Merge pull request 'fix: tracking and abandon and add fallback' (#24) from dev into main
Some checks failed
Build Worker Base and Application Images / deploy-stack (push) Blocked by required conditions
Build Worker Base and Application Images / check-base-changes (push) Successful in 9s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Has been cancelled

Reviewed-on: #24
This commit is contained in:
Chawanwit Pornnatwuttigul 2025-09-30 09:21:14 +00:00
commit a50b3dbcdf
4 changed files with 130 additions and 50 deletions

9
app.py
View file

@ -201,10 +201,11 @@ else:
os.makedirs("models", exist_ok=True)
logger.info("Ensured models directory exists")
# Initialize stream manager with config value
from core.streaming import initialize_stream_manager
initialize_stream_manager(max_streams=config.get('max_streams', 10))
logger.info(f"Initialized stream manager with max_streams={config.get('max_streams', 10)}")
# Stream manager already initialized at module level with max_streams=20
# Calling initialize_stream_manager() creates a NEW instance, breaking references
# from core.streaming import initialize_stream_manager
# initialize_stream_manager(max_streams=config.get('max_streams', 10))
logger.info(f"Using stream manager with max_streams=20 (module-level initialization)")
# Frames are now stored in the shared cache buffer from core.streaming.buffers
# latest_frames = {} # Deprecated - using shared_cache_buffer instead

View file

@ -64,6 +64,10 @@ class DetectionPipeline:
# SessionId to processing results mapping (for combining with license plate results)
self.session_processing_results = {}
# Field mappings from parallelActions (e.g., {"car_brand": "{car_brand_cls_v3.brand}"})
self.field_mappings = {}
self._parse_field_mappings()
# Statistics
self.stats = {
'detections_processed': 0,
@ -74,6 +78,25 @@ class DetectionPipeline:
logger.info("DetectionPipeline initialized")
def _parse_field_mappings(self):
"""
Parse field mappings from parallelActions.postgresql_update_combined.fields.
Extracts mappings like {"car_brand": "{car_brand_cls_v3.brand}"} for dynamic field resolution.
"""
try:
if not self.pipeline_config or not hasattr(self.pipeline_config, 'parallel_actions'):
return
for action in self.pipeline_config.parallel_actions:
if action.type.value == 'postgresql_update_combined':
fields = action.params.get('fields', {})
self.field_mappings = fields
logger.info(f"[FIELD MAPPINGS] Parsed from pipeline config: {self.field_mappings}")
break
except Exception as e:
logger.error(f"Error parsing field mappings: {e}", exc_info=True)
async def initialize(self) -> bool:
"""
Initialize all pipeline components including models, Redis, and database.
@ -165,6 +188,44 @@ class DetectionPipeline:
logger.error(f"Error initializing detection model: {e}", exc_info=True)
return False
def _extract_fields_from_branches(self, branch_results: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract fields dynamically from branch results using field mappings.
Args:
branch_results: Dictionary of branch execution results
Returns:
Dictionary with extracted field values (e.g., {"car_brand": "Honda", "body_type": "Sedan"})
"""
extracted = {}
try:
for db_field_name, template in self.field_mappings.items():
# Parse template like "{car_brand_cls_v3.brand}" -> branch_id="car_brand_cls_v3", field="brand"
if template.startswith('{') and template.endswith('}'):
var_name = template[1:-1]
if '.' in var_name:
branch_id, field_name = var_name.split('.', 1)
# Look up value in branch_results
if branch_id in branch_results:
branch_data = branch_results[branch_id]
if isinstance(branch_data, dict) and 'result' in branch_data:
result_data = branch_data['result']
if isinstance(result_data, dict) and field_name in result_data:
extracted[field_name] = result_data[field_name]
logger.debug(f"[DYNAMIC EXTRACT] {field_name}={result_data[field_name]} from branch {branch_id}")
else:
logger.debug(f"[DYNAMIC EXTRACT] Field '{field_name}' not found in branch {branch_id}")
else:
logger.debug(f"[DYNAMIC EXTRACT] Branch '{branch_id}' not in results")
except Exception as e:
logger.error(f"Error extracting fields from branches: {e}", exc_info=True)
return extracted
async def _on_license_plate_result(self, session_id: str, license_data: Dict[str, Any]):
"""
Callback for handling license plate results from LPR service.
@ -272,12 +333,12 @@ class DetectionPipeline:
branch_results = self.session_processing_results[session_id_for_lookup]
logger.info(f"[LICENSE PLATE] Retrieved processing results for session {session_id_for_lookup}")
if 'car_brand_cls_v2' in branch_results:
brand_result = branch_results['car_brand_cls_v2'].get('result', {})
car_brand = brand_result.get('brand')
if 'car_bodytype_cls_v1' in branch_results:
bodytype_result = branch_results['car_bodytype_cls_v1'].get('result', {})
body_type = bodytype_result.get('body_type')
# Extract fields dynamically using field mappings from pipeline config
extracted_fields = self._extract_fields_from_branches(branch_results)
car_brand = extracted_fields.get('brand')
body_type = extracted_fields.get('body_type')
logger.info(f"[LICENSE PLATE] Extracted fields: brand={car_brand}, body_type={body_type}")
# Clean up stored results after use
del self.session_processing_results[session_id_for_lookup]
@ -1003,7 +1064,7 @@ class DetectionPipeline:
Resolve field template using branch results and context.
Args:
template: Template string like "{car_brand_cls_v2.brand}"
template: Template string like "{car_brand_cls_v3.brand}"
branch_results: Dictionary of branch execution results
context: Detection context
@ -1015,7 +1076,7 @@ class DetectionPipeline:
if template.startswith('{') and template.endswith('}'):
var_name = template[1:-1]
# Check for branch result reference (e.g., "car_brand_cls_v2.brand")
# Check for branch result reference (e.g., "car_brand_cls_v3.brand")
if '.' in var_name:
branch_id, field_name = var_name.split('.', 1)
if branch_id in branch_results:
@ -1061,17 +1122,10 @@ class DetectionPipeline:
logger.warning("No session_id in context for processing results")
return
# Extract car brand from car_brand_cls_v2 results
car_brand = None
if 'car_brand_cls_v2' in branch_results:
brand_result = branch_results['car_brand_cls_v2'].get('result', {})
car_brand = brand_result.get('brand')
# Extract body type from car_bodytype_cls_v1 results
body_type = None
if 'car_bodytype_cls_v1' in branch_results:
bodytype_result = branch_results['car_bodytype_cls_v1'].get('result', {})
body_type = bodytype_result.get('body_type')
# Extract fields dynamically using field mappings from pipeline config
extracted_fields = self._extract_fields_from_branches(branch_results)
car_brand = extracted_fields.get('brand')
body_type = extracted_fields.get('body_type')
logger.info(f"[PROCESSING RESULTS] Completed for session {session_id}: "
f"brand={car_brand}, bodyType={body_type}")

View file

@ -85,8 +85,9 @@ class StreamManager:
with self._round_robin_lock:
if camera_id not in self._camera_list:
self._camera_list.append(camera_id)
logger.info(f"Created tracking queue for camera {camera_id}")
else:
logger.debug(f"Camera {camera_id} already has tracking queue")
def _remove_camera_queue(self, camera_id: str):
"""Remove tracking queue for a camera that's no longer active."""
@ -153,6 +154,10 @@ class StreamManager:
if not success:
self._remove_subscription_internal(subscription_id)
return False
else:
# Stream already exists, but ensure queue exists too
logger.info(f"Stream already exists for {camera_id}, ensuring queue exists")
self._ensure_camera_queue(camera_id)
logger.info(f"Added subscription {subscription_id} for camera {camera_id} "
f"({len(self._camera_subscribers[camera_id])} total subscribers)")
@ -367,24 +372,26 @@ class StreamManager:
def _get_next_camera_item(self):
"""Get next item from camera queues using round-robin scheduling."""
with self._round_robin_lock:
if not self._camera_list:
# Get current list of cameras from actual tracking queues (central state)
camera_list = list(self._tracking_queues.keys())
if not camera_list:
return None, None
attempts = 0
max_attempts = len(self._camera_list)
max_attempts = len(camera_list)
while attempts < max_attempts:
# Get current camera
if self._camera_round_robin_index >= len(self._camera_list):
# Get current camera using round-robin index
if self._camera_round_robin_index >= len(camera_list):
self._camera_round_robin_index = 0
camera_id = self._camera_list[self._camera_round_robin_index]
camera_id = camera_list[self._camera_round_robin_index]
# Move to next camera for next call
self._camera_round_robin_index = (self._camera_round_robin_index + 1) % len(self._camera_list)
self._camera_round_robin_index = (self._camera_round_robin_index + 1) % len(camera_list)
# Try to get item from this camera's queue
if camera_id in self._tracking_queues:
try:
item = self._tracking_queues[camera_id].get_nowait()
return camera_id, item
@ -404,7 +411,12 @@ class StreamManager:
for subscription_id in subscription_ids:
subscription_info = self._subscriptions.get(subscription_id)
if not subscription_info or not subscription_info.tracking_integration:
if not subscription_info:
logger.warning(f"No subscription info found for {subscription_id}")
continue
if not subscription_info.tracking_integration:
logger.debug(f"No tracking integration for {subscription_id} (camera {camera_id}), skipping inference")
continue
display_id = subscription_id.split(';')[0] if ';' in subscription_id else subscription_id

View file

@ -220,8 +220,10 @@ class TrackingPipelineIntegration:
)
# Update last detection time for abandonment detection
# Update when vehicles ARE detected, so when they leave, timestamp ages
if tracked_vehicles:
self.last_detection_time[display_id] = time.time()
logger.debug(f"Updated last_detection_time for {display_id}: {len(tracked_vehicles)} vehicles")
# Check for car abandonment (vehicle left after getting car_wait_staff stage)
await self._check_car_abandonment(display_id, subscription_id)
@ -521,6 +523,8 @@ class TrackingPipelineIntegration:
logger.warning(f"No pending processing data found for display {display_id} when setting session {session_id}")
# FALLBACK: Execute pipeline for POS-initiated sessions
# Skip if session_id is None (no car present or car has left)
if session_id is not None:
# Use stored subscription_id instead of creating fake one
stored_subscription_id = self.display_to_subscription.get(display_id)
if stored_subscription_id:
@ -534,6 +538,8 @@ class TrackingPipelineIntegration:
))
else:
logger.error(f"[FALLBACK] No subscription_id stored for display {display_id}, cannot execute fallback pipeline")
else:
logger.debug(f"[FALLBACK] Skipping pipeline execution for session_id=None on display {display_id}")
def clear_session_id(self, session_id: str):
"""
@ -628,10 +634,16 @@ class TrackingPipelineIntegration:
last_detection = self.last_detection_time.get(session_display, 0)
time_since_detection = current_time - last_detection
logger.info(f"[ABANDON CHECK] Session {session_id} (display: {session_display}): "
f"time_since_detection={time_since_detection:.1f}s, "
f"timeout={self.abandonment_timeout}s")
if time_since_detection > self.abandonment_timeout:
logger.info(f"Car abandonment detected: session {session_id}, "
logger.warning(f"🚨 Car abandonment detected: session {session_id}, "
f"no detection for {time_since_detection:.1f}s")
abandoned_sessions.append(session_id)
else:
logger.debug(f"[ABANDON CHECK] Session {session_id} has no associated display")
# Send abandonment detection for each abandoned session
for session_id in abandoned_sessions:
@ -639,6 +651,7 @@ class TrackingPipelineIntegration:
# Remove from progression stages to avoid repeated detection
if session_id in self.progression_stages:
del self.progression_stages[session_id]
logger.info(f"[ABANDON] Removed session {session_id} from progression_stages after notification")
async def _send_abandonment_detection(self, subscription_id: str, session_id: str):
"""