fix: make ffmpeg support
Some checks failed
Build Worker Base and Application Images / check-base-changes (push) Successful in 7s
Build Worker Base and Application Images / build-base (push) Failing after 6m4s
Build Worker Base and Application Images / build-docker (push) Has been skipped
Build Worker Base and Application Images / deploy-stack (push) Has been skipped

This commit is contained in:
ziesorx 2025-09-25 23:23:56 +07:00
parent 0fc86fb72b
commit a45f76884f
3 changed files with 102 additions and 231 deletions

View file

@ -13,44 +13,39 @@ RUN apt-get update && apt-get install -y \
yasm \
nasm \
# System libraries
libgl1 \
libgl1-mesa-glx \
libglib2.0-0 \
libgtk-3-0 \
libgomp1 \
# Media libraries for FFmpeg build
# Core media libraries (essential ones only)
libjpeg-dev \
libpng-dev \
libtiff-dev \
libx264-dev \
libx265-dev \
libvpx-dev \
libfdk-aac-dev \
libmp3lame-dev \
libopus-dev \
libv4l-dev \
libxvidcore-dev \
libdc1394-22-dev \
# TurboJPEG for fast JPEG encoding
libturbojpeg0-dev \
# GStreamer complete stack
libgstreamer1.0-dev \
libgstreamer-plugins-base1.0-dev \
libgstreamer-plugins-bad1.0-dev \
gstreamer1.0-tools \
gstreamer1.0-plugins-base \
gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad \
gstreamer1.0-plugins-ugly \
gstreamer1.0-libav \
gstreamer1.0-vaapi \
python3-gst-1.0 \
# Python development
python3-dev \
python3-numpy \
# NVIDIA driver components
&& rm -rf /var/lib/apt/lists/*
# Install CUDA development tools (required for FFmpeg CUDA compilation)
RUN apt-get update && apt-get install -y \
cuda-nvcc-12-6 \
libcuda1 \
cuda-cudart-dev-12-6 \
cuda-driver-dev-12-6 \
|| echo "CUDA development packages not available, continuing without them" && \
rm -rf /var/lib/apt/lists/*
# Try to install NVIDIA packages (may not be available in all environments)
RUN apt-get update && apt-get install -y \
libnvidia-encode-535 \
libnvidia-decode-535 \
&& rm -rf /var/lib/apt/lists/*
|| echo "NVIDIA packages not available, continuing without them" && \
rm -rf /var/lib/apt/lists/*
# Install NVIDIA Video Codec SDK headers
RUN cd /tmp && \
@ -60,33 +55,60 @@ RUN cd /tmp && \
make install && \
rm -rf /tmp/*
# Build FFmpeg from source with full NVIDIA hardware acceleration
# Build FFmpeg from source with NVIDIA CUVID support
ENV FFMPEG_VERSION=6.0
# Ensure CUDA paths are available for FFmpeg compilation
ENV PATH="/usr/local/cuda/bin:${PATH}"
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"
RUN cd /tmp && \
wget https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.xz && \
tar xf ffmpeg-${FFMPEG_VERSION}.tar.xz && \
cd ffmpeg-${FFMPEG_VERSION} && \
./configure \
# Configure with explicit CUVID support (with fallback)
(./configure \
--enable-gpl \
--enable-nonfree \
--enable-shared \
--enable-libx264 \
--enable-libx265 \
--enable-libvpx \
--enable-libfdk-aac \
--enable-libmp3lame \
--enable-libopus \
--enable-cuda-nvcc \
--enable-cuvid \
--enable-nvenc \
--enable-nvdec \
--enable-cuda-llvm \
--enable-cuvid \
--enable-nvdec \
--enable-nvenc \
--enable-libnpp \
--extra-cflags=-I/usr/local/cuda/include \
--extra-ldflags=-L/usr/local/cuda/lib64 \
--nvccflags="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_89,code=sm_89 -gencode arch=compute_90,code=sm_90" && \
make -j$(nproc) && \
--enable-decoder=h264_cuvid \
--enable-decoder=hevc_cuvid \
--enable-decoder=mjpeg_cuvid \
--enable-decoder=mpeg1_cuvid \
--enable-decoder=mpeg2_cuvid \
--enable-decoder=mpeg4_cuvid \
--enable-decoder=vc1_cuvid \
--enable-encoder=h264_nvenc \
--enable-encoder=hevc_nvenc \
--extra-cflags="-I/usr/local/cuda/include" \
--extra-ldflags="-L/usr/local/cuda/lib64" \
--extra-libs="-lcuda -lcudart -lnvcuvid -lnvidia-encode" \
--nvccflags="-gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86" \
|| echo "CUDA configuration failed, trying basic configuration..." && \
./configure \
--enable-gpl \
--enable-nonfree \
--enable-shared \
--enable-libx264 \
--enable-libx265 \
--enable-libvpx \
--enable-libmp3lame) \
&& make -j$(nproc) && \
make install && \
ldconfig && \
# Verify CUVID decoders are available
echo "=== Verifying FFmpeg CUVID Support ===" && \
ffmpeg -hide_banner -decoders 2>/dev/null | grep cuvid && \
echo "=== Verifying FFmpeg NVENC Support ===" && \
ffmpeg -hide_banner -encoders 2>/dev/null | grep nvenc && \
cd / && rm -rf /tmp/*
# Build OpenCV from source with custom FFmpeg and full CUDA support
@ -111,15 +133,14 @@ RUN cd /tmp && \
-D WITH_CUVID=ON \
-D BUILD_opencv_cudacodec=ON \
-D WITH_FFMPEG=ON \
-D WITH_GSTREAMER=ON \
-D WITH_LIBV4L=ON \
-D BUILD_opencv_python3=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D OPENCV_EXTRA_MODULES_PATH=/tmp/opencv_contrib-${OPENCV_VERSION}/modules \
-D PYTHON3_EXECUTABLE=$(which python3) \
-D PYTHON_INCLUDE_DIR=$(python3 -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
-D PYTHON_LIBRARY=$(python3 -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
-D PYTHON_INCLUDE_DIR=$(python3 -c "import sysconfig; print(sysconfig.get_path('include'))") \
-D PYTHON_LIBRARY=$(python3 -c "import sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
-D BUILD_EXAMPLES=OFF \
-D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF \
@ -133,7 +154,6 @@ RUN cd /tmp && \
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/lib:${LD_LIBRARY_PATH}"
ENV PKG_CONFIG_PATH="/usr/local/lib/pkgconfig:${PKG_CONFIG_PATH}"
ENV PYTHONPATH="/usr/local/lib/python3.10/dist-packages:${PYTHONPATH}"
ENV GST_PLUGIN_PATH="/usr/lib/x86_64-linux-gnu/gstreamer-1.0"
# Optimized environment variables for hardware acceleration
ENV OPENCV_FFMPEG_CAPTURE_OPTIONS="rtsp_transport;tcp|hwaccel;cuda|hwaccel_device;0|video_codec;h264_cuvid|hwaccel_output_format;cuda"
@ -151,16 +171,21 @@ RUN grep -v opencv-python requirements.base.txt > requirements.tmp && \
# Verify complete hardware acceleration setup
RUN echo "=== Hardware Acceleration Verification ===" && \
echo "FFmpeg Hardware Accelerators:" && \
ffmpeg -hide_banner -hwaccels 2>/dev/null | head -10 && \
echo "FFmpeg NVIDIA Decoders:" && \
ffmpeg -hide_banner -decoders 2>/dev/null | grep -E "(cuvid|nvdec)" | head -5 && \
echo "FFmpeg NVIDIA Encoders:" && \
ffmpeg -hide_banner -encoders 2>/dev/null | grep nvenc | head -5 && \
(ffmpeg -hide_banner -hwaccels 2>/dev/null || echo "FFmpeg hwaccels command failed") && \
echo "" && \
echo "FFmpeg CUVID Decoders (NVIDIA):" && \
(ffmpeg -hide_banner -decoders 2>/dev/null | grep -E "cuvid" || echo "No CUVID decoders found") && \
echo "" && \
echo "FFmpeg NVENC Encoders (NVIDIA):" && \
(ffmpeg -hide_banner -encoders 2>/dev/null | grep -E "nvenc" || echo "No NVENC encoders found") && \
echo "" && \
echo "Testing CUVID decoder compilation (no GPU required):" && \
(ffmpeg -hide_banner -f lavfi -i testsrc=duration=0.1:size=64x64:rate=1 -c:v libx264 -f null - 2>/dev/null && echo "✅ FFmpeg basic functionality working" || echo "❌ FFmpeg basic test failed") && \
echo "" && \
echo "OpenCV Configuration:" && \
python3 -c "import cv2; print('OpenCV version:', cv2.__version__); print('CUDA devices:', cv2.cuda.getCudaEnabledDeviceCount()); build_info = cv2.getBuildInformation(); print('CUDA support:', 'CUDA' in build_info); print('CUVID support:', 'CUVID' in build_info); print('FFmpeg support:', 'FFMPEG' in build_info); print('GStreamer support:', 'GStreamer' in build_info)" && \
echo "GStreamer NVIDIA Plugins:" && \
gst-inspect-1.0 2>/dev/null | grep -E "(nvv4l2|nvvideo)" | head -5 || echo "GStreamer NVIDIA plugins not detected" && \
echo "=== Verification Complete ==="
(python3 -c "import cv2; print('OpenCV version:', cv2.__version__); build_info = cv2.getBuildInformation(); print('CUDA support:', 'CUDA' in build_info); print('CUVID support:', 'CUVID' in build_info); print('FFmpeg support:', 'FFMPEG' in build_info)" || echo "OpenCV verification failed") && \
echo "" && \
echo "=== Verification Complete (build-time only) ==="
# Set working directory
WORKDIR /app

View file

@ -1,127 +0,0 @@
# Hardware Acceleration Setup
This detector worker now includes **complete NVIDIA hardware acceleration** with FFmpeg and OpenCV built from source.
## What's Included
### 🔧 Complete Hardware Stack
- **FFmpeg 6.0** built from source with NVIDIA Video Codec SDK
- **OpenCV 4.8.1** built with CUDA and custom FFmpeg integration
- **GStreamer** with NVDEC/VAAPI plugins
- **TurboJPEG** for optimized JPEG encoding (3-5x faster)
- **CUDA** support for YOLO model inference
### 🎯 Hardware Acceleration Methods (Automatic Detection)
1. **GStreamer NVDEC** - Best for RTSP streaming, lowest latency
2. **OpenCV CUDA** - Direct GPU memory access, best integration
3. **FFmpeg CUVID** - Custom build with full NVIDIA acceleration
4. **VAAPI** - Intel/AMD GPU support
5. **Software Fallback** - CPU-only as last resort
## Build and Run
### Single Build Script
```bash
./build-nvdec.sh
```
**Build time**: 45-90 minutes (compiles FFmpeg + OpenCV from source)
### Run with GPU Support
```bash
docker run --gpus all -p 8000:8000 detector-worker:complete-hw-accel
```
## Performance Improvements
### Expected CPU Reduction
- **Video decoding**: 70-90% reduction (moved to GPU)
- **JPEG encoding**: 70-80% faster with TurboJPEG
- **Model inference**: GPU accelerated with CUDA
- **Overall system**: 50-80% less CPU usage
### Profiling Results Comparison
**Before (Software Only)**:
- `cv2.imencode`: 6.5% CPU time (1.95s out of 30s)
- `psutil.cpu_percent`: 88% CPU time (idle polling)
- Video decoding: 100% CPU
**After (Hardware Accelerated)**:
- Video decoding: GPU (~5-10% CPU overhead)
- JPEG encoding: 3-5x faster with TurboJPEG
- Model inference: GPU accelerated
## Verification
### Check Hardware Acceleration Support
```bash
docker run --rm --gpus all detector-worker:complete-hw-accel \
bash -c "ffmpeg -hwaccels && python3 -c 'import cv2; build=cv2.getBuildInformation(); print(\"CUDA:\", \"CUDA\" in build); print(\"CUVID:\", \"CUVID\" in build)'"
```
### Runtime Logs
The application will automatically log which acceleration method is being used:
```
Camera cam1: Successfully using GStreamer with NVDEC hardware acceleration
Camera cam2: Using FFMPEG hardware acceleration (backend: FFMPEG)
Camera cam3: Using OpenCV CUDA hardware acceleration
```
## Files Modified
### Docker Configuration
- **Dockerfile.base** - Complete hardware acceleration stack
- **build-nvdec.sh** - Single build script for everything
### Application Code
- **core/streaming/readers.py** - Multi-method hardware acceleration
- **core/utils/hardware_encoder.py** - TurboJPEG + NVENC encoding
- **core/utils/ffmpeg_detector.py** - Runtime capability detection
- **requirements.base.txt** - Added TurboJPEG, removed opencv-python
## Architecture
```
Input RTSP Stream
1. GStreamer NVDEC Pipeline (NVIDIA GPU)
rtspsrc → nvv4l2decoder → nvvideoconvert → OpenCV
2. OpenCV CUDA Backend (NVIDIA GPU)
OpenCV with CUDA acceleration
3. FFmpeg CUVID (NVIDIA GPU)
Custom FFmpeg with h264_cuvid decoder
4. VAAPI (Intel/AMD GPU)
Hardware acceleration for non-NVIDIA
5. Software Fallback (CPU)
Standard OpenCV software decoding
```
## Benefits
### For Development
- **Single Dockerfile.base** - Everything consolidated
- **Automatic detection** - No manual configuration needed
- **Graceful fallback** - Works without GPU for development
### For Production
- **Maximum performance** - Uses best available acceleration
- **GPU memory efficiency** - Direct GPU-to-GPU pipeline
- **Lower latency** - Hardware decoding + CUDA inference
- **Reduced CPU load** - Frees CPU for other tasks
## Troubleshooting
### Build Issues
- Ensure NVIDIA Docker runtime is installed
- Check CUDA 12.6 compatibility with your GPU
- Build takes 45-90 minutes - be patient
### Runtime Issues
- Verify `nvidia-smi` works in container
- Check logs for acceleration method being used
- Fallback to software decoding is automatic
This setup provides **production-ready hardware acceleration** with automatic detection and graceful fallback for maximum compatibility.

View file

@ -166,40 +166,17 @@ class RTSPReader:
logger.info(f"RTSP reader thread ended for camera {self.camera_id}")
def _initialize_capture(self) -> bool:
"""Initialize video capture with hardware acceleration (NVDEC) for 1280x720@6fps."""
"""Initialize video capture with FFmpeg hardware acceleration (CUVID/NVDEC) for 1280x720@6fps."""
try:
# Release previous capture if exists
if self.cap:
self.cap.release()
time.sleep(0.5)
logger.info(f"Initializing capture for camera {self.camera_id} with hardware acceleration")
logger.info(f"Initializing capture for camera {self.camera_id} with FFmpeg hardware acceleration")
hw_accel_success = False
# Method 1: Try GStreamer with NVDEC (most efficient on NVIDIA GPUs)
if not hw_accel_success:
try:
# Build GStreamer pipeline for NVIDIA hardware decoding
gst_pipeline = (
f"rtspsrc location={self.rtsp_url} protocols=tcp latency=100 ! "
"rtph264depay ! h264parse ! "
"nvv4l2decoder ! " # NVIDIA hardware decoder
"nvvideoconvert ! " # NVIDIA hardware color conversion
"video/x-raw,format=BGRx,width=1280,height=720 ! "
"videoconvert ! "
"video/x-raw,format=BGR ! "
"appsink max-buffers=1 drop=true sync=false"
)
logger.info(f"Attempting GStreamer NVDEC pipeline for camera {self.camera_id}")
self.cap = cv2.VideoCapture(gst_pipeline, cv2.CAP_GSTREAMER)
if self.cap.isOpened():
hw_accel_success = True
logger.info(f"Camera {self.camera_id}: Successfully using GStreamer with NVDEC hardware acceleration")
except Exception as e:
logger.debug(f"Camera {self.camera_id}: GStreamer NVDEC not available: {e}")
# Method 2: Try OpenCV CUDA VideoReader (if built with CUVID support)
# Method 1: Try OpenCV CUDA VideoReader (if built with CUVID support)
if not hw_accel_success:
try:
# Check if OpenCV was built with CUDA codec support
@ -220,7 +197,7 @@ class RTSPReader:
except Exception as e:
logger.debug(f"Camera {self.camera_id}: OpenCV CUDA not available: {e}")
# Method 3: Try FFMPEG with optimal hardware acceleration (CUVID/VAAPI)
# Method 2: Try FFmpeg with optimal hardware acceleration (CUVID/NVDEC)
if not hw_accel_success:
try:
from core.utils.ffmpeg_detector import get_optimal_rtsp_options
@ -230,7 +207,7 @@ class RTSPReader:
optimal_options = get_optimal_rtsp_options(self.rtsp_url)
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = optimal_options
logger.info(f"Attempting FFMPEG with detected hardware acceleration for camera {self.camera_id}")
logger.info(f"Attempting FFmpeg with detected hardware acceleration for camera {self.camera_id}")
logger.debug(f"Camera {self.camera_id}: Using FFmpeg options: {optimal_options}")
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
@ -239,45 +216,41 @@ class RTSPReader:
hw_accel_success = True
# Try to get backend info to confirm hardware acceleration
backend = self.cap.getBackendName()
logger.info(f"Camera {self.camera_id}: Using FFMPEG hardware acceleration (backend: {backend})")
logger.info(f"Camera {self.camera_id}: Using FFmpeg hardware acceleration (backend: {backend})")
except Exception as e:
logger.debug(f"Camera {self.camera_id}: FFMPEG hardware acceleration not available: {e}")
logger.debug(f"Camera {self.camera_id}: FFmpeg optimal hardware acceleration not available: {e}")
# Fallback to basic CUVID
try:
import os
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'video_codec;h264_cuvid|rtsp_transport;tcp|hwaccel;cuda'
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
if self.cap.isOpened():
hw_accel_success = True
logger.info(f"Camera {self.camera_id}: Using basic FFMPEG CUVID hardware acceleration")
except Exception as e2:
logger.debug(f"Camera {self.camera_id}: Basic CUVID also failed: {e2}")
# Method 4: Try VAAPI hardware acceleration (for Intel/AMD GPUs)
# Method 3: Try FFmpeg with basic NVIDIA CUVID
if not hw_accel_success:
try:
gst_pipeline = (
f"rtspsrc location={self.rtsp_url} protocols=tcp latency=100 ! "
"rtph264depay ! h264parse ! "
"vaapih264dec ! " # VAAPI hardware decoder
"vaapipostproc ! "
"video/x-raw,format=BGRx,width=1280,height=720 ! "
"videoconvert ! "
"video/x-raw,format=BGR ! "
"appsink max-buffers=1 drop=true sync=false"
)
logger.info(f"Attempting GStreamer VAAPI pipeline for camera {self.camera_id}")
self.cap = cv2.VideoCapture(gst_pipeline, cv2.CAP_GSTREAMER)
import os
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'video_codec;h264_cuvid|rtsp_transport;tcp|hwaccel;cuda|hwaccel_device;0'
logger.info(f"Attempting FFmpeg with basic CUVID for camera {self.camera_id}")
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
if self.cap.isOpened():
hw_accel_success = True
logger.info(f"Camera {self.camera_id}: Successfully using GStreamer with VAAPI hardware acceleration")
logger.info(f"Camera {self.camera_id}: Using FFmpeg CUVID hardware acceleration")
except Exception as e:
logger.debug(f"Camera {self.camera_id}: GStreamer VAAPI not available: {e}")
logger.debug(f"Camera {self.camera_id}: FFmpeg CUVID not available: {e}")
# Fallback: Standard FFMPEG with software decoding
# Method 4: Try FFmpeg with VAAPI (Intel/AMD GPUs)
if not hw_accel_success:
try:
import os
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;vaapi|hwaccel_device;/dev/dri/renderD128|video_codec;h264|rtsp_transport;tcp'
logger.info(f"Attempting FFmpeg with VAAPI for camera {self.camera_id}")
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
if self.cap.isOpened():
hw_accel_success = True
logger.info(f"Camera {self.camera_id}: Using FFmpeg VAAPI hardware acceleration")
except Exception as e:
logger.debug(f"Camera {self.camera_id}: FFmpeg VAAPI not available: {e}")
# Fallback: Standard FFmpeg with software decoding
if not hw_accel_success:
logger.warning(f"Camera {self.camera_id}: Hardware acceleration not available, falling back to software decoding")
import os