new logic

This commit is contained in:
Pongsatorn 2025-05-12 19:19:40 +07:00
parent 192b96d658
commit aa4e0463d4
4 changed files with 303 additions and 129 deletions

View file

@ -3,172 +3,180 @@ import json
import logging
import torch
import cv2
import requests
import zipfile
import shutil
from ultralytics import YOLO
from urllib.parse import urlparse
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
# Recursively load a model node from configuration.
model_path = os.path.join(mpta_dir, node_config["modelFile"])
if not os.path.exists(model_path):
logging.error(f"Model file {model_path} not found.")
raise FileNotFoundError(f"Model file {model_path} not found.")
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
logging.info(f"Loading model {node_config['modelId']} from {model_path}")
model = YOLO(model_path)
if torch.cuda.is_available():
model.to("cuda")
node = {
# map triggerClasses names → indices for YOLO
names = model.names # idx -> class name
trigger_names = node_config.get("triggerClasses", [])
trigger_inds = [i for i, nm in names.items() if nm in trigger_names]
return {
"modelId": node_config["modelId"],
"modelFile": node_config["modelFile"],
"triggerClasses": node_config.get("triggerClasses", []),
"triggerClasses": trigger_names,
"triggerClassIndices": trigger_inds,
"crop": node_config.get("crop", False),
"minConfidence": node_config.get("minConfidence", None),
"minConfidence": node_config.get("minConfidence", 0.0),
"model": model,
"branches": []
"branches": [
load_pipeline_node(child, mpta_dir)
for child in node_config.get("branches", [])
]
}
for child in node_config.get("branches", []):
node["branches"].append(load_pipeline_node(child, mpta_dir))
return node
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
os.makedirs(target_dir, exist_ok=True)
zip_path = os.path.join(target_dir, "pipeline.mpta")
# Parse the source; only local files are supported here.
parsed = urlparse(zip_source)
if parsed.scheme in ("", "file"):
local_path = parsed.path if parsed.scheme == "file" else zip_source
if os.path.exists(local_path):
try:
shutil.copy(local_path, zip_path)
logging.info(f"Copied local .mpta file from {local_path} to {zip_path}")
except Exception as e:
logging.error(f"Failed to copy local .mpta file from {local_path}: {e}")
return None
else:
logging.error(f"Local file {local_path} does not exist.")
local = parsed.path if parsed.scheme == "file" else zip_source
if not os.path.exists(local):
logging.error(f"Local file {local} does not exist.")
return None
shutil.copy(local, zip_path)
else:
logging.error("HTTP download functionality has been moved. Use a local file path here.")
logging.error("HTTP download not supported; use local file.")
return None
try:
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(target_dir)
logging.info(f"Extracted .mpta file to {target_dir}")
except Exception as e:
logging.error(f"Failed to extract .mpta file: {e}")
return None
finally:
if os.path.exists(zip_path):
os.remove(zip_path)
pipeline_name = os.path.basename(zip_source)
pipeline_name = os.path.splitext(pipeline_name)[0]
mpta_dir = os.path.join(target_dir, pipeline_name)
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
if not os.path.exists(pipeline_json_path):
logging.error("pipeline.json not found in the .mpta file")
with zipfile.ZipFile(zip_path, "r") as z:
z.extractall(target_dir)
os.remove(zip_path)
base = os.path.splitext(os.path.basename(zip_source))[0]
mpta_dir = os.path.join(target_dir, base)
cfg = os.path.join(mpta_dir, "pipeline.json")
if not os.path.exists(cfg):
logging.error("pipeline.json not found in archive.")
return None
try:
with open(pipeline_json_path, "r") as f:
pipeline_config = json.load(f)
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
except Exception as e:
logging.error(f"Error loading pipeline.json: {e}")
return None
with open(cfg) as f:
pipeline_config = json.load(f)
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
def run_pipeline(frame, node: dict, return_bbox: bool = False):
def run_pipeline(frame, node: dict, return_bbox: bool=False):
"""
Processes the frame with the given pipeline node. When return_bbox is True,
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
for drawing. Otherwise, returns only the detection.
- For detection nodes (task != 'classify'):
runs `track(..., classes=triggerClassIndices)`
picks top box minConfidence
optionally crops & resizes recurse into child
else returns (det_dict, bbox)
- For classify nodes:
runs `predict()`
returns top (class,confidence) and no bbox
"""
try:
# Check model type and use appropriate method
model_task = getattr(node["model"], "task", None)
task = getattr(node["model"], "task", None)
# ─── Classification stage ───────────────────────────────────
# if task == "classify":
# results = node["model"].predict(frame, stream=False)
# dets = []
# for r in results:
# probs = r.probs
# if probs is not None:
# # sort descending
# idxs = probs.argsort(descending=True)
# for cid in idxs:
# dets.append({
# "class": node["model"].names[int(cid)],
# "confidence": float(probs[int(cid)]),
# "id": None
# })
# if not dets:
# return (None, None) if return_bbox else None
# best = dets[0]
# return (best, None) if return_bbox else best
if model_task == "classify":
# Classification models need to use predict() instead of track()
logging.debug(f"Running classification model: {node.get('modelId')}")
if task == "classify":
# run the classifier and grab its top-1 directly via the Probs API
results = node["model"].predict(frame, stream=False)
detection = None
best_box = None
# Process classification results
for r in results:
probs = r.probs
if probs is not None and len(probs) > 0:
# Get the most confident class
class_id = int(probs.top1)
conf = float(probs.top1conf)
detection = {
"class": node["model"].names[class_id],
"confidence": conf,
"id": None # Classification doesn't have tracking IDs
}
# Classification doesn't produce bounding boxes
bbox = None
else:
# Detection/segmentation models use tracking
logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
results = node["model"].track(frame, stream=False, persist=True)
detection = None
best_box = None
max_conf = -1
# nothing returned?
if not results:
return (None, None) if return_bbox else None
for r in results:
for box in r.boxes:
box_cpu = box.cpu()
conf = float(box_cpu.conf[0])
if conf > max_conf and hasattr(box, "id") and box.id is not None:
max_conf = conf
detection = {
"class": node["model"].names[int(box_cpu.cls[0])],
"confidence": conf,
"id": box.id.item()
}
best_box = box_cpu
# take the first result's probs object
r = results[0]
probs = r.probs
if probs is None:
return (None, None) if return_bbox else None
bbox = None
# Calculate bbox if best_box exists
if detection and best_box is not None:
coords = best_box.xyxy[0]
x1, y1, x2, y2 = map(int, coords)
h, w = frame.shape[:2]
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
if x2 > x1 and y2 > y1:
bbox = (x1, y1, x2, y2)
if node.get("crop", False):
frame = frame[y1:y2, x1:x2]
# get the top-1 class index and its confidence
top1_idx = int(probs.top1)
top1_conf = float(probs.top1conf)
det = {
"class": node["model"].names[top1_idx],
"confidence": top1_conf,
"id": None
}
return (det, None) if return_bbox else det
# ─── Detection stage ────────────────────────────────────────
# only look for your triggerClasses
tk = node["triggerClassIndices"]
res = node["model"].track(
frame,
stream=False,
persist=True,
**({"classes": tk} if tk else {})
)[0]
dets, boxes = [], []
for box in res.boxes:
conf = float(box.cpu().conf[0])
cid = int(box.cpu().cls[0])
name = node["model"].names[cid]
if conf < node["minConfidence"]:
continue
xy = box.cpu().xyxy[0]
x1,y1,x2,y2 = map(int, xy)
dets.append({"class": name, "confidence": conf,
"id": box.id.item() if hasattr(box, "id") else None})
boxes.append((x1, y1, x2, y2))
if not dets:
return (None, None) if return_bbox else None
# take highestconfidence
best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
best_det = dets[best_idx]
best_box = boxes[best_idx]
# ─── Branch (classification) ───────────────────────────────
for br in node["branches"]:
if (best_det["class"] in br["triggerClasses"]
and best_det["confidence"] >= br["minConfidence"]):
# crop if requested
sub = frame
if br["crop"]:
x1,y1,x2,y2 = best_box
sub = frame[y1:y2, x1:x2]
sub = cv2.resize(sub, (224, 224))
det2, _ = run_pipeline(sub, br, return_bbox=True)
if det2:
# return classification result + original bbox
return (det2, best_box) if return_bbox else det2
# ─── No branch matched → return this detection ─────────────
return (best_det, best_box) if return_bbox else best_det
if detection is not None:
for branch in node["branches"]:
if detection["class"] in branch.get("triggerClasses", []):
min_conf = branch.get("minConfidence")
if min_conf is not None and detection["confidence"] < min_conf:
logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
if return_bbox:
return detection, bbox
return detection
res = run_pipeline(frame, branch, return_bbox)
if res is not None:
if return_bbox:
return res
return res
if return_bbox:
return detection, bbox
return detection
if return_bbox:
return None, None
return None
except Exception as e:
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
if return_bbox:
return None, None
return None
logging.error(f"Error in node {node.get('modelId')}: {e}")
return (None, None) if return_bbox else None