			
		||||
    cfg = os.path.join(mpta_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(cfg):
 | 
			
		||||
        logging.error("pipeline.json not found in archive.")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(pipeline_json_path, "r") as f:
 | 
			
		||||
            pipeline_config = json.load(f)
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error loading pipeline.json: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    with open(cfg) as f:
 | 
			
		||||
        pipeline_config = json.load(f)
 | 
			
		||||
    return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		||||
    """
 | 
			
		||||
    Processes the frame with the given pipeline node. When return_bbox is True,
 | 
			
		||||
    the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
 | 
			
		||||
    for drawing. Otherwise, returns only the detection.
 | 
			
		||||
    - For detection nodes (task != 'classify'):
 | 
			
		||||
        • runs `track(..., classes=triggerClassIndices)`
 | 
			
		||||
        • picks top box ≥ minConfidence
 | 
			
		||||
        • optionally crops & resizes → recurse into child
 | 
			
		||||
        • else returns (det_dict, bbox)
 | 
			
		||||
    - For classify nodes:
 | 
			
		||||
        • runs `predict()`
 | 
			
		||||
        • returns top (class,confidence) and no bbox
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        # Check model type and use appropriate method
 | 
			
		||||
        model_task = getattr(node["model"], "task", None)
 | 
			
		||||
        task = getattr(node["model"], "task", None)
 | 
			
		||||
 | 
			
		||||
        # ─── Classification stage ───────────────────────────────────
 | 
			
		||||
        # if task == "classify":
 | 
			
		||||
        #     results = node["model"].predict(frame, stream=False)
 | 
			
		||||
        #     dets = []
 | 
			
		||||
        #     for r in results:
 | 
			
		||||
        #         probs = r.probs
 | 
			
		||||
        #         if probs is not None:
 | 
			
		||||
        #             # sort descending
 | 
			
		||||
        #             idxs = probs.argsort(descending=True)
 | 
			
		||||
        #             for cid in idxs:
 | 
			
		||||
        #                 dets.append({
 | 
			
		||||
        #                     "class": node["model"].names[int(cid)],
 | 
			
		||||
        #                     "confidence": float(probs[int(cid)]),
 | 
			
		||||
        #                     "id": None
 | 
			
		||||
        #                 })
 | 
			
		||||
        #     if not dets:
 | 
			
		||||
        #         return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
        #     best = dets[0]
 | 
			
		||||
        #     return (best, None) if return_bbox else best
 | 
			
		||||
        
 | 
			
		||||
        if model_task == "classify":
 | 
			
		||||
            # Classification models need to use predict() instead of track()
 | 
			
		||||
            logging.debug(f"Running classification model: {node.get('modelId')}")
 | 
			
		||||
        if task == "classify":
 | 
			
		||||
            # run the classifier and grab its top-1 directly via the Probs API
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            
 | 
			
		||||
            # Process classification results
 | 
			
		||||
            for r in results:
 | 
			
		||||
                probs = r.probs
 | 
			
		||||
                if probs is not None and len(probs) > 0:
 | 
			
		||||
                    # Get the most confident class
 | 
			
		||||
                    class_id = int(probs.top1)
 | 
			
		||||
                    conf = float(probs.top1conf)
 | 
			
		||||
                    detection = {
 | 
			
		||||
                        "class": node["model"].names[class_id],
 | 
			
		||||
                        "confidence": conf,
 | 
			
		||||
                        "id": None  # Classification doesn't have tracking IDs
 | 
			
		||||
                    }
 | 
			
		||||
            
 | 
			
		||||
            # Classification doesn't produce bounding boxes
 | 
			
		||||
            bbox = None
 | 
			
		||||
            
 | 
			
		||||
        else:
 | 
			
		||||
            # Detection/segmentation models use tracking
 | 
			
		||||
            logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
 | 
			
		||||
            results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            max_conf = -1
 | 
			
		||||
            # nothing returned?
 | 
			
		||||
            if not results:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            for r in results:
 | 
			
		||||
                for box in r.boxes:
 | 
			
		||||
                    box_cpu = box.cpu()
 | 
			
		||||
                    conf = float(box_cpu.conf[0])
 | 
			
		||||
                    if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                        max_conf = conf
 | 
			
		||||
                        detection = {
 | 
			
		||||
                            "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                            "confidence": conf,
 | 
			
		||||
                            "id": box.id.item()
 | 
			
		||||
                        }
 | 
			
		||||
                        best_box = box_cpu
 | 
			
		||||
            # take the first result's probs object
 | 
			
		||||
            r     = results[0]
 | 
			
		||||
            probs = r.probs
 | 
			
		||||
            if probs is None:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            bbox = None
 | 
			
