fix: car detection use wrong image source
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 6s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 3m34s
Build Worker Base and Application Images / deploy-stack (push) Successful in 15s

This commit is contained in:
ziesorx 2025-10-20 16:54:27 +07:00
parent 5e59e00c55
commit a4cfb264b9
3 changed files with 98 additions and 34 deletions

View file

@ -350,10 +350,21 @@ class TrackingPipelineIntegration:
'session_id': session_id
}
# Fetch high-quality 2K snapshot for detection phase (not RTSP frame)
# This ensures bbox coordinates match the frame used in processing phase
logger.info(f"[DETECTION PHASE] Fetching 2K snapshot for vehicle {vehicle.track_id}")
snapshot_frame = self._fetch_snapshot()
if snapshot_frame is None:
logger.warning(f"[DETECTION PHASE] Failed to fetch snapshot, falling back to RTSP frame")
snapshot_frame = frame # Fallback to RTSP if snapshot fails
else:
logger.info(f"[DETECTION PHASE] Using {snapshot_frame.shape[1]}x{snapshot_frame.shape[0]} snapshot for detection")
# Execute only the detection phase (first phase)
# This will run detection and send imageDetection message to backend
detection_result = await self.detection_pipeline.execute_detection_phase(
frame=frame,
frame=snapshot_frame, # Use 2K snapshot instead of RTSP frame
display_id=display_id,
subscription_id=subscription_id
)
@ -373,13 +384,13 @@ class TrackingPipelineIntegration:
if detection_result['message_sent']:
# Store for later processing when sessionId is received
self.pending_processing_data[display_id] = {
'frame': frame.copy(), # Store copy of frame for processing phase
'frame': snapshot_frame.copy(), # Store copy of 2K snapshot (not RTSP frame!)
'vehicle': vehicle,
'subscription_id': subscription_id,
'detection_result': detection_result,
'timestamp': time.time()
}
logger.info(f"Stored processing data for {display_id}, waiting for sessionId from backend")
logger.info(f"Stored processing data ({snapshot_frame.shape[1]}x{snapshot_frame.shape[0]} frame) for {display_id}, waiting for sessionId from backend")
return detection_result
@ -413,14 +424,27 @@ class TrackingPipelineIntegration:
logger.info(f"Executing processing phase for session {session_id}, vehicle {vehicle.track_id}")
# Capture high-quality snapshot for pipeline processing
logger.info(f"[PROCESSING PHASE] Fetching 2K snapshot for session {session_id}")
frame = self._fetch_snapshot()
# Reuse the snapshot from detection phase OR fetch fresh one if detection used RTSP fallback
detection_frame = processing_data['frame']
frame_height = detection_frame.shape[0]
if frame is None:
logger.warning(f"[PROCESSING PHASE] Failed to capture snapshot, falling back to RTSP frame")
# Fall back to RTSP frame if snapshot fails
frame = processing_data['frame']
# Check if detection phase used 2K snapshot (height > 1000) or RTSP fallback (height = 720)
if frame_height >= 1000:
# Detection used 2K snapshot - reuse it for consistent coordinates
logger.info(f"[PROCESSING PHASE] Reusing 2K snapshot from detection phase ({detection_frame.shape[1]}x{detection_frame.shape[0]})")
frame = detection_frame
else:
# Detection used RTSP fallback - need to fetch fresh 2K snapshot
logger.warning(f"[PROCESSING PHASE] Detection used RTSP fallback ({detection_frame.shape[1]}x{detection_frame.shape[0]}), fetching fresh 2K snapshot")
frame = self._fetch_snapshot()
if frame is None:
logger.error(f"[PROCESSING PHASE] Failed to fetch snapshot and detection used RTSP - coordinate mismatch will occur!")
logger.error(f"[PROCESSING PHASE] Cannot proceed with mismatched coordinates. Aborting processing phase.")
return # Cannot process safely - bbox coordinates won't match frame resolution
else:
logger.warning(f"[PROCESSING PHASE] Fetched fresh 2K snapshot ({frame.shape[1]}x{frame.shape[0]}), but coordinates may not match exactly")
logger.warning(f"[PROCESSING PHASE] Re-running detection on fresh snapshot is recommended but not implemented yet")
# Extract detected regions from detection phase result if available
detected_regions = detection_result.get('detected_regions', {})