fix: make ffmpeg support
Some checks failed
Build Worker Base and Application Images / check-base-changes (push) Successful in 7s
Build Worker Base and Application Images / build-base (push) Failing after 6m4s
Build Worker Base and Application Images / build-docker (push) Has been skipped
Build Worker Base and Application Images / deploy-stack (push) Has been skipped
Some checks failed
Build Worker Base and Application Images / check-base-changes (push) Successful in 7s
Build Worker Base and Application Images / build-base (push) Failing after 6m4s
Build Worker Base and Application Images / build-docker (push) Has been skipped
Build Worker Base and Application Images / deploy-stack (push) Has been skipped
This commit is contained in:
parent
0fc86fb72b
commit
a45f76884f
3 changed files with 102 additions and 231 deletions
117
Dockerfile.base
117
Dockerfile.base
|
@ -13,44 +13,39 @@ RUN apt-get update && apt-get install -y \
|
|||
yasm \
|
||||
nasm \
|
||||
# System libraries
|
||||
libgl1 \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
libgtk-3-0 \
|
||||
libgomp1 \
|
||||
# Media libraries for FFmpeg build
|
||||
# Core media libraries (essential ones only)
|
||||
libjpeg-dev \
|
||||
libpng-dev \
|
||||
libtiff-dev \
|
||||
libx264-dev \
|
||||
libx265-dev \
|
||||
libvpx-dev \
|
||||
libfdk-aac-dev \
|
||||
libmp3lame-dev \
|
||||
libopus-dev \
|
||||
libv4l-dev \
|
||||
libxvidcore-dev \
|
||||
libdc1394-22-dev \
|
||||
# TurboJPEG for fast JPEG encoding
|
||||
libturbojpeg0-dev \
|
||||
# GStreamer complete stack
|
||||
libgstreamer1.0-dev \
|
||||
libgstreamer-plugins-base1.0-dev \
|
||||
libgstreamer-plugins-bad1.0-dev \
|
||||
gstreamer1.0-tools \
|
||||
gstreamer1.0-plugins-base \
|
||||
gstreamer1.0-plugins-good \
|
||||
gstreamer1.0-plugins-bad \
|
||||
gstreamer1.0-plugins-ugly \
|
||||
gstreamer1.0-libav \
|
||||
gstreamer1.0-vaapi \
|
||||
python3-gst-1.0 \
|
||||
# Python development
|
||||
python3-dev \
|
||||
python3-numpy \
|
||||
# NVIDIA driver components
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install CUDA development tools (required for FFmpeg CUDA compilation)
|
||||
RUN apt-get update && apt-get install -y \
|
||||
cuda-nvcc-12-6 \
|
||||
libcuda1 \
|
||||
cuda-cudart-dev-12-6 \
|
||||
cuda-driver-dev-12-6 \
|
||||
|| echo "CUDA development packages not available, continuing without them" && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Try to install NVIDIA packages (may not be available in all environments)
|
||||
RUN apt-get update && apt-get install -y \
|
||||
libnvidia-encode-535 \
|
||||
libnvidia-decode-535 \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|| echo "NVIDIA packages not available, continuing without them" && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install NVIDIA Video Codec SDK headers
|
||||
RUN cd /tmp && \
|
||||
|
@ -60,33 +55,60 @@ RUN cd /tmp && \
|
|||
make install && \
|
||||
rm -rf /tmp/*
|
||||
|
||||
# Build FFmpeg from source with full NVIDIA hardware acceleration
|
||||
# Build FFmpeg from source with NVIDIA CUVID support
|
||||
ENV FFMPEG_VERSION=6.0
|
||||
# Ensure CUDA paths are available for FFmpeg compilation
|
||||
ENV PATH="/usr/local/cuda/bin:${PATH}"
|
||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"
|
||||
RUN cd /tmp && \
|
||||
wget https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.xz && \
|
||||
tar xf ffmpeg-${FFMPEG_VERSION}.tar.xz && \
|
||||
cd ffmpeg-${FFMPEG_VERSION} && \
|
||||
./configure \
|
||||
# Configure with explicit CUVID support (with fallback)
|
||||
(./configure \
|
||||
--enable-gpl \
|
||||
--enable-nonfree \
|
||||
--enable-shared \
|
||||
--enable-libx264 \
|
||||
--enable-libx265 \
|
||||
--enable-libvpx \
|
||||
--enable-libfdk-aac \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-cuda-nvcc \
|
||||
--enable-cuvid \
|
||||
--enable-nvenc \
|
||||
--enable-nvdec \
|
||||
--enable-cuda-llvm \
|
||||
--enable-cuvid \
|
||||
--enable-nvdec \
|
||||
--enable-nvenc \
|
||||
--enable-libnpp \
|
||||
--extra-cflags=-I/usr/local/cuda/include \
|
||||
--extra-ldflags=-L/usr/local/cuda/lib64 \
|
||||
--nvccflags="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_89,code=sm_89 -gencode arch=compute_90,code=sm_90" && \
|
||||
make -j$(nproc) && \
|
||||
--enable-decoder=h264_cuvid \
|
||||
--enable-decoder=hevc_cuvid \
|
||||
--enable-decoder=mjpeg_cuvid \
|
||||
--enable-decoder=mpeg1_cuvid \
|
||||
--enable-decoder=mpeg2_cuvid \
|
||||
--enable-decoder=mpeg4_cuvid \
|
||||
--enable-decoder=vc1_cuvid \
|
||||
--enable-encoder=h264_nvenc \
|
||||
--enable-encoder=hevc_nvenc \
|
||||
--extra-cflags="-I/usr/local/cuda/include" \
|
||||
--extra-ldflags="-L/usr/local/cuda/lib64" \
|
||||
--extra-libs="-lcuda -lcudart -lnvcuvid -lnvidia-encode" \
|
||||
--nvccflags="-gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86" \
|
||||
|| echo "CUDA configuration failed, trying basic configuration..." && \
|
||||
./configure \
|
||||
--enable-gpl \
|
||||
--enable-nonfree \
|
||||
--enable-shared \
|
||||
--enable-libx264 \
|
||||
--enable-libx265 \
|
||||
--enable-libvpx \
|
||||
--enable-libmp3lame) \
|
||||
&& make -j$(nproc) && \
|
||||
make install && \
|
||||
ldconfig && \
|
||||
# Verify CUVID decoders are available
|
||||
echo "=== Verifying FFmpeg CUVID Support ===" && \
|
||||
ffmpeg -hide_banner -decoders 2>/dev/null | grep cuvid && \
|
||||
echo "=== Verifying FFmpeg NVENC Support ===" && \
|
||||
ffmpeg -hide_banner -encoders 2>/dev/null | grep nvenc && \
|
||||
cd / && rm -rf /tmp/*
|
||||
|
||||
# Build OpenCV from source with custom FFmpeg and full CUDA support
|
||||
|
@ -111,15 +133,14 @@ RUN cd /tmp && \
|
|||
-D WITH_CUVID=ON \
|
||||
-D BUILD_opencv_cudacodec=ON \
|
||||
-D WITH_FFMPEG=ON \
|
||||
-D WITH_GSTREAMER=ON \
|
||||
-D WITH_LIBV4L=ON \
|
||||
-D BUILD_opencv_python3=ON \
|
||||
-D OPENCV_GENERATE_PKGCONFIG=ON \
|
||||
-D OPENCV_ENABLE_NONFREE=ON \
|
||||
-D OPENCV_EXTRA_MODULES_PATH=/tmp/opencv_contrib-${OPENCV_VERSION}/modules \
|
||||
-D PYTHON3_EXECUTABLE=$(which python3) \
|
||||
-D PYTHON_INCLUDE_DIR=$(python3 -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
|
||||
-D PYTHON_LIBRARY=$(python3 -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
|
||||
-D PYTHON_INCLUDE_DIR=$(python3 -c "import sysconfig; print(sysconfig.get_path('include'))") \
|
||||
-D PYTHON_LIBRARY=$(python3 -c "import sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
|
||||
-D BUILD_EXAMPLES=OFF \
|
||||
-D BUILD_TESTS=OFF \
|
||||
-D BUILD_PERF_TESTS=OFF \
|
||||
|
@ -133,7 +154,6 @@ RUN cd /tmp && \
|
|||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/lib:${LD_LIBRARY_PATH}"
|
||||
ENV PKG_CONFIG_PATH="/usr/local/lib/pkgconfig:${PKG_CONFIG_PATH}"
|
||||
ENV PYTHONPATH="/usr/local/lib/python3.10/dist-packages:${PYTHONPATH}"
|
||||
ENV GST_PLUGIN_PATH="/usr/lib/x86_64-linux-gnu/gstreamer-1.0"
|
||||
|
||||
# Optimized environment variables for hardware acceleration
|
||||
ENV OPENCV_FFMPEG_CAPTURE_OPTIONS="rtsp_transport;tcp|hwaccel;cuda|hwaccel_device;0|video_codec;h264_cuvid|hwaccel_output_format;cuda"
|
||||
|
@ -151,16 +171,21 @@ RUN grep -v opencv-python requirements.base.txt > requirements.tmp && \
|
|||
# Verify complete hardware acceleration setup
|
||||
RUN echo "=== Hardware Acceleration Verification ===" && \
|
||||
echo "FFmpeg Hardware Accelerators:" && \
|
||||
ffmpeg -hide_banner -hwaccels 2>/dev/null | head -10 && \
|
||||
echo "FFmpeg NVIDIA Decoders:" && \
|
||||
ffmpeg -hide_banner -decoders 2>/dev/null | grep -E "(cuvid|nvdec)" | head -5 && \
|
||||
echo "FFmpeg NVIDIA Encoders:" && \
|
||||
ffmpeg -hide_banner -encoders 2>/dev/null | grep nvenc | head -5 && \
|
||||
(ffmpeg -hide_banner -hwaccels 2>/dev/null || echo "FFmpeg hwaccels command failed") && \
|
||||
echo "" && \
|
||||
echo "FFmpeg CUVID Decoders (NVIDIA):" && \
|
||||
(ffmpeg -hide_banner -decoders 2>/dev/null | grep -E "cuvid" || echo "No CUVID decoders found") && \
|
||||
echo "" && \
|
||||
echo "FFmpeg NVENC Encoders (NVIDIA):" && \
|
||||
(ffmpeg -hide_banner -encoders 2>/dev/null | grep -E "nvenc" || echo "No NVENC encoders found") && \
|
||||
echo "" && \
|
||||
echo "Testing CUVID decoder compilation (no GPU required):" && \
|
||||
(ffmpeg -hide_banner -f lavfi -i testsrc=duration=0.1:size=64x64:rate=1 -c:v libx264 -f null - 2>/dev/null && echo "✅ FFmpeg basic functionality working" || echo "❌ FFmpeg basic test failed") && \
|
||||
echo "" && \
|
||||
echo "OpenCV Configuration:" && \
|
||||
python3 -c "import cv2; print('OpenCV version:', cv2.__version__); print('CUDA devices:', cv2.cuda.getCudaEnabledDeviceCount()); build_info = cv2.getBuildInformation(); print('CUDA support:', 'CUDA' in build_info); print('CUVID support:', 'CUVID' in build_info); print('FFmpeg support:', 'FFMPEG' in build_info); print('GStreamer support:', 'GStreamer' in build_info)" && \
|
||||
echo "GStreamer NVIDIA Plugins:" && \
|
||||
gst-inspect-1.0 2>/dev/null | grep -E "(nvv4l2|nvvideo)" | head -5 || echo "GStreamer NVIDIA plugins not detected" && \
|
||||
echo "=== Verification Complete ==="
|
||||
(python3 -c "import cv2; print('OpenCV version:', cv2.__version__); build_info = cv2.getBuildInformation(); print('CUDA support:', 'CUDA' in build_info); print('CUVID support:', 'CUVID' in build_info); print('FFmpeg support:', 'FFMPEG' in build_info)" || echo "OpenCV verification failed") && \
|
||||
echo "" && \
|
||||
echo "=== Verification Complete (build-time only) ==="
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
|
|
@ -1,127 +0,0 @@
|
|||
# Hardware Acceleration Setup
|
||||
|
||||
This detector worker now includes **complete NVIDIA hardware acceleration** with FFmpeg and OpenCV built from source.
|
||||
|
||||
## What's Included
|
||||
|
||||
### 🔧 Complete Hardware Stack
|
||||
- **FFmpeg 6.0** built from source with NVIDIA Video Codec SDK
|
||||
- **OpenCV 4.8.1** built with CUDA and custom FFmpeg integration
|
||||
- **GStreamer** with NVDEC/VAAPI plugins
|
||||
- **TurboJPEG** for optimized JPEG encoding (3-5x faster)
|
||||
- **CUDA** support for YOLO model inference
|
||||
|
||||
### 🎯 Hardware Acceleration Methods (Automatic Detection)
|
||||
1. **GStreamer NVDEC** - Best for RTSP streaming, lowest latency
|
||||
2. **OpenCV CUDA** - Direct GPU memory access, best integration
|
||||
3. **FFmpeg CUVID** - Custom build with full NVIDIA acceleration
|
||||
4. **VAAPI** - Intel/AMD GPU support
|
||||
5. **Software Fallback** - CPU-only as last resort
|
||||
|
||||
## Build and Run
|
||||
|
||||
### Single Build Script
|
||||
```bash
|
||||
./build-nvdec.sh
|
||||
```
|
||||
**Build time**: 45-90 minutes (compiles FFmpeg + OpenCV from source)
|
||||
|
||||
### Run with GPU Support
|
||||
```bash
|
||||
docker run --gpus all -p 8000:8000 detector-worker:complete-hw-accel
|
||||
```
|
||||
|
||||
## Performance Improvements
|
||||
|
||||
### Expected CPU Reduction
|
||||
- **Video decoding**: 70-90% reduction (moved to GPU)
|
||||
- **JPEG encoding**: 70-80% faster with TurboJPEG
|
||||
- **Model inference**: GPU accelerated with CUDA
|
||||
- **Overall system**: 50-80% less CPU usage
|
||||
|
||||
### Profiling Results Comparison
|
||||
**Before (Software Only)**:
|
||||
- `cv2.imencode`: 6.5% CPU time (1.95s out of 30s)
|
||||
- `psutil.cpu_percent`: 88% CPU time (idle polling)
|
||||
- Video decoding: 100% CPU
|
||||
|
||||
**After (Hardware Accelerated)**:
|
||||
- Video decoding: GPU (~5-10% CPU overhead)
|
||||
- JPEG encoding: 3-5x faster with TurboJPEG
|
||||
- Model inference: GPU accelerated
|
||||
|
||||
## Verification
|
||||
|
||||
### Check Hardware Acceleration Support
|
||||
```bash
|
||||
docker run --rm --gpus all detector-worker:complete-hw-accel \
|
||||
bash -c "ffmpeg -hwaccels && python3 -c 'import cv2; build=cv2.getBuildInformation(); print(\"CUDA:\", \"CUDA\" in build); print(\"CUVID:\", \"CUVID\" in build)'"
|
||||
```
|
||||
|
||||
### Runtime Logs
|
||||
The application will automatically log which acceleration method is being used:
|
||||
```
|
||||
Camera cam1: Successfully using GStreamer with NVDEC hardware acceleration
|
||||
Camera cam2: Using FFMPEG hardware acceleration (backend: FFMPEG)
|
||||
Camera cam3: Using OpenCV CUDA hardware acceleration
|
||||
```
|
||||
|
||||
## Files Modified
|
||||
|
||||
### Docker Configuration
|
||||
- **Dockerfile.base** - Complete hardware acceleration stack
|
||||
- **build-nvdec.sh** - Single build script for everything
|
||||
|
||||
### Application Code
|
||||
- **core/streaming/readers.py** - Multi-method hardware acceleration
|
||||
- **core/utils/hardware_encoder.py** - TurboJPEG + NVENC encoding
|
||||
- **core/utils/ffmpeg_detector.py** - Runtime capability detection
|
||||
- **requirements.base.txt** - Added TurboJPEG, removed opencv-python
|
||||
|
||||
## Architecture
|
||||
|
||||
```
|
||||
Input RTSP Stream
|
||||
↓
|
||||
1. GStreamer NVDEC Pipeline (NVIDIA GPU)
|
||||
rtspsrc → nvv4l2decoder → nvvideoconvert → OpenCV
|
||||
↓
|
||||
2. OpenCV CUDA Backend (NVIDIA GPU)
|
||||
OpenCV with CUDA acceleration
|
||||
↓
|
||||
3. FFmpeg CUVID (NVIDIA GPU)
|
||||
Custom FFmpeg with h264_cuvid decoder
|
||||
↓
|
||||
4. VAAPI (Intel/AMD GPU)
|
||||
Hardware acceleration for non-NVIDIA
|
||||
↓
|
||||
5. Software Fallback (CPU)
|
||||
Standard OpenCV software decoding
|
||||
```
|
||||
|
||||
## Benefits
|
||||
|
||||
### For Development
|
||||
- **Single Dockerfile.base** - Everything consolidated
|
||||
- **Automatic detection** - No manual configuration needed
|
||||
- **Graceful fallback** - Works without GPU for development
|
||||
|
||||
### For Production
|
||||
- **Maximum performance** - Uses best available acceleration
|
||||
- **GPU memory efficiency** - Direct GPU-to-GPU pipeline
|
||||
- **Lower latency** - Hardware decoding + CUDA inference
|
||||
- **Reduced CPU load** - Frees CPU for other tasks
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Build Issues
|
||||
- Ensure NVIDIA Docker runtime is installed
|
||||
- Check CUDA 12.6 compatibility with your GPU
|
||||
- Build takes 45-90 minutes - be patient
|
||||
|
||||
### Runtime Issues
|
||||
- Verify `nvidia-smi` works in container
|
||||
- Check logs for acceleration method being used
|
||||
- Fallback to software decoding is automatic
|
||||
|
||||
This setup provides **production-ready hardware acceleration** with automatic detection and graceful fallback for maximum compatibility.
|
|
@ -166,40 +166,17 @@ class RTSPReader:
|
|||
logger.info(f"RTSP reader thread ended for camera {self.camera_id}")
|
||||
|
||||
def _initialize_capture(self) -> bool:
|
||||
"""Initialize video capture with hardware acceleration (NVDEC) for 1280x720@6fps."""
|
||||
"""Initialize video capture with FFmpeg hardware acceleration (CUVID/NVDEC) for 1280x720@6fps."""
|
||||
try:
|
||||
# Release previous capture if exists
|
||||
if self.cap:
|
||||
self.cap.release()
|
||||
time.sleep(0.5)
|
||||
|
||||
logger.info(f"Initializing capture for camera {self.camera_id} with hardware acceleration")
|
||||
logger.info(f"Initializing capture for camera {self.camera_id} with FFmpeg hardware acceleration")
|
||||
hw_accel_success = False
|
||||
|
||||
# Method 1: Try GStreamer with NVDEC (most efficient on NVIDIA GPUs)
|
||||
if not hw_accel_success:
|
||||
try:
|
||||
# Build GStreamer pipeline for NVIDIA hardware decoding
|
||||
gst_pipeline = (
|
||||
f"rtspsrc location={self.rtsp_url} protocols=tcp latency=100 ! "
|
||||
"rtph264depay ! h264parse ! "
|
||||
"nvv4l2decoder ! " # NVIDIA hardware decoder
|
||||
"nvvideoconvert ! " # NVIDIA hardware color conversion
|
||||
"video/x-raw,format=BGRx,width=1280,height=720 ! "
|
||||
"videoconvert ! "
|
||||
"video/x-raw,format=BGR ! "
|
||||
"appsink max-buffers=1 drop=true sync=false"
|
||||
)
|
||||
logger.info(f"Attempting GStreamer NVDEC pipeline for camera {self.camera_id}")
|
||||
self.cap = cv2.VideoCapture(gst_pipeline, cv2.CAP_GSTREAMER)
|
||||
|
||||
if self.cap.isOpened():
|
||||
hw_accel_success = True
|
||||
logger.info(f"Camera {self.camera_id}: Successfully using GStreamer with NVDEC hardware acceleration")
|
||||
except Exception as e:
|
||||
logger.debug(f"Camera {self.camera_id}: GStreamer NVDEC not available: {e}")
|
||||
|
||||
# Method 2: Try OpenCV CUDA VideoReader (if built with CUVID support)
|
||||
# Method 1: Try OpenCV CUDA VideoReader (if built with CUVID support)
|
||||
if not hw_accel_success:
|
||||
try:
|
||||
# Check if OpenCV was built with CUDA codec support
|
||||
|
@ -220,7 +197,7 @@ class RTSPReader:
|
|||
except Exception as e:
|
||||
logger.debug(f"Camera {self.camera_id}: OpenCV CUDA not available: {e}")
|
||||
|
||||
# Method 3: Try FFMPEG with optimal hardware acceleration (CUVID/VAAPI)
|
||||
# Method 2: Try FFmpeg with optimal hardware acceleration (CUVID/NVDEC)
|
||||
if not hw_accel_success:
|
||||
try:
|
||||
from core.utils.ffmpeg_detector import get_optimal_rtsp_options
|
||||
|
@ -230,7 +207,7 @@ class RTSPReader:
|
|||
optimal_options = get_optimal_rtsp_options(self.rtsp_url)
|
||||
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = optimal_options
|
||||
|
||||
logger.info(f"Attempting FFMPEG with detected hardware acceleration for camera {self.camera_id}")
|
||||
logger.info(f"Attempting FFmpeg with detected hardware acceleration for camera {self.camera_id}")
|
||||
logger.debug(f"Camera {self.camera_id}: Using FFmpeg options: {optimal_options}")
|
||||
|
||||
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
||||
|
@ -239,45 +216,41 @@ class RTSPReader:
|
|||
hw_accel_success = True
|
||||
# Try to get backend info to confirm hardware acceleration
|
||||
backend = self.cap.getBackendName()
|
||||
logger.info(f"Camera {self.camera_id}: Using FFMPEG hardware acceleration (backend: {backend})")
|
||||
logger.info(f"Camera {self.camera_id}: Using FFmpeg hardware acceleration (backend: {backend})")
|
||||
except Exception as e:
|
||||
logger.debug(f"Camera {self.camera_id}: FFMPEG hardware acceleration not available: {e}")
|
||||
logger.debug(f"Camera {self.camera_id}: FFmpeg optimal hardware acceleration not available: {e}")
|
||||
|
||||
# Fallback to basic CUVID
|
||||
try:
|
||||
import os
|
||||
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'video_codec;h264_cuvid|rtsp_transport;tcp|hwaccel;cuda'
|
||||
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
||||
|
||||
if self.cap.isOpened():
|
||||
hw_accel_success = True
|
||||
logger.info(f"Camera {self.camera_id}: Using basic FFMPEG CUVID hardware acceleration")
|
||||
except Exception as e2:
|
||||
logger.debug(f"Camera {self.camera_id}: Basic CUVID also failed: {e2}")
|
||||
|
||||
# Method 4: Try VAAPI hardware acceleration (for Intel/AMD GPUs)
|
||||
# Method 3: Try FFmpeg with basic NVIDIA CUVID
|
||||
if not hw_accel_success:
|
||||
try:
|
||||
gst_pipeline = (
|
||||
f"rtspsrc location={self.rtsp_url} protocols=tcp latency=100 ! "
|
||||
"rtph264depay ! h264parse ! "
|
||||
"vaapih264dec ! " # VAAPI hardware decoder
|
||||
"vaapipostproc ! "
|
||||
"video/x-raw,format=BGRx,width=1280,height=720 ! "
|
||||
"videoconvert ! "
|
||||
"video/x-raw,format=BGR ! "
|
||||
"appsink max-buffers=1 drop=true sync=false"
|
||||
)
|
||||
logger.info(f"Attempting GStreamer VAAPI pipeline for camera {self.camera_id}")
|
||||
self.cap = cv2.VideoCapture(gst_pipeline, cv2.CAP_GSTREAMER)
|
||||
import os
|
||||
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'video_codec;h264_cuvid|rtsp_transport;tcp|hwaccel;cuda|hwaccel_device;0'
|
||||
|
||||
logger.info(f"Attempting FFmpeg with basic CUVID for camera {self.camera_id}")
|
||||
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
||||
|
||||
if self.cap.isOpened():
|
||||
hw_accel_success = True
|
||||
logger.info(f"Camera {self.camera_id}: Successfully using GStreamer with VAAPI hardware acceleration")
|
||||
logger.info(f"Camera {self.camera_id}: Using FFmpeg CUVID hardware acceleration")
|
||||
except Exception as e:
|
||||
logger.debug(f"Camera {self.camera_id}: GStreamer VAAPI not available: {e}")
|
||||
logger.debug(f"Camera {self.camera_id}: FFmpeg CUVID not available: {e}")
|
||||
|
||||
# Fallback: Standard FFMPEG with software decoding
|
||||
# Method 4: Try FFmpeg with VAAPI (Intel/AMD GPUs)
|
||||
if not hw_accel_success:
|
||||
try:
|
||||
import os
|
||||
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;vaapi|hwaccel_device;/dev/dri/renderD128|video_codec;h264|rtsp_transport;tcp'
|
||||
|
||||
logger.info(f"Attempting FFmpeg with VAAPI for camera {self.camera_id}")
|
||||
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
||||
|
||||
if self.cap.isOpened():
|
||||
hw_accel_success = True
|
||||
logger.info(f"Camera {self.camera_id}: Using FFmpeg VAAPI hardware acceleration")
|
||||
except Exception as e:
|
||||
logger.debug(f"Camera {self.camera_id}: FFmpeg VAAPI not available: {e}")
|
||||
|
||||
# Fallback: Standard FFmpeg with software decoding
|
||||
if not hw_accel_success:
|
||||
logger.warning(f"Camera {self.camera_id}: Hardware acceleration not available, falling back to software decoding")
|
||||
import os
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue