fix: car detection use wrong image source
	
		
			
	
		
	
	
		
	
		
			All checks were successful
		
		
	
	
		
			
				
	
				Build Worker Base and Application Images / check-base-changes (push) Successful in 6s
				
			
		
			
				
	
				Build Worker Base and Application Images / build-base (push) Has been skipped
				
			
		
			
				
	
				Build Worker Base and Application Images / build-docker (push) Successful in 3m34s
				
			
		
			
				
	
				Build Worker Base and Application Images / deploy-stack (push) Successful in 15s
				
			
		
		
	
	
				
					
				
			
		
			All checks were successful
		
		
	
	Build Worker Base and Application Images / check-base-changes (push) Successful in 6s
				
			Build Worker Base and Application Images / build-base (push) Has been skipped
				
			Build Worker Base and Application Images / build-docker (push) Successful in 3m34s
				
			Build Worker Base and Application Images / deploy-stack (push) Successful in 15s
				
			This commit is contained in:
		
							parent
							
								
									5e59e00c55
								
							
						
					
					
						commit
						a4cfb264b9
					
				
					 3 changed files with 98 additions and 34 deletions
				
			
		| 
						 | 
				
			
			@ -393,7 +393,12 @@ class BranchProcessor:
 | 
			
		|||
        trigger_classes = getattr(branch_config, 'trigger_classes', [])
 | 
			
		||||
        logger.info(f"[DETECTED REGIONS] {branch_id}: Available parent detections: {list(detected_regions.keys())}")
 | 
			
		||||
        for region_name, region_data in detected_regions.items():
 | 
			
		||||
            logger.debug(f"[REGION DATA] {branch_id}: '{region_name}' -> bbox={region_data.get('bbox')}, conf={region_data.get('confidence')}")
 | 
			
		||||
            # Handle both list (new) and single dict (backward compat)
 | 
			
		||||
            if isinstance(region_data, list):
 | 
			
		||||
                for i, region in enumerate(region_data):
 | 
			
		||||
                    logger.debug(f"[REGION DATA] {branch_id}: '{region_name}[{i}]' -> bbox={region.get('bbox')}, conf={region.get('confidence')}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"[REGION DATA] {branch_id}: '{region_name}' -> bbox={region_data.get('bbox')}, conf={region_data.get('confidence')}")
 | 
			
		||||
 | 
			
		||||
        if trigger_classes:
 | 
			
		||||
            # Check if any parent detection matches our trigger classes (case-insensitive)
 | 
			
		||||
| 
						 | 
				
			
			@ -454,18 +459,24 @@ class BranchProcessor:
 | 
			
		|||
 | 
			
		||||
                for crop_class in crop_classes:
 | 
			
		||||
                    if crop_class in detected_regions:
 | 
			
		||||
                        region = detected_regions[crop_class]
 | 
			
		||||
                        confidence = region.get('confidence', 0.0)
 | 
			
		||||
                        regions = detected_regions[crop_class]
 | 
			
		||||
 | 
			
		||||
                        # Select largest bbox (no confidence filtering - parent already validated it)
 | 
			
		||||
                        bbox = region['bbox']
 | 
			
		||||
                        area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])  # width * height
 | 
			
		||||
                        # Handle both list (new) and single dict (backward compat)
 | 
			
		||||
                        if not isinstance(regions, list):
 | 
			
		||||
                            regions = [regions]
 | 
			
		||||
 | 
			
		||||
                        # Choose biggest bbox among available detections
 | 
			
		||||
                        if area > best_area:
 | 
			
		||||
                            best_region = region
 | 
			
		||||
                            best_class = crop_class
 | 
			
		||||
                            best_area = area
 | 
			
		||||
                        # Find largest bbox from all detections of this class
 | 
			
		||||
                        for region in regions:
 | 
			
		||||
                            confidence = region.get('confidence', 0.0)
 | 
			
		||||
                            bbox = region['bbox']
 | 
			
		||||
                            area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])  # width * height
 | 
			
		||||
 | 
			
		||||
                            # Choose biggest bbox among all available detections
 | 
			
		||||
                            if area > best_area:
 | 
			
		||||
                                best_region = region
 | 
			
		||||
                                best_class = crop_class
 | 
			
		||||
                                best_area = area
 | 
			
		||||
                                logger.debug(f"[CROP] Selected larger bbox for '{crop_class}': area={area:.0f}px², conf={confidence:.3f}")
 | 
			
		||||
 | 
			
		||||
                if best_region:
 | 
			
		||||
                    bbox = best_region['bbox']
 | 
			
		||||
| 
						 | 
				
			
			@ -483,7 +494,6 @@ class BranchProcessor:
 | 
			
		|||
            logger.info(f"[INFERENCE START] {branch_id}: Running inference on {'cropped' if input_frame is not frame else 'full'} frame "
 | 
			
		||||
                       f"({input_frame.shape[1]}x{input_frame.shape[0]}) with confidence={min_confidence}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            # Use .predict() method for both detection and classification models
 | 
			
		||||
            inference_start = time.time()
 | 
			
		||||
            detection_results = model.model.predict(input_frame, conf=min_confidence, verbose=False)
 | 
			
		||||
| 
						 | 
				
			
			@ -690,10 +700,26 @@ class BranchProcessor:
 | 
			
		|||
            bbox = None
 | 
			
		||||
            if region_name and region_name in detected_regions:
 | 
			
		||||
                # Crop the specified region
 | 
			
		||||
                bbox = detected_regions[region_name]['bbox']
 | 
			
		||||
                # Handle both list (new) and single dict (backward compat)
 | 
			
		||||
                regions = detected_regions[region_name]
 | 
			
		||||
                if isinstance(regions, list):
 | 
			
		||||
                    # Multiple detections - select largest bbox
 | 
			
		||||
                    if regions:
 | 
			
		||||
                        best_region = max(regions, key=lambda r: (r['bbox'][2] - r['bbox'][0]) * (r['bbox'][3] - r['bbox'][1]))
 | 
			
		||||
                        bbox = best_region['bbox']
 | 
			
		||||
                else:
 | 
			
		||||
                    bbox = regions['bbox']
 | 
			
		||||
            elif region_name and region_name.lower() == 'frontal' and 'front_rear' in detected_regions:
 | 
			
		||||
                # Special case: "frontal" region maps to "front_rear" detection
 | 
			
		||||
                bbox = detected_regions['front_rear']['bbox']
 | 
			
		||||
                # Handle both list (new) and single dict (backward compat)
 | 
			
		||||
                regions = detected_regions['front_rear']
 | 
			
		||||
                if isinstance(regions, list):
 | 
			
		||||
                    # Multiple detections - select largest bbox
 | 
			
		||||
                    if regions:
 | 
			
		||||
                        best_region = max(regions, key=lambda r: (r['bbox'][2] - r['bbox'][0]) * (r['bbox'][3] - r['bbox'][1]))
 | 
			
		||||
                        bbox = best_region['bbox']
 | 
			
		||||
                else:
 | 
			
		||||
                    bbox = regions['bbox']
 | 
			
		||||
 | 
			
		||||
            if bbox is not None:
 | 
			
		||||
                x1, y1, x2, y2 = [int(coord) for coord in bbox]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -495,11 +495,13 @@ class DetectionPipeline:
 | 
			
		|||
                        }
 | 
			
		||||
                        valid_detections.append(detection_info)
 | 
			
		||||
 | 
			
		||||
                        # Store region for processing phase
 | 
			
		||||
                        detected_regions[class_name] = {
 | 
			
		||||
                        # Store region for processing phase (support multiple detections per class)
 | 
			
		||||
                        if class_name not in detected_regions:
 | 
			
		||||
                            detected_regions[class_name] = []
 | 
			
		||||
                        detected_regions[class_name].append({
 | 
			
		||||
                            'bbox': bbox,
 | 
			
		||||
                            'confidence': confidence
 | 
			
		||||
                        }
 | 
			
		||||
                        })
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning("[DETECTION PHASE] No boxes found in detection results")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -951,14 +953,26 @@ class DetectionPipeline:
 | 
			