		||||
            # Calculate bbox if best_box exists
 | 
			
		||||
            if detection and best_box is not None:
 | 
			
		||||
                coords = best_box.xyxy[0]
 | 
			
		||||
                x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
                h, w = frame.shape[:2]
 | 
			
		||||
                x1, y1 = max(0, x1), max(0, y1)
 | 
			
		||||
                x2, y2 = min(w, x2), min(h, y2)
 | 
			
		||||
                if x2 > x1 and y2 > y1:
 | 
			
		||||
                    bbox = (x1, y1, x2, y2)
 | 
			
		||||
                    if node.get("crop", False):
 | 
			
		||||
                        frame = frame[y1:y2, x1:x2]
 | 
			
		||||
            # get the top-1 class index and its confidence
 | 
			
		||||
            top1_idx  = int(probs.top1)
 | 
			
		||||
            top1_conf = float(probs.top1conf)
 | 
			
		||||
 | 
			
		||||
            det = {
 | 
			
		||||
                "class": node["model"].names[top1_idx],
 | 
			
		||||
                "confidence": top1_conf,
 | 
			
		||||
                "id": None
 | 
			
		||||
            }
 | 
			
		||||
            return (det, None) if return_bbox else det
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        # ─── Detection stage ────────────────────────────────────────
 | 
			
		||||
        # only look for your triggerClasses
 | 
			
		||||
        tk = node["triggerClassIndices"]
 | 
			
		||||
        res = node["model"].track(
 | 
			
		||||
            frame,
 | 
			
		||||
            stream=False,
 | 
			
		||||
            persist=True,
 | 
			
		||||
            **({"classes": tk} if tk else {})
 | 
			
		||||
        )[0]
 | 
			
		||||
 | 
			
		||||
        dets, boxes = [], []
 | 
			
		||||
        for box in res.boxes:
 | 
			
		||||
            conf = float(box.cpu().conf[0])
 | 
			
		||||
            cid  = int(box.cpu().cls[0])
 | 
			
		||||
            name = node["model"].names[cid]
 | 
			
		||||
            if conf < node["minConfidence"]:
 | 
			
		||||
                continue
 | 
			
		||||
            xy = box.cpu().xyxy[0]
 | 
			
		||||
            x1,y1,x2,y2 = map(int, xy)
 | 
			
		||||
            dets.append({"class": name, "confidence": conf,
 | 
			
		||||
                         "id": box.id.item() if hasattr(box, "id") else None})
 | 
			
		||||
            boxes.append((x1, y1, x2, y2))
 | 
			
		||||
 | 
			
		||||
        if not dets:
 | 
			
		||||
            return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
        # take highest‐confidence
 | 
			
		||||
        best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
 | 
			
		||||
        best_det = dets[best_idx]
 | 
			
		||||
        best_box = boxes[best_idx]
 | 
			
		||||
 | 
			
		||||
        # ─── Branch (classification) ───────────────────────────────
 | 
			
		||||
        for br in node["branches"]:
 | 
			
		||||
            if (best_det["class"] in br["triggerClasses"]
 | 
			
		||||
                    and best_det["confidence"] >= br["minConfidence"]):
 | 
			
		||||
                # crop if requested
 | 
			
		||||
                sub = frame
 | 
			
		||||
                if br["crop"]:
 | 
			
		||||
                    x1,y1,x2,y2 = best_box
 | 
			
		||||
                    sub = frame[y1:y2, x1:x2]
 | 
			
		||||
                    sub = cv2.resize(sub, (224, 224))
 | 
			
		||||
 | 
			
		||||
                det2, _ = run_pipeline(sub, br, return_bbox=True)
 | 
			
		||||
                if det2:
 | 
			
		||||
                    # return classification result + original bbox
 | 
			
		||||
                    return (det2, best_box) if return_bbox else det2
 | 
			
		||||
 | 
			
		||||
        # ─── No branch matched → return this detection ─────────────
 | 
			
		||||
        return (best_det, best_box) if return_bbox else best_det
 | 
			
		||||
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
                if detection["class"] in branch.get("triggerClasses", []):
 | 
			
		||||
                    min_conf = branch.get("minConfidence")
 | 
			
		||||
                    if min_conf is not None and detection["confidence"] < min_conf:
 | 
			
		||||
                        logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return detection, bbox
 | 
			
		||||
                        return detection
 | 
			
		||||
                    res = run_pipeline(frame, branch, return_bbox)
 | 
			
		||||
                    if res is not None:
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return res
 | 
			
		||||
                        return res
 | 
			
		||||
            if return_bbox:
 | 
			
		||||
                return detection, bbox
 | 
			
		||||
            return detection
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
        logging.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        return (None, None) if return_bbox else None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue