Refactor: nearly done phase 5

This commit is contained in:
ziesorx 2025-09-24 20:29:31 +07:00
parent 227e696ed6
commit 7a9a149955
12 changed files with 2750 additions and 105 deletions

View file

@ -1 +1,10 @@
# Detection module for ML pipeline execution
"""
Detection module for the Python Detector Worker.
This module provides the main detection pipeline orchestration and parallel branch processing
for advanced computer vision detection systems.
"""
from .pipeline import DetectionPipeline
from .branches import BranchProcessor
__all__ = ['DetectionPipeline', 'BranchProcessor']

598
core/detection/branches.py Normal file
View file

@ -0,0 +1,598 @@
"""
Parallel Branch Processing Module.
Handles concurrent execution of classification branches and result synchronization.
"""
import logging
import asyncio
import time
from typing import Dict, List, Optional, Any, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import cv2
from ..models.inference import YOLOWrapper
logger = logging.getLogger(__name__)
class BranchProcessor:
"""
Handles parallel processing of classification branches.
Manages branch synchronization and result collection.
"""
def __init__(self, model_manager: Any):
"""
Initialize branch processor.
Args:
model_manager: Model manager for loading models
"""
self.model_manager = model_manager
# Branch models cache
self.branch_models: Dict[str, YOLOWrapper] = {}
# Thread pool for parallel execution
self.executor = ThreadPoolExecutor(max_workers=4)
# Storage managers (set during initialization)
self.redis_manager = None
self.db_manager = None
# Statistics
self.stats = {
'branches_processed': 0,
'parallel_executions': 0,
'total_processing_time': 0.0,
'models_loaded': 0
}
logger.info("BranchProcessor initialized")
async def initialize(self, pipeline_config: Any, redis_manager: Any, db_manager: Any) -> bool:
"""
Initialize branch processor with pipeline configuration.
Args:
pipeline_config: Pipeline configuration object
redis_manager: Redis manager instance
db_manager: Database manager instance
Returns:
True if successful, False otherwise
"""
try:
self.redis_manager = redis_manager
self.db_manager = db_manager
# Pre-load branch models if they exist
branches = getattr(pipeline_config, 'branches', [])
if branches:
await self._preload_branch_models(branches)
logger.info(f"BranchProcessor initialized with {len(self.branch_models)} models")
return True
except Exception as e:
logger.error(f"Error initializing branch processor: {e}", exc_info=True)
return False
async def _preload_branch_models(self, branches: List[Any]) -> None:
"""
Pre-load all branch models for faster execution.
Args:
branches: List of branch configurations
"""
for branch in branches:
try:
await self._load_branch_model(branch)
# Recursively load nested branches
nested_branches = getattr(branch, 'branches', [])
if nested_branches:
await self._preload_branch_models(nested_branches)
except Exception as e:
logger.error(f"Error preloading branch model {getattr(branch, 'model_id', 'unknown')}: {e}")
async def _load_branch_model(self, branch_config: Any) -> Optional[YOLOWrapper]:
"""
Load a branch model if not already loaded.
Args:
branch_config: Branch configuration object
Returns:
Loaded YOLO model wrapper or None
"""
try:
model_id = getattr(branch_config, 'model_id', None)
model_file = getattr(branch_config, 'model_file', None)
if not model_id or not model_file:
logger.warning(f"Invalid branch config: model_id={model_id}, model_file={model_file}")
return None
# Check if model is already loaded
if model_id in self.branch_models:
logger.debug(f"Branch model {model_id} already loaded")
return self.branch_models[model_id]
# Load model
logger.info(f"Loading branch model: {model_id} ({model_file})")
# Get the first available model ID from ModelManager
pipeline_models = list(self.model_manager.get_all_downloaded_models())
if pipeline_models:
actual_model_id = pipeline_models[0] # Use the first available model
model = self.model_manager.get_yolo_model(actual_model_id, model_file)
if model:
self.branch_models[model_id] = model
self.stats['models_loaded'] += 1
logger.info(f"Branch model {model_id} loaded successfully")
return model
else:
logger.error(f"Failed to load branch model {model_id}")
return None
else:
logger.error("No models available in ModelManager for branch loading")
return None
except Exception as e:
logger.error(f"Error loading branch model {getattr(branch_config, 'model_id', 'unknown')}: {e}")
return None
async def execute_branches(self,
frame: np.ndarray,
branches: List[Any],
detected_regions: Dict[str, Any],
detection_context: Dict[str, Any]) -> Dict[str, Any]:
"""
Execute all branches in parallel and collect results.
Args:
frame: Input frame
branches: List of branch configurations
detected_regions: Dictionary of detected regions from main detection
detection_context: Detection context data
Returns:
Dictionary with branch execution results
"""
start_time = time.time()
branch_results = {}
try:
# Separate parallel and sequential branches
parallel_branches = []
sequential_branches = []
for branch in branches:
if getattr(branch, 'parallel', False):
parallel_branches.append(branch)
else:
sequential_branches.append(branch)
# Execute parallel branches concurrently
if parallel_branches:
logger.info(f"Executing {len(parallel_branches)} branches in parallel")
parallel_results = await self._execute_parallel_branches(
frame, parallel_branches, detected_regions, detection_context
)
branch_results.update(parallel_results)
self.stats['parallel_executions'] += 1
# Execute sequential branches one by one
if sequential_branches:
logger.info(f"Executing {len(sequential_branches)} branches sequentially")
sequential_results = await self._execute_sequential_branches(
frame, sequential_branches, detected_regions, detection_context
)
branch_results.update(sequential_results)
# Update statistics
self.stats['branches_processed'] += len(branches)
processing_time = time.time() - start_time
self.stats['total_processing_time'] += processing_time
logger.info(f"Branch execution completed in {processing_time:.3f}s with {len(branch_results)} results")
except Exception as e:
logger.error(f"Error in branch execution: {e}", exc_info=True)
return branch_results
async def _execute_parallel_branches(self,
frame: np.ndarray,
branches: List[Any],
detected_regions: Dict[str, Any],
detection_context: Dict[str, Any]) -> Dict[str, Any]:
"""
Execute branches in parallel using ThreadPoolExecutor.
Args:
frame: Input frame
branches: List of parallel branch configurations
detected_regions: Dictionary of detected regions
detection_context: Detection context data
Returns:
Dictionary with parallel branch results
"""
results = {}
# Submit all branches for parallel execution
future_to_branch = {}
for branch in branches:
branch_id = getattr(branch, 'model_id', 'unknown')
logger.info(f"[PARALLEL SUBMIT] {branch_id}: Submitting branch to thread pool")
future = self.executor.submit(
self._execute_single_branch_sync,
frame, branch, detected_regions, detection_context
)
future_to_branch[future] = branch
# Collect results as they complete
for future in as_completed(future_to_branch):
branch = future_to_branch[future]
branch_id = getattr(branch, 'model_id', 'unknown')
try:
result = future.result()
results[branch_id] = result
logger.info(f"[PARALLEL COMPLETE] {branch_id}: Branch completed successfully")
except Exception as e:
logger.error(f"Error in parallel branch {branch_id}: {e}")
results[branch_id] = {
'status': 'error',
'message': str(e),
'processing_time': 0.0
}
# Flatten nested branch results to top level for database access
flattened_results = {}
for branch_id, branch_result in results.items():
# Add the branch result itself
flattened_results[branch_id] = branch_result
# If this branch has nested branches, add them to the top level too
if isinstance(branch_result, dict) and 'nested_branches' in branch_result:
nested_branches = branch_result['nested_branches']
for nested_branch_id, nested_result in nested_branches.items():
flattened_results[nested_branch_id] = nested_result
logger.info(f"[FLATTEN] Added nested branch {nested_branch_id} to top-level results")
return flattened_results
async def _execute_sequential_branches(self,
frame: np.ndarray,
branches: List[Any],
detected_regions: Dict[str, Any],
detection_context: Dict[str, Any]) -> Dict[str, Any]:
"""
Execute branches sequentially.
Args:
frame: Input frame
branches: List of sequential branch configurations
detected_regions: Dictionary of detected regions
detection_context: Detection context data
Returns:
Dictionary with sequential branch results
"""
results = {}
for branch in branches:
branch_id = getattr(branch, 'model_id', 'unknown')
try:
result = await asyncio.get_event_loop().run_in_executor(
self.executor,
self._execute_single_branch_sync,
frame, branch, detected_regions, detection_context
)
results[branch_id] = result
logger.debug(f"Sequential branch {branch_id} completed successfully")
except Exception as e:
logger.error(f"Error in sequential branch {branch_id}: {e}")
results[branch_id] = {
'status': 'error',
'message': str(e),
'processing_time': 0.0
}
# Flatten nested branch results to top level for database access
flattened_results = {}
for branch_id, branch_result in results.items():
# Add the branch result itself
flattened_results[branch_id] = branch_result
# If this branch has nested branches, add them to the top level too
if isinstance(branch_result, dict) and 'nested_branches' in branch_result:
nested_branches = branch_result['nested_branches']
for nested_branch_id, nested_result in nested_branches.items():
flattened_results[nested_branch_id] = nested_result
logger.info(f"[FLATTEN] Added nested branch {nested_branch_id} to top-level results")
return flattened_results
def _execute_single_branch_sync(self,
frame: np.ndarray,
branch_config: Any,
detected_regions: Dict[str, Any],
detection_context: Dict[str, Any]) -> Dict[str, Any]:
"""
Synchronous execution of a single branch (for ThreadPoolExecutor).
Args:
frame: Input frame
branch_config: Branch configuration object
detected_regions: Dictionary of detected regions
detection_context: Detection context data
Returns:
Dictionary with branch execution result
"""
start_time = time.time()
branch_id = getattr(branch_config, 'model_id', 'unknown')
logger.info(f"[BRANCH START] {branch_id}: Starting branch execution")
logger.debug(f"[BRANCH CONFIG] {branch_id}: crop={getattr(branch_config, 'crop', False)}, "
f"trigger_classes={getattr(branch_config, 'trigger_classes', [])}, "
f"min_confidence={getattr(branch_config, 'min_confidence', 0.6)}")
# Check if branch should execute based on triggerClasses (execution conditions)
trigger_classes = getattr(branch_config, 'trigger_classes', [])
logger.info(f"[DETECTED REGIONS] {branch_id}: Available parent detections: {list(detected_regions.keys())}")
for region_name, region_data in detected_regions.items():
logger.debug(f"[REGION DATA] {branch_id}: '{region_name}' -> bbox={region_data.get('bbox')}, conf={region_data.get('confidence')}")
if trigger_classes:
# Check if any parent detection matches our trigger classes
should_execute = False
for trigger_class in trigger_classes:
if trigger_class in detected_regions:
should_execute = True
logger.info(f"[TRIGGER CHECK] {branch_id}: Found '{trigger_class}' in parent detections - branch will execute")
break
if not should_execute:
logger.warning(f"[TRIGGER CHECK] {branch_id}: None of trigger classes {trigger_classes} found in parent detections {list(detected_regions.keys())} - skipping branch")
return {
'status': 'skipped',
'branch_id': branch_id,
'message': f'No trigger classes {trigger_classes} found in parent detections',
'processing_time': time.time() - start_time
}
result = {
'status': 'success',
'branch_id': branch_id,
'result': {},
'processing_time': 0.0,
'timestamp': time.time()
}
try:
# Get or load branch model
if branch_id not in self.branch_models:
logger.warning(f"Branch model {branch_id} not preloaded, loading now...")
# This should be rare since models are preloaded
return {
'status': 'error',
'message': f'Branch model {branch_id} not available',
'processing_time': time.time() - start_time
}
model = self.branch_models[branch_id]
# Get configuration values first
min_confidence = getattr(branch_config, 'min_confidence', 0.6)
# Prepare input frame for this branch
input_frame = frame
# Handle cropping if required - use biggest bbox that passes min_confidence
if getattr(branch_config, 'crop', False):
crop_classes = getattr(branch_config, 'crop_class', [])
if isinstance(crop_classes, str):
crop_classes = [crop_classes]
# Find the biggest bbox that passes min_confidence threshold
best_region = None
best_class = None
best_area = 0.0
for crop_class in crop_classes:
if crop_class in detected_regions:
region = detected_regions[crop_class]
confidence = region.get('confidence', 0.0)
# Only use detections above min_confidence
if confidence >= min_confidence:
bbox = region['bbox']
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) # width * height
# Choose biggest bbox among valid detections
if area > best_area:
best_region = region
best_class = crop_class
best_area = area
if best_region:
bbox = best_region['bbox']
x1, y1, x2, y2 = [int(coord) for coord in bbox]
cropped = frame[y1:y2, x1:x2]
if cropped.size > 0:
input_frame = cropped
confidence = best_region.get('confidence', 0.0)
logger.info(f"[CROP SUCCESS] {branch_id}: cropped '{best_class}' region (conf={confidence:.3f}, area={int(best_area)}) -> shape={cropped.shape}")
else:
logger.warning(f"Branch {branch_id}: empty crop, using full frame")
else:
logger.warning(f"Branch {branch_id}: no valid crop regions found (min_conf={min_confidence})")
logger.info(f"[INFERENCE START] {branch_id}: Running inference on {'cropped' if input_frame is not frame else 'full'} frame "
f"({input_frame.shape[1]}x{input_frame.shape[0]}) with confidence={min_confidence}")
# Save input frame for debugging
import os
import cv2
debug_dir = "/Users/ziesorx/Documents/Work/Adsist/Bangchak/worker/python-detector-worker/debug_frames"
timestamp = detection_context.get('timestamp', 'unknown')
session_id = detection_context.get('session_id', 'unknown')
debug_filename = f"{debug_dir}/{branch_id}_{session_id}_{timestamp}_input.jpg"
try:
cv2.imwrite(debug_filename, input_frame)
logger.info(f"[DEBUG] Saved inference input frame: {debug_filename} ({input_frame.shape[1]}x{input_frame.shape[0]})")
except Exception as e:
logger.warning(f"[DEBUG] Failed to save debug frame: {e}")
# Use .predict() method for both detection and classification models
inference_start = time.time()
detection_results = model.model.predict(input_frame, conf=min_confidence, verbose=False)
inference_time = time.time() - inference_start
logger.info(f"[INFERENCE DONE] {branch_id}: Predict completed in {inference_time:.3f}s using .predict() method")
# Initialize branch_detections outside the conditional
branch_detections = []
# Process results using clean, unified logic
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
# Handle detection models (have .boxes attribute)
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[RAW DETECTIONS] {branch_id}: Found {len(result_obj.boxes)} raw detections")
for i, box in enumerate(result_obj.boxes):
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = model.model.names[class_id]
logger.debug(f"[RAW DETECTION {i+1}] {branch_id}: '{class_name}', conf={confidence:.3f}")
# All detections are included - no filtering by trigger_classes here
branch_detections.append({
'class_name': class_name,
'confidence': confidence,
'bbox': bbox
})
# Handle classification models (have .probs attribute)
elif hasattr(result_obj, 'probs') and result_obj.probs is not None:
logger.info(f"[RAW CLASSIFICATION] {branch_id}: Processing classification results")
probs = result_obj.probs
top_indices = probs.top5 # Get top 5 predictions
top_conf = probs.top5conf.cpu().numpy()
for idx, conf in zip(top_indices, top_conf):
if conf >= min_confidence:
class_name = model.model.names[int(idx)]
logger.debug(f"[CLASSIFICATION RESULT {len(branch_detections)+1}] {branch_id}: '{class_name}', conf={conf:.3f}")
# For classification, use full input frame dimensions as bbox
branch_detections.append({
'class_name': class_name,
'confidence': float(conf),
'bbox': [0, 0, input_frame.shape[1], input_frame.shape[0]]
})
else:
logger.warning(f"[UNKNOWN MODEL] {branch_id}: Model results have no .boxes or .probs")
result['result'] = {
'detections': branch_detections,
'detection_count': len(branch_detections)
}
logger.info(f"[FINAL RESULTS] {branch_id}: {len(branch_detections)} detections processed")
# Extract best result for classification models
if branch_detections:
best_detection = max(branch_detections, key=lambda x: x['confidence'])
logger.info(f"[BEST DETECTION] {branch_id}: '{best_detection['class_name']}' with confidence {best_detection['confidence']:.3f}")
# Add classification-style results for database operations
if 'brand' in branch_id.lower():
result['result']['brand'] = best_detection['class_name']
elif 'body' in branch_id.lower() or 'bodytype' in branch_id.lower():
result['result']['body_type'] = best_detection['class_name']
elif 'front_rear' in branch_id.lower():
result['result']['front_rear'] = best_detection['confidence']
logger.info(f"[CLASSIFICATION RESULT] {branch_id}: Extracted classification fields")
else:
logger.warning(f"[NO RESULTS] {branch_id}: No detections found")
# Handle nested branches ONLY if parent found valid detections
nested_branches = getattr(branch_config, 'branches', [])
if nested_branches:
# Check if parent branch found any valid detections
if not branch_detections:
logger.warning(f"[BRANCH SKIP] {branch_id}: Skipping {len(nested_branches)} nested branches - parent found no valid detections")
else:
logger.debug(f"Branch {branch_id}: executing {len(nested_branches)} nested branches")
# Create detected_regions from THIS branch's detections for nested branches
# Nested branches should see their immediate parent's detections, not the root pipeline
nested_detected_regions = {}
for detection in branch_detections:
nested_detected_regions[detection['class_name']] = {
'bbox': detection['bbox'],
'confidence': detection['confidence']
}
logger.info(f"[NESTED REGIONS] {branch_id}: Passing {list(nested_detected_regions.keys())} to nested branches")
# Note: For simplicity, nested branches are executed sequentially in this sync method
# In a full async implementation, these could also be parallelized
nested_results = {}
for nested_branch in nested_branches:
nested_result = self._execute_single_branch_sync(
input_frame, nested_branch, nested_detected_regions, detection_context
)
nested_branch_id = getattr(nested_branch, 'model_id', 'unknown')
nested_results[nested_branch_id] = nested_result
result['nested_branches'] = nested_results
except Exception as e:
logger.error(f"[BRANCH ERROR] {branch_id}: Error in execution: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
result['processing_time'] = time.time() - start_time
# Summary log
logger.info(f"[BRANCH COMPLETE] {branch_id}: status={result['status']}, "
f"processing_time={result['processing_time']:.3f}s, "
f"result_keys={list(result['result'].keys()) if result['result'] else 'none'}")
return result
def get_statistics(self) -> Dict[str, Any]:
"""Get branch processor statistics."""
return {
**self.stats,
'loaded_models': list(self.branch_models.keys()),
'model_count': len(self.branch_models)
}
def cleanup(self):
"""Cleanup resources."""
if self.executor:
self.executor.shutdown(wait=False)
# Clear model cache
self.branch_models.clear()
logger.info("BranchProcessor cleaned up")

992
core/detection/pipeline.py Normal file
View file

@ -0,0 +1,992 @@
"""
Detection Pipeline Module.
Main detection pipeline orchestration that coordinates detection flow and execution.
"""
import logging
import time
import uuid
from datetime import datetime
from typing import Dict, List, Optional, Any
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from ..models.inference import YOLOWrapper
from ..models.pipeline import PipelineParser
from .branches import BranchProcessor
from ..storage.redis import RedisManager
from ..storage.database import DatabaseManager
logger = logging.getLogger(__name__)
class DetectionPipeline:
"""
Main detection pipeline that orchestrates the complete detection flow.
Handles detection execution, branch coordination, and result aggregation.
"""
def __init__(self, pipeline_parser: PipelineParser, model_manager: Any, message_sender=None):
"""
Initialize detection pipeline.
Args:
pipeline_parser: Pipeline parser with loaded configuration
model_manager: Model manager for loading models
message_sender: Optional callback function for sending WebSocket messages
"""
self.pipeline_parser = pipeline_parser
self.model_manager = model_manager
self.message_sender = message_sender
# Initialize components
self.branch_processor = BranchProcessor(model_manager)
self.redis_manager = None
self.db_manager = None
# Main detection model
self.detection_model: Optional[YOLOWrapper] = None
self.detection_model_id = None
# Thread pool for parallel processing
self.executor = ThreadPoolExecutor(max_workers=4)
# Pipeline configuration
self.pipeline_config = pipeline_parser.pipeline_config
# Statistics
self.stats = {
'detections_processed': 0,
'branches_executed': 0,
'actions_executed': 0,
'total_processing_time': 0.0
}
logger.info("DetectionPipeline initialized")
async def initialize(self) -> bool:
"""
Initialize all pipeline components including models, Redis, and database.
Returns:
True if successful, False otherwise
"""
try:
# Initialize Redis connection
if self.pipeline_parser.redis_config:
self.redis_manager = RedisManager(self.pipeline_parser.redis_config.__dict__)
if not await self.redis_manager.initialize():
logger.error("Failed to initialize Redis connection")
return False
logger.info("Redis connection initialized")
# Initialize database connection
if self.pipeline_parser.postgresql_config:
self.db_manager = DatabaseManager(self.pipeline_parser.postgresql_config.__dict__)
if not self.db_manager.connect():
logger.error("Failed to initialize database connection")
return False
# Create required tables
if not self.db_manager.create_car_frontal_info_table():
logger.warning("Failed to create car_frontal_info table")
logger.info("Database connection initialized")
# Initialize main detection model
if not await self._initialize_detection_model():
logger.error("Failed to initialize detection model")
return False
# Initialize branch processor
if not await self.branch_processor.initialize(
self.pipeline_config,
self.redis_manager,
self.db_manager
):
logger.error("Failed to initialize branch processor")
return False
logger.info("Detection pipeline initialization completed successfully")
return True
except Exception as e:
logger.error(f"Error initializing detection pipeline: {e}", exc_info=True)
return False
async def _initialize_detection_model(self) -> bool:
"""
Load and initialize the main detection model.
Returns:
True if successful, False otherwise
"""
try:
if not self.pipeline_config:
logger.warning("No pipeline configuration found")
return False
model_file = getattr(self.pipeline_config, 'model_file', None)
model_id = getattr(self.pipeline_config, 'model_id', None)
if not model_file:
logger.warning("No detection model file specified")
return False
# Load detection model
logger.info(f"Loading detection model: {model_id} ({model_file})")
# Get the model ID from the ModelManager context
pipeline_models = list(self.model_manager.get_all_downloaded_models())
if pipeline_models:
actual_model_id = pipeline_models[0] # Use the first available model
self.detection_model = self.model_manager.get_yolo_model(actual_model_id, model_file)
else:
logger.error("No models available in ModelManager")
return False
self.detection_model_id = model_id
if self.detection_model:
logger.info(f"Detection model {model_id} loaded successfully")
return True
else:
logger.error(f"Failed to load detection model {model_id}")
return False
except Exception as e:
logger.error(f"Error initializing detection model: {e}", exc_info=True)
return False
async def execute_detection_phase(self,
frame: np.ndarray,
display_id: str,
subscription_id: str) -> Dict[str, Any]:
"""
Execute only the detection phase - run main detection and send imageDetection message.
This is the first phase that runs when a vehicle is validated.
Args:
frame: Input frame to process
display_id: Display identifier
subscription_id: Subscription identifier
Returns:
Dictionary with detection phase results
"""
start_time = time.time()
result = {
'status': 'success',
'detections': [],
'message_sent': False,
'processing_time': 0.0,
'timestamp': datetime.now().isoformat()
}
try:
# Run main detection model
if not self.detection_model:
result['status'] = 'error'
result['message'] = 'Detection model not available'
return result
# Create detection context
detection_context = {
'display_id': display_id,
'subscription_id': subscription_id,
'timestamp': datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
'timestamp_ms': int(time.time() * 1000)
}
# Run inference on single snapshot using .predict() method
detection_results = self.detection_model.model.predict(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
verbose=False
)
# Process detection results using clean logic
valid_detections = []
detected_regions = {}
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
# Handle .predict() results which have .boxes for detection models
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[DETECTION PHASE] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
for i, box in enumerate(result_obj.boxes):
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = self.detection_model.model.names[class_id]
logger.info(f"[DETECTION PHASE {i+1}] {class_name}: bbox={bbox}, conf={confidence:.3f}")
# Check if detection matches trigger classes
if trigger_classes and class_name not in trigger_classes:
logger.debug(f"[DETECTION PHASE] Filtered '{class_name}' - not in trigger_classes {trigger_classes}")
continue
logger.info(f"[DETECTION PHASE] Accepted '{class_name}' - matches trigger_classes")
# Store detection info
detection_info = {
'class_name': class_name,
'confidence': confidence,
'bbox': bbox
}
valid_detections.append(detection_info)
# Store region for processing phase
detected_regions[class_name] = {
'bbox': bbox,
'confidence': confidence
}
else:
logger.warning("[DETECTION PHASE] No boxes found in detection results")
# Store detected_regions in result for processing phase
result['detected_regions'] = detected_regions
result['detections'] = valid_detections
# If we have valid detections, send imageDetection message with empty detection
if valid_detections:
logger.info(f"Found {len(valid_detections)} valid detections, sending imageDetection message")
# Send imageDetection with empty detection data
message_sent = await self._send_image_detection_message(
subscription_id=subscription_id,
detection_context=detection_context
)
result['message_sent'] = message_sent
if message_sent:
logger.info(f"Detection phase completed - imageDetection message sent for {display_id}")
else:
logger.warning(f"Failed to send imageDetection message for {display_id}")
else:
logger.debug("No valid detections found in detection phase")
except Exception as e:
logger.error(f"Error in detection phase: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
result['processing_time'] = time.time() - start_time
return result
async def execute_processing_phase(self,
frame: np.ndarray,
display_id: str,
session_id: str,
subscription_id: str,
detected_regions: Dict[str, Any] = None) -> Dict[str, Any]:
"""
Execute the processing phase - run branches and database operations after receiving sessionId.
This is the second phase that runs after backend sends setSessionId.
Args:
frame: Input frame to process
display_id: Display identifier
session_id: Session ID from backend
subscription_id: Subscription identifier
detected_regions: Pre-detected regions from detection phase
Returns:
Dictionary with processing phase results
"""
start_time = time.time()
result = {
'status': 'success',
'branch_results': {},
'actions_executed': [],
'session_id': session_id,
'processing_time': 0.0,
'timestamp': datetime.now().isoformat()
}
try:
# Create enhanced detection context with session_id
detection_context = {
'display_id': display_id,
'session_id': session_id,
'subscription_id': subscription_id,
'timestamp': datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
'timestamp_ms': int(time.time() * 1000),
'uuid': str(uuid.uuid4()),
'filename': f"{uuid.uuid4()}.jpg"
}
# If no detected_regions provided, re-run detection to get them
if not detected_regions:
# Use .predict() method for detection
detection_results = self.detection_model.model.predict(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
verbose=False
)
detected_regions = {}
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
for box in result_obj.boxes:
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = self.detection_model.model.names[class_id]
detected_regions[class_name] = {
'bbox': bbox,
'confidence': confidence
}
# Initialize database record with session_id
if session_id and self.db_manager:
success = self.db_manager.insert_initial_detection(
display_id=display_id,
captured_timestamp=detection_context['timestamp'],
session_id=session_id
)
if success:
logger.info(f"Created initial database record with session {session_id}")
else:
logger.warning(f"Failed to create initial database record for session {session_id}")
# Execute branches in parallel
if hasattr(self.pipeline_config, 'branches') and self.pipeline_config.branches:
branch_results = await self.branch_processor.execute_branches(
frame=frame,
branches=self.pipeline_config.branches,
detected_regions=detected_regions,
detection_context=detection_context
)
result['branch_results'] = branch_results
logger.info(f"Executed {len(branch_results)} branches for session {session_id}")
# Execute immediate actions (non-parallel)
immediate_actions = getattr(self.pipeline_config, 'actions', [])
if immediate_actions:
executed_actions = await self._execute_immediate_actions(
actions=immediate_actions,
frame=frame,
detected_regions=detected_regions,
detection_context=detection_context
)
result['actions_executed'].extend(executed_actions)
# Execute parallel actions (after all branches complete)
parallel_actions = getattr(self.pipeline_config, 'parallel_actions', [])
if parallel_actions:
# Add branch results to context
enhanced_context = {**detection_context}
if result['branch_results']:
enhanced_context['branch_results'] = result['branch_results']
executed_parallel_actions = await self._execute_parallel_actions(
actions=parallel_actions,
frame=frame,
detected_regions=detected_regions,
context=enhanced_context
)
result['actions_executed'].extend(executed_parallel_actions)
logger.info(f"Processing phase completed for session {session_id}: "
f"{len(result['branch_results'])} branches, {len(result['actions_executed'])} actions")
except Exception as e:
logger.error(f"Error in processing phase: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
result['processing_time'] = time.time() - start_time
return result
async def _send_image_detection_message(self,
subscription_id: str,
detection_context: Dict[str, Any]) -> bool:
"""
Send imageDetection message with empty detection data to backend.
Args:
subscription_id: Subscription identifier
detection_context: Detection context data
Returns:
True if message sent successfully, False otherwise
"""
try:
if not self.message_sender:
logger.warning("No message sender available for imageDetection")
return False
# Import here to avoid circular imports
from ..communication.messages import create_image_detection
# Create empty detection data as specified
detection_data = {}
# Get model info from pipeline configuration
model_id = 52 # Default model ID
model_name = "yolo11m" # Default
if self.pipeline_config:
model_name = getattr(self.pipeline_config, 'model_id', 'yolo11m')
# Try to extract numeric model ID from pipeline context, fallback to default
if hasattr(self.pipeline_config, 'model_id'):
# For now, use default model ID since pipeline config stores string identifiers
model_id = 52
# Create imageDetection message
detection_message = create_image_detection(
subscription_identifier=subscription_id,
detection_data=detection_data,
model_id=model_id,
model_name=model_name
)
# Send to backend via WebSocket
await self.message_sender(detection_message)
logger.info(f"[DETECTION PHASE] Sent imageDetection with empty detection: {detection_data}")
return True
except Exception as e:
logger.error(f"Error sending imageDetection message: {e}", exc_info=True)
return False
async def execute_detection(self,
frame: np.ndarray,
display_id: str,
session_id: Optional[str] = None,
subscription_id: Optional[str] = None) -> Dict[str, Any]:
"""
Execute the main detection pipeline on a frame.
Args:
frame: Input frame to process
display_id: Display identifier
session_id: Optional session ID
subscription_id: Optional subscription identifier
Returns:
Dictionary with detection results
"""
start_time = time.time()
result = {
'status': 'success',
'detections': [],
'branch_results': {},
'actions_executed': [],
'session_id': session_id,
'processing_time': 0.0,
'timestamp': datetime.now().isoformat()
}
try:
# Update stats
self.stats['detections_processed'] += 1
# Run main detection model
if not self.detection_model:
result['status'] = 'error'
result['message'] = 'Detection model not available'
return result
# Create detection context
detection_context = {
'display_id': display_id,
'session_id': session_id,
'subscription_id': subscription_id,
'timestamp': datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
'timestamp_ms': int(time.time() * 1000),
'uuid': str(uuid.uuid4()),
'filename': f"{uuid.uuid4()}.jpg"
}
# Save full frame for debugging
import cv2
debug_dir = "/Users/ziesorx/Documents/Work/Adsist/Bangchak/worker/python-detector-worker/debug_frames"
timestamp = detection_context.get('timestamp', 'unknown')
session_id = detection_context.get('session_id', 'unknown')
debug_filename = f"{debug_dir}/pipeline_full_frame_{session_id}_{timestamp}.jpg"
try:
cv2.imwrite(debug_filename, frame)
logger.info(f"[DEBUG PIPELINE] Saved full input frame: {debug_filename} ({frame.shape[1]}x{frame.shape[0]})")
except Exception as e:
logger.warning(f"[DEBUG PIPELINE] Failed to save debug frame: {e}")
# Run inference on single snapshot using .predict() method
detection_results = self.detection_model.model.predict(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
verbose=False
)
# Process detection results
detected_regions = {}
valid_detections = []
if detection_results and len(detection_results) > 0:
result_obj = detection_results[0]
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
# Handle .predict() results which have .boxes for detection models
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[PIPELINE RAW] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
for i, box in enumerate(result_obj.boxes):
class_id = int(box.cls[0])
confidence = float(box.conf[0])
bbox = box.xyxy[0].cpu().numpy().tolist() # [x1, y1, x2, y2]
class_name = self.detection_model.model.names[class_id]
logger.info(f"[PIPELINE RAW {i+1}] {class_name}: bbox={bbox}, conf={confidence:.3f}")
# Check if detection matches trigger classes
if trigger_classes and class_name not in trigger_classes:
continue
# Store detection info
detection_info = {
'class_name': class_name,
'confidence': confidence,
'bbox': bbox
}
valid_detections.append(detection_info)
# Store region for cropping
detected_regions[class_name] = {
'bbox': bbox,
'confidence': confidence
}
logger.info(f"[PIPELINE DETECTION] {class_name}: bbox={bbox}, conf={confidence:.3f}")
result['detections'] = valid_detections
# If we have valid detections, proceed with branches and actions
if valid_detections:
logger.info(f"Found {len(valid_detections)} valid detections for pipeline processing")
# Initialize database record if session_id is provided
if session_id and self.db_manager:
success = self.db_manager.insert_initial_detection(
display_id=display_id,
captured_timestamp=detection_context['timestamp'],
session_id=session_id
)
if not success:
logger.warning(f"Failed to create initial database record for session {session_id}")
# Execute branches in parallel
if hasattr(self.pipeline_config, 'branches') and self.pipeline_config.branches:
branch_results = await self.branch_processor.execute_branches(
frame=frame,
branches=self.pipeline_config.branches,
detected_regions=detected_regions,
detection_context=detection_context
)
result['branch_results'] = branch_results
self.stats['branches_executed'] += len(branch_results)
# Execute immediate actions (non-parallel)
immediate_actions = getattr(self.pipeline_config, 'actions', [])
if immediate_actions:
executed_actions = await self._execute_immediate_actions(
actions=immediate_actions,
frame=frame,
detected_regions=detected_regions,
detection_context=detection_context
)
result['actions_executed'].extend(executed_actions)
# Execute parallel actions (after all branches complete)
parallel_actions = getattr(self.pipeline_config, 'parallel_actions', [])
if parallel_actions:
# Add branch results to context
enhanced_context = {**detection_context}
if result['branch_results']:
enhanced_context['branch_results'] = result['branch_results']
executed_parallel_actions = await self._execute_parallel_actions(
actions=parallel_actions,
frame=frame,
detected_regions=detected_regions,
context=enhanced_context
)
result['actions_executed'].extend(executed_parallel_actions)
self.stats['actions_executed'] += len(result['actions_executed'])
else:
logger.debug("No valid detections found for pipeline processing")
except Exception as e:
logger.error(f"Error in detection pipeline execution: {e}", exc_info=True)
result['status'] = 'error'
result['message'] = str(e)
# Update timing
processing_time = time.time() - start_time
result['processing_time'] = processing_time
self.stats['total_processing_time'] += processing_time
return result
async def _execute_immediate_actions(self,
actions: List[Dict],
frame: np.ndarray,
detected_regions: Dict[str, Any],
detection_context: Dict[str, Any]) -> List[Dict]:
"""
Execute immediate actions (non-parallel).
Args:
actions: List of action configurations
frame: Input frame
detected_regions: Dictionary of detected regions
detection_context: Detection context data
Returns:
List of executed action results
"""
executed_actions = []
for action in actions:
try:
action_type = action.type.value
logger.debug(f"Executing immediate action: {action_type}")
if action_type == 'redis_save_image':
result = await self._execute_redis_save_image(
action, frame, detected_regions, detection_context
)
elif action_type == 'redis_publish':
result = await self._execute_redis_publish(
action, detection_context
)
else:
logger.warning(f"Unknown immediate action type: {action_type}")
result = {'status': 'error', 'message': f'Unknown action type: {action_type}'}
executed_actions.append({
'action_type': action_type,
'result': result
})
except Exception as e:
logger.error(f"Error executing immediate action {action_type}: {e}", exc_info=True)
executed_actions.append({
'action_type': action.type.value,
'result': {'status': 'error', 'message': str(e)}
})
return executed_actions
async def _execute_parallel_actions(self,
actions: List[Dict],
frame: np.ndarray,
detected_regions: Dict[str, Any],
context: Dict[str, Any]) -> List[Dict]:
"""
Execute parallel actions (after branches complete).
Args:
actions: List of parallel action configurations
frame: Input frame
detected_regions: Dictionary of detected regions
context: Enhanced context with branch results
Returns:
List of executed action results
"""
executed_actions = []
for action in actions:
try:
action_type = action.type.value
logger.debug(f"Executing parallel action: {action_type}")
if action_type == 'postgresql_update_combined':
result = await self._execute_postgresql_update_combined(action, context)
# Send imageDetection message with actual processing results after database update
if result.get('status') == 'success':
await self._send_processing_results_message(context)
else:
logger.warning(f"Unknown parallel action type: {action_type}")
result = {'status': 'error', 'message': f'Unknown action type: {action_type}'}
executed_actions.append({
'action_type': action_type,
'result': result
})
except Exception as e:
logger.error(f"Error executing parallel action {action_type}: {e}", exc_info=True)
executed_actions.append({
'action_type': action.type.value,
'result': {'status': 'error', 'message': str(e)}
})
return executed_actions
async def _execute_redis_save_image(self,
action: Dict,
frame: np.ndarray,
detected_regions: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute redis_save_image action."""
if not self.redis_manager:
return {'status': 'error', 'message': 'Redis not available'}
try:
# Get image to save (cropped or full frame)
image_to_save = frame
region_name = action.params.get('region')
if region_name and region_name in detected_regions:
# Crop the specified region
bbox = detected_regions[region_name]['bbox']
x1, y1, x2, y2 = [int(coord) for coord in bbox]
cropped = frame[y1:y2, x1:x2]
if cropped.size > 0:
image_to_save = cropped
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
else:
logger.warning(f"Empty crop for region '{region_name}', using full frame")
# Format key with context
key = action.params['key'].format(**context)
# Save image to Redis
result = await self.redis_manager.save_image(
key=key,
image=image_to_save,
expire_seconds=action.params.get('expire_seconds'),
image_format=action.params.get('format', 'jpeg'),
quality=action.params.get('quality', 90)
)
if result:
# Add image_key to context for subsequent actions
context['image_key'] = key
return {'status': 'success', 'key': key}
else:
return {'status': 'error', 'message': 'Failed to save image to Redis'}
except Exception as e:
logger.error(f"Error in redis_save_image action: {e}", exc_info=True)
return {'status': 'error', 'message': str(e)}
async def _execute_redis_publish(self, action: Dict, context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute redis_publish action."""
if not self.redis_manager:
return {'status': 'error', 'message': 'Redis not available'}
try:
channel = action.params['channel']
message_template = action.params['message']
# Format message with context
message = message_template.format(**context)
# Publish message
result = await self.redis_manager.publish_message(channel, message)
if result >= 0: # Redis publish returns number of subscribers
return {'status': 'success', 'subscribers': result, 'channel': channel}
else:
return {'status': 'error', 'message': 'Failed to publish message to Redis'}
except Exception as e:
logger.error(f"Error in redis_publish action: {e}", exc_info=True)
return {'status': 'error', 'message': str(e)}
async def _execute_postgresql_update_combined(self,
action: Dict,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute postgresql_update_combined action."""
if not self.db_manager:
return {'status': 'error', 'message': 'Database not available'}
try:
# Wait for required branches if specified
wait_for_branches = action.params.get('waitForBranches', [])
branch_results = context.get('branch_results', {})
# Check if all required branches have completed
for branch_id in wait_for_branches:
if branch_id not in branch_results:
logger.warning(f"Branch {branch_id} result not available for database update")
return {'status': 'error', 'message': f'Missing branch result: {branch_id}'}
# Prepare fields for database update
table = action.params.get('table', 'car_frontal_info')
key_field = action.params.get('key_field', 'session_id')
key_value = action.params.get('key_value', '{session_id}').format(**context)
field_mappings = action.params.get('fields', {})
# Resolve field values using branch results
resolved_fields = {}
for field_name, field_template in field_mappings.items():
try:
# Replace template variables with actual values from branch results
resolved_value = self._resolve_field_template(field_template, branch_results, context)
resolved_fields[field_name] = resolved_value
except Exception as e:
logger.warning(f"Failed to resolve field {field_name}: {e}")
resolved_fields[field_name] = None
# Execute database update
success = self.db_manager.execute_update(
table=table,
key_field=key_field,
key_value=key_value,
fields=resolved_fields
)
if success:
return {'status': 'success', 'table': table, 'key': f'{key_field}={key_value}', 'fields': resolved_fields}
else:
return {'status': 'error', 'message': 'Database update failed'}
except Exception as e:
logger.error(f"Error in postgresql_update_combined action: {e}", exc_info=True)
return {'status': 'error', 'message': str(e)}
def _resolve_field_template(self, template: str, branch_results: Dict, context: Dict) -> str:
"""
Resolve field template using branch results and context.
Args:
template: Template string like "{car_brand_cls_v2.brand}"
branch_results: Dictionary of branch execution results
context: Detection context
Returns:
Resolved field value
"""
try:
# Handle simple context variables first
if template.startswith('{') and template.endswith('}'):
var_name = template[1:-1]
# Check for branch result reference (e.g., "car_brand_cls_v2.brand")
if '.' in var_name:
branch_id, field_name = var_name.split('.', 1)
if branch_id in branch_results:
branch_data = branch_results[branch_id]
# Look for the field in branch results
if isinstance(branch_data, dict) and 'result' in branch_data:
result_data = branch_data['result']
if isinstance(result_data, dict) and field_name in result_data:
return str(result_data[field_name])
logger.warning(f"Field {field_name} not found in branch {branch_id} results")
return None
else:
logger.warning(f"Branch {branch_id} not found in results")
return None
# Simple context variable
elif var_name in context:
return str(context[var_name])
logger.warning(f"Template variable {var_name} not found in context or branch results")
return None
# Return template as-is if not a template variable
return template
except Exception as e:
logger.error(f"Error resolving field template {template}: {e}")
return None
async def _send_processing_results_message(self, context: Dict[str, Any]):
"""
Send imageDetection message with actual processing results after database update.
Args:
context: Detection context containing branch results and subscription info
"""
try:
branch_results = context.get('branch_results', {})
# Extract detection results from branch results
detection_data = {
"carBrand": None,
"carModel": None,
"bodyType": None,
"licensePlateText": None,
"licensePlateConfidence": None
}
# Extract car brand from car_brand_cls_v2 results
if 'car_brand_cls_v2' in branch_results:
brand_result = branch_results['car_brand_cls_v2'].get('result', {})
detection_data["carBrand"] = brand_result.get('brand')
# Extract body type from car_bodytype_cls_v1 results
if 'car_bodytype_cls_v1' in branch_results:
bodytype_result = branch_results['car_bodytype_cls_v1'].get('result', {})
detection_data["bodyType"] = bodytype_result.get('body_type')
# Create detection message
subscription_id = context.get('subscription_id', '')
# Get the actual numeric model ID from context
model_id_value = context.get('model_id', 52)
if isinstance(model_id_value, str):
try:
model_id_value = int(model_id_value)
except (ValueError, TypeError):
model_id_value = 52
model_name = str(getattr(self.pipeline_config, 'model_id', 'unknown'))
logger.debug(f"Creating DetectionData with modelId={model_id_value}, modelName='{model_name}'")
from core.communication.models import ImageDetectionMessage, DetectionData
detection_data_obj = DetectionData(
detection=detection_data,
modelId=model_id_value,
modelName=model_name
)
detection_message = ImageDetectionMessage(
subscriptionIdentifier=subscription_id,
data=detection_data_obj
)
# Send to backend via WebSocket
if self.message_sender:
await self.message_sender(detection_message)
logger.info(f"[RESULTS] Sent imageDetection with processing results: {detection_data}")
else:
logger.warning("No message sender available for processing results")
except Exception as e:
logger.error(f"Error sending processing results message: {e}", exc_info=True)
def get_statistics(self) -> Dict[str, Any]:
"""Get detection pipeline statistics."""
branch_stats = self.branch_processor.get_statistics() if self.branch_processor else {}
return {
'pipeline': self.stats,
'branches': branch_stats,
'redis_available': self.redis_manager is not None,
'database_available': self.db_manager is not None,
'detection_model_loaded': self.detection_model is not None
}
def cleanup(self):
"""Cleanup resources."""
if self.executor:
self.executor.shutdown(wait=False)
if self.redis_manager:
self.redis_manager.cleanup()
if self.db_manager:
self.db_manager.disconnect()
if self.branch_processor:
self.branch_processor.cleanup()
logger.info("Detection pipeline cleaned up")