fix: make ffmpeg support
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Build Worker Base and Application Images / check-base-changes (push) Successful in 7s
				
			
		
			
				
	
				Build Worker Base and Application Images / build-base (push) Failing after 6m4s
				
			
		
			
				
	
				Build Worker Base and Application Images / build-docker (push) Has been skipped
				
			
		
			
				
	
				Build Worker Base and Application Images / deploy-stack (push) Has been skipped
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Build Worker Base and Application Images / check-base-changes (push) Successful in 7s
				
			Build Worker Base and Application Images / build-base (push) Failing after 6m4s
				
			Build Worker Base and Application Images / build-docker (push) Has been skipped
				
			Build Worker Base and Application Images / deploy-stack (push) Has been skipped
				
			This commit is contained in:
		
							parent
							
								
									0fc86fb72b
								
							
						
					
					
						commit
						a45f76884f
					
				
					 3 changed files with 102 additions and 231 deletions
				
			
		
							
								
								
									
										117
									
								
								Dockerfile.base
									
										
									
									
									
								
							
							
						
						
									
										117
									
								
								Dockerfile.base
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -13,44 +13,39 @@ RUN apt-get update && apt-get install -y \
 | 
			
		|||
    yasm \
 | 
			
		||||
    nasm \
 | 
			
		||||
    # System libraries
 | 
			
		||||
    libgl1 \
 | 
			
		||||
    libgl1-mesa-glx \
 | 
			
		||||
    libglib2.0-0 \
 | 
			
		||||
    libgtk-3-0 \
 | 
			
		||||
    libgomp1 \
 | 
			
		||||
    # Media libraries for FFmpeg build
 | 
			
		||||
    # Core media libraries (essential ones only)
 | 
			
		||||
    libjpeg-dev \
 | 
			
		||||
    libpng-dev \
 | 
			
		||||
    libtiff-dev \
 | 
			
		||||
    libx264-dev \
 | 
			
		||||
    libx265-dev \
 | 
			
		||||
    libvpx-dev \
 | 
			
		||||
    libfdk-aac-dev \
 | 
			
		||||
    libmp3lame-dev \
 | 
			
		||||
    libopus-dev \
 | 
			
		||||
    libv4l-dev \
 | 
			
		||||
    libxvidcore-dev \
 | 
			
		||||
    libdc1394-22-dev \
 | 
			
		||||
    # TurboJPEG for fast JPEG encoding
 | 
			
		||||
    libturbojpeg0-dev \
 | 
			
		||||
    # GStreamer complete stack
 | 
			
		||||
    libgstreamer1.0-dev \
 | 
			
		||||
    libgstreamer-plugins-base1.0-dev \
 | 
			
		||||
    libgstreamer-plugins-bad1.0-dev \
 | 
			
		||||
    gstreamer1.0-tools \
 | 
			
		||||
    gstreamer1.0-plugins-base \
 | 
			
		||||
    gstreamer1.0-plugins-good \
 | 
			
		||||
    gstreamer1.0-plugins-bad \
 | 
			
		||||
    gstreamer1.0-plugins-ugly \
 | 
			
		||||
    gstreamer1.0-libav \
 | 
			
		||||
    gstreamer1.0-vaapi \
 | 
			
		||||
    python3-gst-1.0 \
 | 
			
		||||
    # Python development
 | 
			
		||||
    python3-dev \
 | 
			
		||||
    python3-numpy \
 | 
			
		||||
    # NVIDIA driver components
 | 
			
		||||
    && rm -rf /var/lib/apt/lists/*
 | 
			
		||||
 | 
			
		||||
# Install CUDA development tools (required for FFmpeg CUDA compilation)
 | 
			
		||||
RUN apt-get update && apt-get install -y \
 | 
			
		||||
    cuda-nvcc-12-6 \
 | 
			
		||||
    libcuda1 \
 | 
			
		||||
    cuda-cudart-dev-12-6 \
 | 
			
		||||
    cuda-driver-dev-12-6 \
 | 
			
		||||
    || echo "CUDA development packages not available, continuing without them" && \
 | 
			
		||||
    rm -rf /var/lib/apt/lists/*
 | 
			
		||||
 | 
			
		||||
# Try to install NVIDIA packages (may not be available in all environments)
 | 
			
		||||
RUN apt-get update && apt-get install -y \
 | 
			
		||||
    libnvidia-encode-535 \
 | 
			
		||||
    libnvidia-decode-535 \
 | 
			
		||||
    && rm -rf /var/lib/apt/lists/*
 | 
			
		||||
    || echo "NVIDIA packages not available, continuing without them" && \
 | 
			
		||||
    rm -rf /var/lib/apt/lists/*
 | 
			
		||||
 | 
			
		||||
# Install NVIDIA Video Codec SDK headers
 | 
			
		||||
RUN cd /tmp && \
 | 
			
		||||
| 
						 | 
				
			
			@ -60,33 +55,60 @@ RUN cd /tmp && \
 | 
			
		|||
    make install && \
 | 
			
		||||
    rm -rf /tmp/*
 | 
			
		||||
 | 
			
		||||
# Build FFmpeg from source with full NVIDIA hardware acceleration
 | 
			
		||||
# Build FFmpeg from source with NVIDIA CUVID support
 | 
			
		||||
ENV FFMPEG_VERSION=6.0
 | 
			
		||||
# Ensure CUDA paths are available for FFmpeg compilation
 | 
			
		||||
ENV PATH="/usr/local/cuda/bin:${PATH}"
 | 
			
		||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"
 | 
			
		||||
RUN cd /tmp && \
 | 
			
		||||
    wget https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.xz && \
 | 
			
		||||
    tar xf ffmpeg-${FFMPEG_VERSION}.tar.xz && \
 | 
			
		||||
    cd ffmpeg-${FFMPEG_VERSION} && \
 | 
			
		||||
    ./configure \
 | 
			
		||||
    # Configure with explicit CUVID support (with fallback)
 | 
			
		||||
    (./configure \
 | 
			
		||||
        --enable-gpl \
 | 
			
		||||
        --enable-nonfree \
 | 
			
		||||
        --enable-shared \
 | 
			
		||||
        --enable-libx264 \
 | 
			
		||||
        --enable-libx265 \
 | 
			
		||||
        --enable-libvpx \
 | 
			
		||||
        --enable-libfdk-aac \
 | 
			
		||||
        --enable-libmp3lame \
 | 
			
		||||
        --enable-libopus \
 | 
			
		||||
        --enable-cuda-nvcc \
 | 
			
		||||
        --enable-cuvid \
 | 
			
		||||
        --enable-nvenc \
 | 
			
		||||
        --enable-nvdec \
 | 
			
		||||
        --enable-cuda-llvm \
 | 
			
		||||
        --enable-cuvid \
 | 
			
		||||
        --enable-nvdec \
 | 
			
		||||
        --enable-nvenc \
 | 
			
		||||
        --enable-libnpp \
 | 
			
		||||
        --extra-cflags=-I/usr/local/cuda/include \
 | 
			
		||||
        --extra-ldflags=-L/usr/local/cuda/lib64 \
 | 
			
		||||
        --nvccflags="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_89,code=sm_89 -gencode arch=compute_90,code=sm_90" && \
 | 
			
		||||
    make -j$(nproc) && \
 | 
			
		||||
        --enable-decoder=h264_cuvid \
 | 
			
		||||
        --enable-decoder=hevc_cuvid \
 | 
			
		||||
        --enable-decoder=mjpeg_cuvid \
 | 
			
		||||
        --enable-decoder=mpeg1_cuvid \
 | 
			
		||||
        --enable-decoder=mpeg2_cuvid \
 | 
			
		||||
        --enable-decoder=mpeg4_cuvid \
 | 
			
		||||
        --enable-decoder=vc1_cuvid \
 | 
			
		||||
        --enable-encoder=h264_nvenc \
 | 
			
		||||
        --enable-encoder=hevc_nvenc \
 | 
			
		||||
        --extra-cflags="-I/usr/local/cuda/include" \
 | 
			
		||||
        --extra-ldflags="-L/usr/local/cuda/lib64" \
 | 
			
		||||
        --extra-libs="-lcuda -lcudart -lnvcuvid -lnvidia-encode" \
 | 
			
		||||
        --nvccflags="-gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86" \
 | 
			
		||||
    || echo "CUDA configuration failed, trying basic configuration..." && \
 | 
			
		||||
    ./configure \
 | 
			
		||||
        --enable-gpl \
 | 
			
		||||
        --enable-nonfree \
 | 
			
		||||
        --enable-shared \
 | 
			
		||||
        --enable-libx264 \
 | 
			
		||||
        --enable-libx265 \
 | 
			
		||||
        --enable-libvpx \
 | 
			
		||||
        --enable-libmp3lame) \
 | 
			
		||||
    && make -j$(nproc) && \
 | 
			
		||||
    make install && \
 | 
			
		||||
    ldconfig && \
 | 
			
		||||
    # Verify CUVID decoders are available
 | 
			
		||||
    echo "=== Verifying FFmpeg CUVID Support ===" && \
 | 
			
		||||
    ffmpeg -hide_banner -decoders 2>/dev/null | grep cuvid && \
 | 
			
		||||
    echo "=== Verifying FFmpeg NVENC Support ===" && \
 | 
			
		||||
    ffmpeg -hide_banner -encoders 2>/dev/null | grep nvenc && \
 | 
			
		||||
    cd / && rm -rf /tmp/*
 | 
			
		||||
 | 
			
		||||
# Build OpenCV from source with custom FFmpeg and full CUDA support
 | 
			
		||||
| 
						 | 
				
			
			@ -111,15 +133,14 @@ RUN cd /tmp && \
 | 
			
		|||
        -D WITH_CUVID=ON \
 | 
			
		||||
        -D BUILD_opencv_cudacodec=ON \
 | 
			
		||||
        -D WITH_FFMPEG=ON \
 | 
			
		||||
        -D WITH_GSTREAMER=ON \
 | 
			
		||||
        -D WITH_LIBV4L=ON \
 | 
			
		||||
        -D BUILD_opencv_python3=ON \
 | 
			
		||||
        -D OPENCV_GENERATE_PKGCONFIG=ON \
 | 
			
		||||
        -D OPENCV_ENABLE_NONFREE=ON \
 | 
			
		||||
        -D OPENCV_EXTRA_MODULES_PATH=/tmp/opencv_contrib-${OPENCV_VERSION}/modules \
 | 
			
		||||
        -D PYTHON3_EXECUTABLE=$(which python3) \
 | 
			
		||||
        -D PYTHON_INCLUDE_DIR=$(python3 -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
 | 
			
		||||
        -D PYTHON_LIBRARY=$(python3 -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
 | 
			
		||||
        -D PYTHON_INCLUDE_DIR=$(python3 -c "import sysconfig; print(sysconfig.get_path('include'))") \
 | 
			
		||||
        -D PYTHON_LIBRARY=$(python3 -c "import sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
 | 
			
		||||
        -D BUILD_EXAMPLES=OFF \
 | 
			
		||||
        -D BUILD_TESTS=OFF \
 | 
			
		||||
        -D BUILD_PERF_TESTS=OFF \
 | 
			
		||||
| 
						 | 
				
			
			@ -133,7 +154,6 @@ RUN cd /tmp && \
 | 
			
		|||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/lib:${LD_LIBRARY_PATH}"
 | 
			
		||||
ENV PKG_CONFIG_PATH="/usr/local/lib/pkgconfig:${PKG_CONFIG_PATH}"
 | 
			
		||||
ENV PYTHONPATH="/usr/local/lib/python3.10/dist-packages:${PYTHONPATH}"
 | 
			
		||||
ENV GST_PLUGIN_PATH="/usr/lib/x86_64-linux-gnu/gstreamer-1.0"
 | 
			
		||||
 | 
			
		||||
# Optimized environment variables for hardware acceleration
 | 
			
		||||
ENV OPENCV_FFMPEG_CAPTURE_OPTIONS="rtsp_transport;tcp|hwaccel;cuda|hwaccel_device;0|video_codec;h264_cuvid|hwaccel_output_format;cuda"
 | 
			
		||||
| 
						 | 
				
			
			@ -151,16 +171,21 @@ RUN grep -v opencv-python requirements.base.txt > requirements.tmp && \
 | 
			
		|||
# Verify complete hardware acceleration setup
 | 
			
		||||
RUN echo "=== Hardware Acceleration Verification ===" && \
 | 
			
		||||
    echo "FFmpeg Hardware Accelerators:" && \
 | 
			
		||||
    ffmpeg -hide_banner -hwaccels 2>/dev/null | head -10 && \
 | 
			
		||||
    echo "FFmpeg NVIDIA Decoders:" && \
 | 
			
		||||
    ffmpeg -hide_banner -decoders 2>/dev/null | grep -E "(cuvid|nvdec)" | head -5 && \
 | 
			
		||||
    echo "FFmpeg NVIDIA Encoders:" && \
 | 
			
		||||
    ffmpeg -hide_banner -encoders 2>/dev/null | grep nvenc | head -5 && \
 | 
			
		||||
    (ffmpeg -hide_banner -hwaccels 2>/dev/null || echo "FFmpeg hwaccels command failed") && \
 | 
			
		||||
    echo "" && \
 | 
			
		||||
    echo "FFmpeg CUVID Decoders (NVIDIA):" && \
 | 
			
		||||
    (ffmpeg -hide_banner -decoders 2>/dev/null | grep -E "cuvid" || echo "No CUVID decoders found") && \
 | 
			
		||||
    echo "" && \
 | 
			
		||||
    echo "FFmpeg NVENC Encoders (NVIDIA):" && \
 | 
			
		||||
    (ffmpeg -hide_banner -encoders 2>/dev/null | grep -E "nvenc" || echo "No NVENC encoders found") && \
 | 
			
		||||
    echo "" && \
 | 
			
		||||
    echo "Testing CUVID decoder compilation (no GPU required):" && \
 | 
			
		||||
    (ffmpeg -hide_banner -f lavfi -i testsrc=duration=0.1:size=64x64:rate=1 -c:v libx264 -f null - 2>/dev/null && echo "✅ FFmpeg basic functionality working" || echo "❌ FFmpeg basic test failed") && \
 | 
			
		||||
    echo "" && \
 | 
			
		||||
    echo "OpenCV Configuration:" && \
 | 
			
		||||
    python3 -c "import cv2; print('OpenCV version:', cv2.__version__); print('CUDA devices:', cv2.cuda.getCudaEnabledDeviceCount()); build_info = cv2.getBuildInformation(); print('CUDA support:', 'CUDA' in build_info); print('CUVID support:', 'CUVID' in build_info); print('FFmpeg support:', 'FFMPEG' in build_info); print('GStreamer support:', 'GStreamer' in build_info)" && \
 | 
			
		||||
    echo "GStreamer NVIDIA Plugins:" && \
 | 
			
		||||
    gst-inspect-1.0 2>/dev/null | grep -E "(nvv4l2|nvvideo)" | head -5 || echo "GStreamer NVIDIA plugins not detected" && \
 | 
			
		||||
    echo "=== Verification Complete ==="
 | 
			
		||||
    (python3 -c "import cv2; print('OpenCV version:', cv2.__version__); build_info = cv2.getBuildInformation(); print('CUDA support:', 'CUDA' in build_info); print('CUVID support:', 'CUVID' in build_info); print('FFmpeg support:', 'FFMPEG' in build_info)" || echo "OpenCV verification failed") && \
 | 
			
		||||
    echo "" && \
 | 
			
		||||
    echo "=== Verification Complete (build-time only) ==="
 | 
			
		||||
 | 
			
		||||
# Set working directory
 | 
			
		||||
WORKDIR /app
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,127 +0,0 @@
 | 
			
		|||
# Hardware Acceleration Setup
 | 
			
		||||
 | 
			
		||||
This detector worker now includes **complete NVIDIA hardware acceleration** with FFmpeg and OpenCV built from source.
 | 
			
		||||
 | 
			
		||||
## What's Included
 | 
			
		||||
 | 
			
		||||
### 🔧 Complete Hardware Stack
 | 
			
		||||
- **FFmpeg 6.0** built from source with NVIDIA Video Codec SDK
 | 
			
		||||
- **OpenCV 4.8.1** built with CUDA and custom FFmpeg integration
 | 
			
		||||
- **GStreamer** with NVDEC/VAAPI plugins
 | 
			
		||||
- **TurboJPEG** for optimized JPEG encoding (3-5x faster)
 | 
			
		||||
- **CUDA** support for YOLO model inference
 | 
			
		||||
 | 
			
		||||
### 🎯 Hardware Acceleration Methods (Automatic Detection)
 | 
			
		||||
1. **GStreamer NVDEC** - Best for RTSP streaming, lowest latency
 | 
			
		||||
2. **OpenCV CUDA** - Direct GPU memory access, best integration
 | 
			
		||||
3. **FFmpeg CUVID** - Custom build with full NVIDIA acceleration
 | 
			
		||||
4. **VAAPI** - Intel/AMD GPU support
 | 
			
		||||
5. **Software Fallback** - CPU-only as last resort
 | 
			
		||||
 | 
			
		||||
## Build and Run
 | 
			
		||||
 | 
			
		||||
### Single Build Script
 | 
			
		||||
```bash
 | 
			
		||||
./build-nvdec.sh
 | 
			
		||||
```
 | 
			
		||||
**Build time**: 45-90 minutes (compiles FFmpeg + OpenCV from source)
 | 
			
		||||
 | 
			
		||||
### Run with GPU Support
 | 
			
		||||
```bash
 | 
			
		||||
docker run --gpus all -p 8000:8000 detector-worker:complete-hw-accel
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Performance Improvements
 | 
			
		||||
 | 
			
		||||
### Expected CPU Reduction
 | 
			
		||||
- **Video decoding**: 70-90% reduction (moved to GPU)
 | 
			
		||||
- **JPEG encoding**: 70-80% faster with TurboJPEG
 | 
			
		||||
- **Model inference**: GPU accelerated with CUDA
 | 
			
		||||
- **Overall system**: 50-80% less CPU usage
 | 
			
		||||
 | 
			
		||||
### Profiling Results Comparison
 | 
			
		||||
**Before (Software Only)**:
 | 
			
		||||
- `cv2.imencode`: 6.5% CPU time (1.95s out of 30s)
 | 
			
		||||
- `psutil.cpu_percent`: 88% CPU time (idle polling)
 | 
			
		||||
- Video decoding: 100% CPU
 | 
			
		||||
 | 
			
		||||
**After (Hardware Accelerated)**:
 | 
			
		||||
- Video decoding: GPU (~5-10% CPU overhead)
 | 
			
		||||
- JPEG encoding: 3-5x faster with TurboJPEG
 | 
			
		||||
- Model inference: GPU accelerated
 | 
			
		||||
 | 
			
		||||
## Verification
 | 
			
		||||
 | 
			
		||||
### Check Hardware Acceleration Support
 | 
			
		||||
```bash
 | 
			
		||||
docker run --rm --gpus all detector-worker:complete-hw-accel \
 | 
			
		||||
  bash -c "ffmpeg -hwaccels && python3 -c 'import cv2; build=cv2.getBuildInformation(); print(\"CUDA:\", \"CUDA\" in build); print(\"CUVID:\", \"CUVID\" in build)'"
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Runtime Logs
 | 
			
		||||
The application will automatically log which acceleration method is being used:
 | 
			
		||||
```
 | 
			
		||||
Camera cam1: Successfully using GStreamer with NVDEC hardware acceleration
 | 
			
		||||
Camera cam2: Using FFMPEG hardware acceleration (backend: FFMPEG)
 | 
			
		||||
Camera cam3: Using OpenCV CUDA hardware acceleration
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Files Modified
 | 
			
		||||
 | 
			
		||||
### Docker Configuration
 | 
			
		||||
- **Dockerfile.base** - Complete hardware acceleration stack
 | 
			
		||||
- **build-nvdec.sh** - Single build script for everything
 | 
			
		||||
 | 
			
		||||
### Application Code
 | 
			
		||||
- **core/streaming/readers.py** - Multi-method hardware acceleration
 | 
			
		||||
- **core/utils/hardware_encoder.py** - TurboJPEG + NVENC encoding
 | 
			
		||||
- **core/utils/ffmpeg_detector.py** - Runtime capability detection
 | 
			
		||||
- **requirements.base.txt** - Added TurboJPEG, removed opencv-python
 | 
			
		||||
 | 
			
		||||
## Architecture
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
Input RTSP Stream
 | 
			
		||||
       ↓
 | 
			
		||||
1. GStreamer NVDEC Pipeline (NVIDIA GPU)
 | 
			
		||||
   rtspsrc → nvv4l2decoder → nvvideoconvert → OpenCV
 | 
			
		||||
       ↓
 | 
			
		||||
2. OpenCV CUDA Backend (NVIDIA GPU)
 | 
			
		||||
   OpenCV with CUDA acceleration
 | 
			
		||||
       ↓
 | 
			
		||||
3. FFmpeg CUVID (NVIDIA GPU)
 | 
			
		||||
   Custom FFmpeg with h264_cuvid decoder
 | 
			
		||||
       ↓
 | 
			
		||||
4. VAAPI (Intel/AMD GPU)
 | 
			
		||||
   Hardware acceleration for non-NVIDIA
 | 
			
		||||
       ↓
 | 
			
		||||
5. Software Fallback (CPU)
 | 
			
		||||
   Standard OpenCV software decoding
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Benefits
 | 
			
		||||
 | 
			
		||||
### For Development
 | 
			
		||||
- **Single Dockerfile.base** - Everything consolidated
 | 
			
		||||
- **Automatic detection** - No manual configuration needed
 | 
			
		||||
- **Graceful fallback** - Works without GPU for development
 | 
			
		||||
 | 
			
		||||
### For Production
 | 
			
		||||
- **Maximum performance** - Uses best available acceleration
 | 
			
		||||
- **GPU memory efficiency** - Direct GPU-to-GPU pipeline
 | 
			
		||||
- **Lower latency** - Hardware decoding + CUDA inference
 | 
			
		||||
- **Reduced CPU load** - Frees CPU for other tasks
 | 
			
		||||
 | 
			
		||||
## Troubleshooting
 | 
			
		||||
 | 
			
		||||
### Build Issues
 | 
			
		||||
- Ensure NVIDIA Docker runtime is installed
 | 
			
		||||
- Check CUDA 12.6 compatibility with your GPU
 | 
			
		||||
- Build takes 45-90 minutes - be patient
 | 
			
		||||
 | 
			
		||||
### Runtime Issues
 | 
			
		||||
- Verify `nvidia-smi` works in container
 | 
			
		||||
- Check logs for acceleration method being used
 | 
			
		||||
- Fallback to software decoding is automatic
 | 
			
		||||
 | 
			
		||||
This setup provides **production-ready hardware acceleration** with automatic detection and graceful fallback for maximum compatibility.
 | 
			
		||||
| 
						 | 
				
			
			@ -166,40 +166,17 @@ class RTSPReader:
 | 
			
		|||
        logger.info(f"RTSP reader thread ended for camera {self.camera_id}")
 | 
			
		||||
 | 
			
		||||
    def _initialize_capture(self) -> bool:
 | 
			
		||||
        """Initialize video capture with hardware acceleration (NVDEC) for 1280x720@6fps."""
 | 
			
		||||
        """Initialize video capture with FFmpeg hardware acceleration (CUVID/NVDEC) for 1280x720@6fps."""
 | 
			
		||||
        try:
 | 
			
		||||
            # Release previous capture if exists
 | 
			
		||||
            if self.cap:
 | 
			
		||||
                self.cap.release()
 | 
			
		||||
                time.sleep(0.5)
 | 
			
		||||
 | 
			
		||||
            logger.info(f"Initializing capture for camera {self.camera_id} with hardware acceleration")
 | 
			
		||||
            logger.info(f"Initializing capture for camera {self.camera_id} with FFmpeg hardware acceleration")
 | 
			
		||||
            hw_accel_success = False
 | 
			
		||||
 | 
			
		||||
            # Method 1: Try GStreamer with NVDEC (most efficient on NVIDIA GPUs)
 | 
			
		||||
            if not hw_accel_success:
 | 
			
		||||
                try:
 | 
			
		||||
                    # Build GStreamer pipeline for NVIDIA hardware decoding
 | 
			
		||||
                    gst_pipeline = (
 | 
			
		||||
                        f"rtspsrc location={self.rtsp_url} protocols=tcp latency=100 ! "
 | 
			
		||||
                        "rtph264depay ! h264parse ! "
 | 
			
		||||
                        "nvv4l2decoder ! "  # NVIDIA hardware decoder
 | 
			
		||||
                        "nvvideoconvert ! "  # NVIDIA hardware color conversion
 | 
			
		||||
                        "video/x-raw,format=BGRx,width=1280,height=720 ! "
 | 
			
		||||
                        "videoconvert ! "
 | 
			
		||||
                        "video/x-raw,format=BGR ! "
 | 
			
		||||
                        "appsink max-buffers=1 drop=true sync=false"
 | 
			
		||||
                    )
 | 
			
		||||
                    logger.info(f"Attempting GStreamer NVDEC pipeline for camera {self.camera_id}")
 | 
			
		||||
                    self.cap = cv2.VideoCapture(gst_pipeline, cv2.CAP_GSTREAMER)
 | 
			
		||||
 | 
			
		||||
                    if self.cap.isOpened():
 | 
			
		||||
                        hw_accel_success = True
 | 
			
		||||
                        logger.info(f"Camera {self.camera_id}: Successfully using GStreamer with NVDEC hardware acceleration")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: GStreamer NVDEC not available: {e}")
 | 
			
		||||
 | 
			
		||||
            # Method 2: Try OpenCV CUDA VideoReader (if built with CUVID support)
 | 
			
		||||
            # Method 1: Try OpenCV CUDA VideoReader (if built with CUVID support)
 | 
			
		||||
            if not hw_accel_success:
 | 
			
		||||
                try:
 | 
			
		||||
                    # Check if OpenCV was built with CUDA codec support
 | 
			
		||||
| 
						 | 
				
			
			@ -220,7 +197,7 @@ class RTSPReader:
 | 
			
		|||
                except Exception as e:
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: OpenCV CUDA not available: {e}")
 | 
			
		||||
 | 
			
		||||
            # Method 3: Try FFMPEG with optimal hardware acceleration (CUVID/VAAPI)
 | 
			
		||||
            # Method 2: Try FFmpeg with optimal hardware acceleration (CUVID/NVDEC)
 | 
			
		||||
            if not hw_accel_success:
 | 
			
		||||
                try:
 | 
			
		||||
                    from core.utils.ffmpeg_detector import get_optimal_rtsp_options
 | 
			
		||||
| 
						 | 
				
			
			@ -230,7 +207,7 @@ class RTSPReader:
 | 
			
		|||
                    optimal_options = get_optimal_rtsp_options(self.rtsp_url)
 | 
			
		||||
                    os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = optimal_options
 | 
			
		||||
 | 
			
		||||
                    logger.info(f"Attempting FFMPEG with detected hardware acceleration for camera {self.camera_id}")
 | 
			
		||||
                    logger.info(f"Attempting FFmpeg with detected hardware acceleration for camera {self.camera_id}")
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: Using FFmpeg options: {optimal_options}")
 | 
			
		||||
 | 
			
		||||
                    self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
 | 
			
		||||
| 
						 | 
				
			
			@ -239,45 +216,41 @@ class RTSPReader:
 | 
			
		|||
                        hw_accel_success = True
 | 
			
		||||
                        # Try to get backend info to confirm hardware acceleration
 | 
			
		||||
                        backend = self.cap.getBackendName()
 | 
			
		||||
                        logger.info(f"Camera {self.camera_id}: Using FFMPEG hardware acceleration (backend: {backend})")
 | 
			
		||||
                        logger.info(f"Camera {self.camera_id}: Using FFmpeg hardware acceleration (backend: {backend})")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: FFMPEG hardware acceleration not available: {e}")
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: FFmpeg optimal hardware acceleration not available: {e}")
 | 
			
		||||
 | 
			
		||||
                    # Fallback to basic CUVID
 | 
			
		||||
                    try:
 | 
			
		||||
                        import os
 | 
			
		||||
                        os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'video_codec;h264_cuvid|rtsp_transport;tcp|hwaccel;cuda'
 | 
			
		||||
                        self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
 | 
			
		||||
 | 
			
		||||
                        if self.cap.isOpened():
 | 
			
		||||
                            hw_accel_success = True
 | 
			
		||||
                            logger.info(f"Camera {self.camera_id}: Using basic FFMPEG CUVID hardware acceleration")
 | 
			
		||||
                    except Exception as e2:
 | 
			
		||||
                        logger.debug(f"Camera {self.camera_id}: Basic CUVID also failed: {e2}")
 | 
			
		||||
 | 
			
		||||
            # Method 4: Try VAAPI hardware acceleration (for Intel/AMD GPUs)
 | 
			
		||||
            # Method 3: Try FFmpeg with basic NVIDIA CUVID
 | 
			
		||||
            if not hw_accel_success:
 | 
			
		||||
                try:
 | 
			
		||||
                    gst_pipeline = (
 | 
			
		||||
                        f"rtspsrc location={self.rtsp_url} protocols=tcp latency=100 ! "
 | 
			
		||||
                        "rtph264depay ! h264parse ! "
 | 
			
		||||
                        "vaapih264dec ! "  # VAAPI hardware decoder
 | 
			
		||||
                        "vaapipostproc ! "
 | 
			
		||||
                        "video/x-raw,format=BGRx,width=1280,height=720 ! "
 | 
			
		||||
                        "videoconvert ! "
 | 
			
		||||
                        "video/x-raw,format=BGR ! "
 | 
			
		||||
                        "appsink max-buffers=1 drop=true sync=false"
 | 
			
		||||
                    )
 | 
			
		||||
                    logger.info(f"Attempting GStreamer VAAPI pipeline for camera {self.camera_id}")
 | 
			
		||||
                    self.cap = cv2.VideoCapture(gst_pipeline, cv2.CAP_GSTREAMER)
 | 
			
		||||
                    import os
 | 
			
		||||
                    os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'video_codec;h264_cuvid|rtsp_transport;tcp|hwaccel;cuda|hwaccel_device;0'
 | 
			
		||||
 | 
			
		||||
                    logger.info(f"Attempting FFmpeg with basic CUVID for camera {self.camera_id}")
 | 
			
		||||
                    self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
 | 
			
		||||
 | 
			
		||||
                    if self.cap.isOpened():
 | 
			
		||||
                        hw_accel_success = True
 | 
			
		||||
                        logger.info(f"Camera {self.camera_id}: Successfully using GStreamer with VAAPI hardware acceleration")
 | 
			
		||||
                        logger.info(f"Camera {self.camera_id}: Using FFmpeg CUVID hardware acceleration")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: GStreamer VAAPI not available: {e}")
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: FFmpeg CUVID not available: {e}")
 | 
			
		||||
 | 
			
		||||
            # Fallback: Standard FFMPEG with software decoding
 | 
			
		||||
            # Method 4: Try FFmpeg with VAAPI (Intel/AMD GPUs)
 | 
			
		||||
            if not hw_accel_success:
 | 
			
		||||
                try:
 | 
			
		||||
                    import os
 | 
			
		||||
                    os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;vaapi|hwaccel_device;/dev/dri/renderD128|video_codec;h264|rtsp_transport;tcp'
 | 
			
		||||
 | 
			
		||||
                    logger.info(f"Attempting FFmpeg with VAAPI for camera {self.camera_id}")
 | 
			
		||||
                    self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
 | 
			
		||||
 | 
			
		||||
                    if self.cap.isOpened():
 | 
			
		||||
                        hw_accel_success = True
 | 
			
		||||
                        logger.info(f"Camera {self.camera_id}: Using FFmpeg VAAPI hardware acceleration")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.debug(f"Camera {self.camera_id}: FFmpeg VAAPI not available: {e}")
 | 
			
		||||
 | 
			
		||||
            # Fallback: Standard FFmpeg with software decoding
 | 
			
		||||
            if not hw_accel_success:
 | 
			
		||||
                logger.warning(f"Camera {self.camera_id}: Hardware acceleration not available, falling back to software decoding")
 | 
			
		||||
                import os
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue