Merge remote-tracking branch 'origin/dev' into feat/tracker

This commit is contained in:
Pongsatorn 2025-09-10 23:29:42 +07:00
commit 9631a71073
7 changed files with 701 additions and 230 deletions

View file

@ -0,0 +1,242 @@
"""
Shared Model Registry for Memory Optimization
This module implements a global shared model registry to prevent duplicate model loading
in memory when multiple cameras use the same model. This significantly reduces RAM and
GPU VRAM usage by ensuring only one instance of each unique model is loaded.
Key Features:
- Thread-safe model loading and access
- Reference counting for proper cleanup
- Automatic model lifecycle management
- Maintains compatibility with existing pipeline system
"""
import os
import threading
import logging
from typing import Dict, Any, Optional, Set
import torch
from ultralytics import YOLO
# Create a logger for this module
logger = logging.getLogger("detector_worker.model_registry")
class ModelRegistry:
"""
Singleton class for managing shared YOLO models across multiple cameras.
This registry ensures that each unique model is loaded only once in memory,
dramatically reducing RAM and GPU VRAM usage when multiple cameras use the
same model.
"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super(ModelRegistry, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialized = True
# Thread-safe storage for loaded models
self._models: Dict[str, YOLO] = {} # modelId -> YOLO model instance
self._model_files: Dict[str, str] = {} # modelId -> file path
self._reference_counts: Dict[str, int] = {} # modelId -> reference count
self._model_lock = threading.RLock() # Reentrant lock for nested calls
logger.info("🏭 Shared Model Registry initialized - ready for memory-optimized model loading")
def get_model(self, model_id: str, model_file_path: str) -> YOLO:
"""
Get or load a YOLO model. Returns shared instance if already loaded.
Args:
model_id: Unique identifier for the model
model_file_path: Path to the model file
Returns:
YOLO model instance (shared across all callers)
"""
with self._model_lock:
if model_id in self._models:
# Model already loaded - increment reference count and return
self._reference_counts[model_id] += 1
logger.info(f"📖 Model '{model_id}' reused (ref_count: {self._reference_counts[model_id]}) - SAVED MEMORY!")
return self._models[model_id]
# Model not loaded yet - load it
logger.info(f"🔄 Loading NEW model '{model_id}' from {model_file_path}")
if not os.path.exists(model_file_path):
raise FileNotFoundError(f"Model file {model_file_path} not found")
try:
# Load the YOLO model
model = YOLO(model_file_path)
# Move to GPU if available
if torch.cuda.is_available():
logger.info(f"🚀 CUDA available. Moving model '{model_id}' to GPU VRAM")
model.to("cuda")
else:
logger.info(f"💻 CUDA not available. Using CPU for model '{model_id}'")
# Store in registry
self._models[model_id] = model
self._model_files[model_id] = model_file_path
self._reference_counts[model_id] = 1
logger.info(f"✅ Model '{model_id}' loaded and registered (ref_count: 1)")
self._log_registry_status()
return model
except Exception as e:
logger.error(f"❌ Failed to load model '{model_id}' from {model_file_path}: {e}")
raise
def release_model(self, model_id: str) -> None:
"""
Release a reference to a model. If reference count reaches zero,
the model may be unloaded to free memory.
Args:
model_id: Unique identifier for the model to release
"""
with self._model_lock:
if model_id not in self._reference_counts:
logger.warning(f"⚠️ Attempted to release unknown model '{model_id}'")
return
self._reference_counts[model_id] -= 1
logger.info(f"📉 Model '{model_id}' reference count decreased to {self._reference_counts[model_id]}")
# For now, keep models in memory even when ref count reaches 0
# This prevents reload overhead if the same model is needed again soon
# In the future, we could implement LRU eviction policy
# if self._reference_counts[model_id] <= 0:
# logger.info(f"💤 Model '{model_id}' has 0 references but keeping in memory for reuse")
# Optionally: self._unload_model(model_id)
def _unload_model(self, model_id: str) -> None:
"""
Internal method to unload a model from memory.
Currently not used to prevent reload overhead.
"""
with self._model_lock:
if model_id in self._models:
logger.info(f"🗑️ Unloading model '{model_id}' from memory")
# Clear GPU memory if model was on GPU
model = self._models[model_id]
if hasattr(model, 'model') and hasattr(model.model, 'cuda'):
try:
# Move model to CPU before deletion to free GPU memory
model.to('cpu')
except Exception as e:
logger.warning(f"⚠️ Failed to move model '{model_id}' to CPU: {e}")
# Remove from registry
del self._models[model_id]
del self._model_files[model_id]
del self._reference_counts[model_id]
# Force garbage collection
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"✅ Model '{model_id}' unloaded and memory freed")
self._log_registry_status()
def get_registry_status(self) -> Dict[str, Any]:
"""
Get current status of the model registry.
Returns:
Dictionary with registry statistics
"""
with self._model_lock:
return {
"total_models": len(self._models),
"models": {
model_id: {
"file_path": self._model_files[model_id],
"reference_count": self._reference_counts[model_id]
}
for model_id in self._models
},
"total_references": sum(self._reference_counts.values())
}
def _log_registry_status(self) -> None:
"""Log current registry status for debugging."""
status = self.get_registry_status()
logger.info(f"📊 Model Registry Status: {status['total_models']} unique models, {status['total_references']} total references")
for model_id, info in status['models'].items():
logger.debug(f" 📋 '{model_id}': refs={info['reference_count']}, file={os.path.basename(info['file_path'])}")
def cleanup_all(self) -> None:
"""
Clean up all models from the registry. Used during shutdown.
"""
with self._model_lock:
model_ids = list(self._models.keys())
logger.info(f"🧹 Cleaning up {len(model_ids)} models from registry")
for model_id in model_ids:
self._unload_model(model_id)
logger.info("✅ Model registry cleanup complete")
# Global singleton instance
_registry = ModelRegistry()
def get_shared_model(model_id: str, model_file_path: str) -> YOLO:
"""
Convenience function to get a shared model instance.
Args:
model_id: Unique identifier for the model
model_file_path: Path to the model file
Returns:
YOLO model instance (shared across all callers)
"""
return _registry.get_model(model_id, model_file_path)
def release_shared_model(model_id: str) -> None:
"""
Convenience function to release a shared model reference.
Args:
model_id: Unique identifier for the model to release
"""
_registry.release_model(model_id)
def get_registry_status() -> Dict[str, Any]:
"""
Convenience function to get registry status.
Returns:
Dictionary with registry statistics
"""
return _registry.get_registry_status()
def cleanup_registry() -> None:
"""
Convenience function to cleanup the entire registry.
"""
_registry.cleanup_all()

375
siwatsystem/mpta_manager.py Normal file
View file

@ -0,0 +1,375 @@
"""
Shared MPTA Manager for Disk Space Optimization
This module implements shared MPTA file management to prevent duplicate downloads
and extractions when multiple cameras use the same model. MPTA files are stored
in modelId-based directories and shared across all cameras using that model.
Key Features:
- Thread-safe MPTA downloading and extraction
- ModelId-based directory structure: models/{modelId}/
- Reference counting for proper cleanup
- Eliminates duplicate MPTA downloads
- Maintains compatibility with existing pipeline system
"""
import os
import threading
import logging
import shutil
import requests
from typing import Dict, Set, Optional
from urllib.parse import urlparse
from .pympta import load_pipeline_from_zip
# Create a logger for this module
logger = logging.getLogger("detector_worker.mpta_manager")
class MPTAManager:
"""
Singleton class for managing shared MPTA files across multiple cameras.
This manager ensures that each unique modelId is downloaded and extracted
only once, dramatically reducing disk usage and download time when multiple
cameras use the same model.
"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super(MPTAManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialized = True
# Thread-safe storage for MPTA management
self._model_paths: Dict[int, str] = {} # modelId -> shared_extraction_path
self._mpta_file_paths: Dict[int, str] = {} # modelId -> local_mpta_file_path
self._reference_counts: Dict[int, int] = {} # modelId -> reference count
self._download_locks: Dict[int, threading.Lock] = {} # modelId -> download lock
self._cameras_using_model: Dict[int, Set[str]] = {} # modelId -> set of camera_ids
self._manager_lock = threading.RLock() # Reentrant lock for nested calls
logger.info("🏭 Shared MPTA Manager initialized - ready for disk-optimized MPTA management")
def get_or_download_mpta(self, model_id: int, model_url: str, camera_id: str) -> Optional[tuple[str, str]]:
"""
Get or download an MPTA file. Returns (extraction_path, mpta_file_path) if successful.
Args:
model_id: Unique identifier for the model
model_url: URL to download the MPTA file from
camera_id: Identifier for the requesting camera
Returns:
Tuple of (extraction_path, mpta_file_path), or None if failed
"""
with self._manager_lock:
# Track camera usage
if model_id not in self._cameras_using_model:
self._cameras_using_model[model_id] = set()
self._cameras_using_model[model_id].add(camera_id)
# Check if model directory already exists on disk (from previous sessions)
if model_id not in self._model_paths:
potential_path = f"models/{model_id}"
if os.path.exists(potential_path) and os.path.isdir(potential_path):
# Directory exists from previous session, find the MPTA file
mpta_files = [f for f in os.listdir(potential_path) if f.endswith('.mpta')]
if mpta_files:
# Use the first .mpta file found
mpta_file_path = os.path.join(potential_path, mpta_files[0])
self._model_paths[model_id] = potential_path
self._mpta_file_paths[model_id] = mpta_file_path
self._reference_counts[model_id] = 0 # Will be incremented below
logger.info(f"📂 Found existing MPTA modelId {model_id} from previous session")
# Check if already available
if model_id in self._model_paths:
shared_path = self._model_paths[model_id]
mpta_file_path = self._mpta_file_paths.get(model_id)
if os.path.exists(shared_path) and mpta_file_path and os.path.exists(mpta_file_path):
self._reference_counts[model_id] += 1
logger.info(f"📂 MPTA modelId {model_id} reused for camera {camera_id} (ref_count: {self._reference_counts[model_id]}) - SAVED DOWNLOAD!")
return (shared_path, mpta_file_path)
else:
# Path was deleted externally, clean up our records
logger.warning(f"⚠️ MPTA path for modelId {model_id} was deleted externally, will re-download")
del self._model_paths[model_id]
self._mpta_file_paths.pop(model_id, None)
self._reference_counts.pop(model_id, 0)
# Need to download - get or create download lock for this modelId
if model_id not in self._download_locks:
self._download_locks[model_id] = threading.Lock()
# Download with model-specific lock (released _manager_lock to allow other models)
download_lock = self._download_locks[model_id]
with download_lock:
# Double-check after acquiring download lock
with self._manager_lock:
if model_id in self._model_paths and os.path.exists(self._model_paths[model_id]):
mpta_file_path = self._mpta_file_paths.get(model_id)
if mpta_file_path and os.path.exists(mpta_file_path):
self._reference_counts[model_id] += 1
logger.info(f"📂 MPTA modelId {model_id} became available during wait (ref_count: {self._reference_counts[model_id]})")
return (self._model_paths[model_id], mpta_file_path)
# Actually download and extract
shared_path = f"models/{model_id}"
logger.info(f"🔄 Downloading NEW MPTA for modelId {model_id} from {model_url}")
try:
# Ensure directory exists
os.makedirs(shared_path, exist_ok=True)
# Download MPTA file
mpta_filename = self._extract_filename_from_url(model_url) or f"model_{model_id}.mpta"
local_mpta_path = os.path.join(shared_path, mpta_filename)
if not self._download_file(model_url, local_mpta_path):
logger.error(f"❌ Failed to download MPTA for modelId {model_id}")
return None
# Extract MPTA
pipeline_tree = load_pipeline_from_zip(local_mpta_path, shared_path)
if pipeline_tree is None:
logger.error(f"❌ Failed to extract MPTA for modelId {model_id}")
return None
# Success - register in manager
with self._manager_lock:
self._model_paths[model_id] = shared_path
self._mpta_file_paths[model_id] = local_mpta_path
self._reference_counts[model_id] = 1
logger.info(f"✅ MPTA modelId {model_id} downloaded and registered (ref_count: 1)")
self._log_manager_status()
return (shared_path, local_mpta_path)
except Exception as e:
logger.error(f"❌ Error downloading/extracting MPTA for modelId {model_id}: {e}")
# Clean up partial download
if os.path.exists(shared_path):
shutil.rmtree(shared_path, ignore_errors=True)
return None
def release_mpta(self, model_id: int, camera_id: str) -> None:
"""
Release a reference to an MPTA. If reference count reaches zero,
the MPTA directory may be cleaned up to free disk space.
Args:
model_id: Unique identifier for the model to release
camera_id: Identifier for the camera releasing the reference
"""
with self._manager_lock:
if model_id not in self._reference_counts:
logger.warning(f"⚠️ Attempted to release unknown MPTA modelId {model_id} for camera {camera_id}")
return
# Remove camera from usage tracking
if model_id in self._cameras_using_model:
self._cameras_using_model[model_id].discard(camera_id)
self._reference_counts[model_id] -= 1
logger.info(f"📉 MPTA modelId {model_id} reference count decreased to {self._reference_counts[model_id]} (released by {camera_id})")
# Clean up if no more references
# if self._reference_counts[model_id] <= 0:
# self._cleanup_mpta(model_id)
def _cleanup_mpta(self, model_id: int) -> None:
"""
Internal method to clean up an MPTA directory and free disk space.
"""
if model_id in self._model_paths:
shared_path = self._model_paths[model_id]
try:
if os.path.exists(shared_path):
shutil.rmtree(shared_path)
logger.info(f"🗑️ Cleaned up MPTA directory: {shared_path}")
# Remove from tracking
del self._model_paths[model_id]
self._mpta_file_paths.pop(model_id, None)
del self._reference_counts[model_id]
self._cameras_using_model.pop(model_id, None)
# Clean up download lock (optional, could keep for future use)
self._download_locks.pop(model_id, None)
logger.info(f"✅ MPTA modelId {model_id} fully cleaned up and disk space freed")
self._log_manager_status()
except Exception as e:
logger.error(f"❌ Error cleaning up MPTA modelId {model_id}: {e}")
def get_shared_path(self, model_id: int) -> Optional[str]:
"""
Get the shared extraction path for a modelId without downloading.
Args:
model_id: Model identifier to look up
Returns:
Shared path if available, None otherwise
"""
with self._manager_lock:
return self._model_paths.get(model_id)
def get_manager_status(self) -> Dict:
"""
Get current status of the MPTA manager.
Returns:
Dictionary with manager statistics
"""
with self._manager_lock:
return {
"total_mpta_models": len(self._model_paths),
"models": {
str(model_id): {
"shared_path": path,
"reference_count": self._reference_counts.get(model_id, 0),
"cameras_using": list(self._cameras_using_model.get(model_id, set()))
}
for model_id, path in self._model_paths.items()
},
"total_references": sum(self._reference_counts.values()),
"active_downloads": len(self._download_locks)
}
def _log_manager_status(self) -> None:
"""Log current manager status for debugging."""
status = self.get_manager_status()
logger.info(f"📊 MPTA Manager Status: {status['total_mpta_models']} unique models, {status['total_references']} total references")
for model_id, info in status['models'].items():
cameras_str = ','.join(info['cameras_using'][:3]) # Show first 3 cameras
if len(info['cameras_using']) > 3:
cameras_str += f"+{len(info['cameras_using'])-3} more"
logger.debug(f" 📋 ModelId {model_id}: refs={info['reference_count']}, cameras=[{cameras_str}]")
def cleanup_all(self) -> None:
"""
Clean up all MPTA directories. Used during shutdown.
"""
with self._manager_lock:
model_ids = list(self._model_paths.keys())
logger.info(f"🧹 Cleaning up {len(model_ids)} MPTA directories")
for model_id in model_ids:
self._cleanup_mpta(model_id)
# Clear all tracking data
self._download_locks.clear()
logger.info("✅ MPTA manager cleanup complete")
def _download_file(self, url: str, local_path: str) -> bool:
"""
Download a file from URL to local path with progress logging.
Args:
url: URL to download from
local_path: Local path to save to
Returns:
True if successful, False otherwise
"""
try:
logger.info(f"⬇️ Starting download from {url}")
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
if total_size > 0:
logger.info(f"📦 File size: {total_size / 1024 / 1024:.2f} MB")
downloaded = 0
last_logged_progress = 0
with open(local_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
progress = int((downloaded / total_size) * 100)
# Log at 10% intervals (10%, 20%, 30%, etc.)
if progress >= last_logged_progress + 10 and progress <= 100:
logger.debug(f"Download progress: {progress}%")
last_logged_progress = progress
logger.info(f"✅ Successfully downloaded to {local_path}")
return True
except Exception as e:
logger.error(f"❌ Download failed: {e}")
# Clean up partial file
if os.path.exists(local_path):
os.remove(local_path)
return False
def _extract_filename_from_url(self, url: str) -> Optional[str]:
"""Extract filename from URL."""
try:
parsed = urlparse(url)
filename = os.path.basename(parsed.path)
return filename if filename else None
except Exception:
return None
# Global singleton instance
_mpta_manager = MPTAManager()
def get_or_download_mpta(model_id: int, model_url: str, camera_id: str) -> Optional[tuple[str, str]]:
"""
Convenience function to get or download a shared MPTA.
Args:
model_id: Unique identifier for the model
model_url: URL to download the MPTA file from
camera_id: Identifier for the requesting camera
Returns:
Tuple of (extraction_path, mpta_file_path), or None if failed
"""
return _mpta_manager.get_or_download_mpta(model_id, model_url, camera_id)
def release_mpta(model_id: int, camera_id: str) -> None:
"""
Convenience function to release a shared MPTA reference.
Args:
model_id: Unique identifier for the model to release
camera_id: Identifier for the camera releasing the reference
"""
_mpta_manager.release_mpta(model_id, camera_id)
def get_mpta_manager_status() -> Dict:
"""
Convenience function to get MPTA manager status.
Returns:
Dictionary with manager statistics
"""
return _mpta_manager.get_manager_status()
def cleanup_mpta_manager() -> None:
"""
Convenience function to cleanup the entire MPTA manager.
"""
_mpta_manager.cleanup_all()

View file

@ -13,6 +13,7 @@ import concurrent.futures
from ultralytics import YOLO
from urllib.parse import urlparse
from .database import DatabaseManager
from .model_registry import get_shared_model, release_shared_model
from datetime import datetime
# Create a logger specifically for this module
@ -98,13 +99,11 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manage
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
raise FileNotFoundError(f"Model file {model_path} not found.")
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
model = YOLO(model_path)
if torch.cuda.is_available():
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU VRAM")
model.to("cuda")
else:
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
# Use shared model registry to prevent duplicate loading
model_id = node_config['modelId']
logger.info(f"Getting shared model for node {model_id} from {model_path}")
model = get_shared_model(model_id, model_path)
# Prepare trigger class indices for optimization
trigger_classes = node_config.get("triggerClasses", [])
@ -1138,6 +1137,17 @@ def is_camera_active(camera_id, model_id):
return session_state.get("active", True)
def cleanup_pipeline_node(node: dict):
"""Clean up a pipeline node and release its model reference."""
if node and "modelId" in node:
model_id = node["modelId"]
logger.info(f"🧹 Cleaning up pipeline node: {model_id}")
release_shared_model(model_id)
# Recursively clean up branches
for branch in node.get("branches", []):
cleanup_pipeline_node(branch)
def cleanup_camera_stability(camera_id):
"""Clean up stability tracking data when a camera is disconnected."""
global _camera_stability_tracking