		|||
 | 
			
		||||
            if region_name and region_name in detected_regions:
 | 
			
		||||
                # Crop the specified region
 | 
			
		||||
                bbox = detected_regions[region_name]['bbox']
 | 
			
		||||
                x1, y1, x2, y2 = [int(coord) for coord in bbox]
 | 
			
		||||
                cropped = frame[y1:y2, x1:x2]
 | 
			
		||||
                if cropped.size > 0:
 | 
			
		||||
                    image_to_save = cropped
 | 
			
		||||
                    logger.debug(f"Cropped region '{region_name}' for redis_save_image")
 | 
			
		||||
                # Handle both list (new) and single dict (backward compat)
 | 
			
		||||
                regions = detected_regions[region_name]
 | 
			
		||||
                if isinstance(regions, list):
 | 
			
		||||
                    # Multiple detections - select largest bbox
 | 
			
		||||
                    if regions:
 | 
			
		||||
                        best_region = max(regions, key=lambda r: (r['bbox'][2] - r['bbox'][0]) * (r['bbox'][3] - r['bbox'][1]))
 | 
			
		||||
                        bbox = best_region['bbox']
 | 
			
		||||
                    else:
 | 
			
		||||
                        bbox = None
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(f"Empty crop for region '{region_name}', using full frame")
 | 
			
		||||
                    bbox = regions['bbox']
 | 
			
		||||
 | 
			
		||||
                if bbox:
 | 
			
		||||
                    x1, y1, x2, y2 = [int(coord) for coord in bbox]
 | 
			
		||||
                    cropped = frame[y1:y2, x1:x2]
 | 
			
		||||
                    if cropped.size > 0:
 | 
			
		||||
                        image_to_save = cropped
 | 
			
		||||
                        logger.debug(f"Cropped region '{region_name}' for redis_save_image")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Empty crop for region '{region_name}', using full frame")
 | 
			
		||||
 | 
			
		||||
            # Format key with context
 | 
			
		||||
            key = action.params['key'].format(**context)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -350,10 +350,21 @@ class TrackingPipelineIntegration:
 | 
			
		|||
                    'session_id': session_id
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            # Fetch high-quality 2K snapshot for detection phase (not RTSP frame)
 | 
			
		||||
            # This ensures bbox coordinates match the frame used in processing phase
 | 
			
		||||
            logger.info(f"[DETECTION PHASE] Fetching 2K snapshot for vehicle {vehicle.track_id}")
 | 
			
		||||
            snapshot_frame = self._fetch_snapshot()
 | 
			
		||||
 | 
			
		||||
            if snapshot_frame is None:
 | 
			
		||||
                logger.warning(f"[DETECTION PHASE] Failed to fetch snapshot, falling back to RTSP frame")
 | 
			
		||||
                snapshot_frame = frame  # Fallback to RTSP if snapshot fails
 | 
			
		||||
            else:
 | 
			
		||||
                logger.info(f"[DETECTION PHASE] Using {snapshot_frame.shape[1]}x{snapshot_frame.shape[0]} snapshot for detection")
 | 
			
		||||
 | 
			
		||||
            # Execute only the detection phase (first phase)
 | 
			
		||||
            # This will run detection and send imageDetection message to backend
 | 
			
		||||
            detection_result = await self.detection_pipeline.execute_detection_phase(
 | 
			
		||||
                frame=frame,
 | 
			
		||||
                frame=snapshot_frame,  # Use 2K snapshot instead of RTSP frame
 | 
			
		||||
                display_id=display_id,
 | 
			
		||||
                subscription_id=subscription_id
 | 
			
		||||
            )
 | 
			
		||||
| 
						 | 
				
			
			@ -373,13 +384,13 @@ class TrackingPipelineIntegration:
 | 
			
		|||
            if detection_result['message_sent']:
 | 
			
		||||
                # Store for later processing when sessionId is received
 | 
			
		||||
                self.pending_processing_data[display_id] = {
 | 
			
		||||
                    'frame': frame.copy(),  # Store copy of frame for processing phase
 | 
			
		||||
                    'frame': snapshot_frame.copy(),  # Store copy of 2K snapshot (not RTSP frame!)
 | 
			
		||||
                    'vehicle': vehicle,
 | 
			
		||||
                    'subscription_id': subscription_id,
 | 
			
		||||
                    'detection_result': detection_result,
 | 
			
		||||
                    'timestamp': time.time()
 | 
			
		||||
                }
 | 
			
		||||
                logger.info(f"Stored processing data for {display_id}, waiting for sessionId from backend")
 | 
			
		||||
                logger.info(f"Stored processing data ({snapshot_frame.shape[1]}x{snapshot_frame.shape[0]} frame) for {display_id}, waiting for sessionId from backend")
 | 
			
		||||
 | 
			
		||||
            return detection_result
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -413,14 +424,27 @@ class TrackingPipelineIntegration:
 | 
			
		|||
 | 
			
		||||
            logger.info(f"Executing processing phase for session {session_id}, vehicle {vehicle.track_id}")
 | 
			
		||||
 | 
			
		||||
            # Capture high-quality snapshot for pipeline processing
 | 
			
		||||
            logger.info(f"[PROCESSING PHASE] Fetching 2K snapshot for session {session_id}")
 | 
			
		||||
            frame = self._fetch_snapshot()
 | 
			
		||||
            # Reuse the snapshot from detection phase OR fetch fresh one if detection used RTSP fallback
 | 
			
		||||
            detection_frame = processing_data['frame']
 | 
			
		||||
            frame_height = detection_frame.shape[0]
 | 
			
		||||
 | 
			
		||||
            if frame is None:
 | 
			
		||||
                logger.warning(f"[PROCESSING PHASE] Failed to capture snapshot, falling back to RTSP frame")
 | 
			
		||||
                # Fall back to RTSP frame if snapshot fails
 | 
			
		||||
                frame = processing_data['frame']
 | 
			
		||||
            # Check if detection phase used 2K snapshot (height > 1000) or RTSP fallback (height = 720)
 | 
			
		||||
            if frame_height >= 1000:
 | 
			
		||||
                # Detection used 2K snapshot - reuse it for consistent coordinates
 | 
			
		||||
                logger.info(f"[PROCESSING PHASE] Reusing 2K snapshot from detection phase ({detection_frame.shape[1]}x{detection_frame.shape[0]})")
 | 
			
		||||
                frame = detection_frame
 | 
			
		||||
            else:
 | 
			
		||||
                # Detection used RTSP fallback - need to fetch fresh 2K snapshot
 | 
			
		||||
                logger.warning(f"[PROCESSING PHASE] Detection used RTSP fallback ({detection_frame.shape[1]}x{detection_frame.shape[0]}), fetching fresh 2K snapshot")
 | 
			
		||||
                frame = self._fetch_snapshot()
 | 
			
		||||
 | 
			
		||||
                if frame is None:
 | 
			
		||||
                    logger.error(f"[PROCESSING PHASE] Failed to fetch snapshot and detection used RTSP - coordinate mismatch will occur!")
 | 
			
		||||
                    logger.error(f"[PROCESSING PHASE] Cannot proceed with mismatched coordinates. Aborting processing phase.")
 | 
			
		||||
                    return  # Cannot process safely - bbox coordinates won't match frame resolution
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(f"[PROCESSING PHASE] Fetched fresh 2K snapshot ({frame.shape[1]}x{frame.shape[0]}), but coordinates may not match exactly")
 | 
			
		||||
                    logger.warning(f"[PROCESSING PHASE] Re-running detection on fresh snapshot is recommended but not implemented yet")
 | 
			
		||||
 | 
			
		||||
            # Extract detected regions from detection phase result if available
 | 
			
		||||
            detected_regions = detection_result.get('detected_regions', {})
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue