fix: classification top-1, dynamic result field, removed crop filter
Some checks failed
Build Worker Base and Application Images / check-base-changes (push) Failing after 16s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 3m31s
Build Worker Base and Application Images / deploy-stack (push) Successful in 25s
Some checks failed
Build Worker Base and Application Images / check-base-changes (push) Failing after 16s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 3m31s
Build Worker Base and Application Images / deploy-stack (push) Successful in 25s
This commit is contained in:
parent
498b285e80
commit
5e59e00c55
2 changed files with 88 additions and 29 deletions
|
|
@ -35,6 +35,9 @@ class BranchProcessor:
|
|||
# Branch models cache
|
||||
self.branch_models: Dict[str, YOLOWrapper] = {}
|
||||
|
||||
# Dynamic field mapping: branch_id → output_field_name (e.g., {"car_brand_cls_v3": "brand"})
|
||||
self.branch_output_fields: Dict[str, str] = {}
|
||||
|
||||
# Thread pool for parallel execution
|
||||
self.executor = ThreadPoolExecutor(max_workers=4)
|
||||
|
||||
|
|
@ -68,6 +71,9 @@ class BranchProcessor:
|
|||
self.redis_manager = redis_manager
|
||||
self.db_manager = db_manager
|
||||
|
||||
# Parse field mappings from parallelActions to enable dynamic field extraction
|
||||
self._parse_branch_output_fields(pipeline_config)
|
||||
|
||||
# Pre-load branch models if they exist
|
||||
branches = getattr(pipeline_config, 'branches', [])
|
||||
if branches:
|
||||
|
|
@ -141,6 +147,46 @@ class BranchProcessor:
|
|||
logger.error(f"Error loading branch model {getattr(branch_config, 'model_id', 'unknown')}: {e}")
|
||||
return None
|
||||
|
||||
def _parse_branch_output_fields(self, pipeline_config: Any) -> None:
|
||||
"""
|
||||
Parse parallelActions.fields to determine what output field each branch produces.
|
||||
Creates dynamic mapping from branch_id to output field name.
|
||||
|
||||
Example:
|
||||
Input: parallelActions.fields = {"car_brand": "{car_brand_cls_v3.brand}"}
|
||||
Output: self.branch_output_fields = {"car_brand_cls_v3": "brand"}
|
||||
|
||||
Args:
|
||||
pipeline_config: Pipeline configuration object
|
||||
"""
|
||||
try:
|
||||
if not pipeline_config or not hasattr(pipeline_config, 'parallel_actions'):
|
||||
logger.debug("[FIELD MAPPING] No parallelActions found in pipeline config")
|
||||
return
|
||||
|
||||
for action in pipeline_config.parallel_actions:
|
||||
if action.type.value == 'postgresql_update_combined':
|
||||
fields = action.params.get('fields', {})
|
||||
|
||||
# Parse each field template to extract branch_id and field_name
|
||||
for db_field_name, template in fields.items():
|
||||
# Template format: "{branch_id.field_name}"
|
||||
if template.startswith('{') and template.endswith('}'):
|
||||
var_name = template[1:-1] # Remove { }
|
||||
|
||||
if '.' in var_name:
|
||||
branch_id, field_name = var_name.split('.', 1)
|
||||
|
||||
# Store the mapping
|
||||
self.branch_output_fields[branch_id] = field_name
|
||||
|
||||
logger.info(f"[FIELD MAPPING] Branch '{branch_id}' → outputs field '{field_name}'")
|
||||
|
||||
logger.info(f"[FIELD MAPPING] Parsed {len(self.branch_output_fields)} branch output field mappings")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[FIELD MAPPING] Error parsing branch output fields: {e}", exc_info=True)
|
||||
|
||||
async def execute_branches(self,
|
||||
frame: np.ndarray,
|
||||
branches: List[Any],
|
||||
|
|
@ -350,10 +396,11 @@ class BranchProcessor:
|
|||
logger.debug(f"[REGION DATA] {branch_id}: '{region_name}' -> bbox={region_data.get('bbox')}, conf={region_data.get('confidence')}")
|
||||
|
||||
if trigger_classes:
|
||||
# Check if any parent detection matches our trigger classes
|
||||
# Check if any parent detection matches our trigger classes (case-insensitive)
|
||||
should_execute = False
|
||||
for trigger_class in trigger_classes:
|
||||
if trigger_class in detected_regions:
|
||||
# Case-insensitive comparison for robustness
|
||||
if trigger_class.lower() in [k.lower() for k in detected_regions.keys()]:
|
||||
should_execute = True
|
||||
logger.info(f"[TRIGGER CHECK] {branch_id}: Found '{trigger_class}' in parent detections - branch will execute")
|
||||
break
|
||||
|
|
@ -410,16 +457,15 @@ class BranchProcessor:
|
|||
region = detected_regions[crop_class]
|
||||
confidence = region.get('confidence', 0.0)
|
||||
|
||||
# Only use detections above min_confidence
|
||||
if confidence >= min_confidence:
|
||||
bbox = region['bbox']
|
||||
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) # width * height
|
||||
# Select largest bbox (no confidence filtering - parent already validated it)
|
||||
bbox = region['bbox']
|
||||
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) # width * height
|
||||
|
||||
# Choose biggest bbox among valid detections
|
||||
if area > best_area:
|
||||
best_region = region
|
||||
best_class = crop_class
|
||||
best_area = area
|
||||
# Choose biggest bbox among available detections
|
||||
if area > best_area:
|
||||
best_region = region
|
||||
best_class = crop_class
|
||||
best_area = area
|
||||
|
||||
if best_region:
|
||||
bbox = best_region['bbox']
|
||||
|
|
@ -478,17 +524,25 @@ class BranchProcessor:
|
|||
top_indices = probs.top5 # Get top 5 predictions
|
||||
top_conf = probs.top5conf.cpu().numpy()
|
||||
|
||||
for idx, conf in zip(top_indices, top_conf):
|
||||
if conf >= min_confidence:
|
||||
class_name = model.model.names[int(idx)]
|
||||
logger.debug(f"[CLASSIFICATION RESULT {len(branch_detections)+1}] {branch_id}: '{class_name}', conf={conf:.3f}")
|
||||
# For classification: take only TOP-1 prediction (not all top-5)
|
||||
# This prevents empty results when all top-5 predictions are below threshold
|
||||
if len(top_indices) > 0 and len(top_conf) > 0:
|
||||
top_idx = top_indices[0]
|
||||
top_confidence = float(top_conf[0])
|
||||
|
||||
# Apply minConfidence threshold to top-1 only
|
||||
if top_confidence >= min_confidence:
|
||||
class_name = model.model.names[int(top_idx)]
|
||||
logger.info(f"[CLASSIFICATION TOP-1] {branch_id}: '{class_name}', conf={top_confidence:.3f}")
|
||||
|
||||
# For classification, use full input frame dimensions as bbox
|
||||
branch_detections.append({
|
||||
'class_name': class_name,
|
||||
'confidence': float(conf),
|
||||
'confidence': top_confidence,
|
||||
'bbox': [0, 0, input_frame.shape[1], input_frame.shape[0]]
|
||||
})
|
||||
else:
|
||||
logger.warning(f"[CLASSIFICATION FILTERED] {branch_id}: Top prediction conf={top_confidence:.3f} < threshold={min_confidence}")
|
||||
else:
|
||||
logger.warning(f"[UNKNOWN MODEL] {branch_id}: Model results have no .boxes or .probs")
|
||||
|
||||
|
|
@ -499,22 +553,27 @@ class BranchProcessor:
|
|||
|
||||
logger.info(f"[FINAL RESULTS] {branch_id}: {len(branch_detections)} detections processed")
|
||||
|
||||
# Extract best result for classification models
|
||||
# Determine output field name from dynamic mapping (parsed from parallelActions.fields)
|
||||
output_field = self.branch_output_fields.get(branch_id)
|
||||
|
||||
# Always initialize the field (even if None) to ensure it exists for database update
|
||||
if output_field:
|
||||
result['result'][output_field] = None
|
||||
logger.debug(f"[FIELD INIT] {branch_id}: Initialized field '{output_field}' = None")
|
||||
|
||||
# Extract best detection if available
|
||||
if branch_detections:
|
||||
best_detection = max(branch_detections, key=lambda x: x['confidence'])
|
||||
logger.info(f"[BEST DETECTION] {branch_id}: '{best_detection['class_name']}' with confidence {best_detection['confidence']:.3f}")
|
||||
|
||||
# Add classification-style results for database operations
|
||||
if 'brand' in branch_id.lower():
|
||||
result['result']['brand'] = best_detection['class_name']
|
||||
elif 'body' in branch_id.lower() or 'bodytype' in branch_id.lower():
|
||||
result['result']['body_type'] = best_detection['class_name']
|
||||
elif 'front_rear' in branch_id.lower():
|
||||
result['result']['front_rear'] = best_detection['confidence']
|
||||
|
||||
logger.info(f"[CLASSIFICATION RESULT] {branch_id}: Extracted classification fields")
|
||||
# Set the output field value using dynamic mapping
|
||||
if output_field:
|
||||
result['result'][output_field] = best_detection['class_name']
|
||||
logger.info(f"[FIELD SET] {branch_id}: Set field '{output_field}' = '{best_detection['class_name']}'")
|
||||
else:
|
||||
logger.warning(f"[NO MAPPING] {branch_id}: No output field defined in parallelActions.fields")
|
||||
else:
|
||||
logger.warning(f"[NO RESULTS] {branch_id}: No detections found")
|
||||
logger.warning(f"[NO RESULTS] {branch_id}: No detections found, field '{output_field}' remains None")
|
||||
|
||||
# Execute branch actions if this branch found valid detections
|
||||
actions_executed = []
|
||||
|
|
|
|||
|
|
@ -113,8 +113,8 @@ class FFmpegRTSPReader(VideoReader):
|
|||
cmd = [
|
||||
'ffmpeg',
|
||||
# DO NOT REMOVE
|
||||
'-hwaccel', 'cuda',
|
||||
'-hwaccel_device', '0',
|
||||
# '-hwaccel', 'cuda',
|
||||
# '-hwaccel_device', '0',
|
||||
# Real-time input flags
|
||||
'-fflags', 'nobuffer+genpts',
|
||||
'-flags', 'low_delay',
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue