new logic

This commit is contained in:
Pongsatorn 2025-05-12 19:19:40 +07:00
parent 192b96d658
commit aa4e0463d4
4 changed files with 303 additions and 129 deletions

143
debug.py Normal file
View file

@ -0,0 +1,143 @@
import argparse
import os
import cv2
import time
import logging
import shutil
import threading # added threading
import yaml # for silencing YOLO
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
# Silence YOLO logging
os.environ["YOLO_VERBOSE"] = "False"
for logger_name in ["ultralytics", "ultralytics.hub", "ultralytics.yolo.utils"]:
logging.getLogger(logger_name).setLevel(logging.WARNING)
# Global variables for frame sharing
global_frame = None
global_ret = False
capture_running = False
def video_capture_loop(cap):
global global_frame, global_ret, capture_running
while capture_running:
global_ret, global_frame = cap.read()
time.sleep(0.01) # slight delay to reduce CPU usage
def clear_cache(cache_dir: str):
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
def log_pipeline_flow(frame, model_tree, level=0):
"""
Wrapper around run_pipeline that logs the model flow and detection results.
Returns the same output as the original run_pipeline function.
"""
indent = " " * level
model_id = model_tree.get("modelId", "unknown")
logging.info(f"{indent}→ Running model: {model_id}")
detection, bbox = run_pipeline(frame, model_tree, return_bbox=True)
if detection:
confidence = detection.get("confidence", 0) * 100
class_name = detection.get("class", "unknown")
object_id = detection.get("id", "N/A")
logging.info(f"{indent}✓ Detected: {class_name} (ID: {object_id}, confidence: {confidence:.1f}%)")
# Check if any branches were triggered
triggered = False
for branch in model_tree.get("branches", []):
trigger_classes = branch.get("triggerClasses", [])
min_conf = branch.get("minConfidence", 0)
if class_name in trigger_classes and detection.get("confidence", 0) >= min_conf:
triggered = True
if branch.get("crop", False) and bbox:
x1, y1, x2, y2 = bbox
cropped_frame = frame[y1:y2, x1:x2]
logging.info(f"{indent} ⌊ Triggering branch with cropped region {x1},{y1} to {x2},{y2}")
branch_result = log_pipeline_flow(cropped_frame, branch, level + 1)
else:
logging.info(f"{indent} ⌊ Triggering branch with full frame")
branch_result = log_pipeline_flow(frame, branch, level + 1)
if branch_result[0]: # If branch detection successful, return it
return branch_result
if not triggered and model_tree.get("branches"):
logging.info(f"{indent} ⌊ No branches triggered")
else:
logging.info(f"{indent}✗ No detection for {model_id}")
return detection, bbox
def main(mpta_file: str, video_source: str):
global capture_running
CACHE_DIR = os.path.join(".", ".mptacache")
clear_cache(CACHE_DIR)
logging.info(f"Loading pipeline from local file: {mpta_file}")
model_tree = load_pipeline_from_zip(mpta_file, CACHE_DIR)
if model_tree is None:
logging.error("Failed to load pipeline.")
return
cap = cv2.VideoCapture(video_source)
if not cap.isOpened():
logging.error(f"Cannot open video source {video_source}")
return
# Start video capture in a separate thread
capture_running = True
capture_thread = threading.Thread(target=video_capture_loop, args=(cap,))
capture_thread.start()
logging.info("Press 'q' to exit.")
try:
while True:
# Use the global frame and ret updated by the thread
if not global_ret or global_frame is None:
continue # wait until a frame is available
frame = global_frame.copy() # local copy to work with
# Replace run_pipeline with our logging version
detection, bbox = log_pipeline_flow(frame, model_tree)
# Stop if "honda" is detected
if detection and detection.get("class", "").lower() == "toyota":
logging.info("Detected 'toyota'. Stopping pipeline.")
break
if bbox:
x1, y1, x2, y2 = bbox
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
label = detection["class"] if detection else "Detection"
cv2.putText(frame, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
cv2.imshow("Pipeline Webcam", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
# Stop capture thread and cleanup
capture_running = False
capture_thread.join()
cap.release()
cv2.destroyAllWindows()
clear_cache(CACHE_DIR)
logging.info("Cleaned up .mptacache directory on shutdown.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run pipeline webcam utility.")
parser.add_argument("--mpta-file", type=str, required=True, help="Path to the local pipeline mpta (ZIP) file.")
parser.add_argument("--video", type=str, default="0", help="Video source (default webcam index 0).")
args = parser.parse_args()
video_source = int(args.video) if args.video.isdigit() else args.video
main(args.mpta_file, video_source)