feat/tracking and save in redis finished
This commit is contained in:
parent
3a4a27ca68
commit
5873945115
8 changed files with 393 additions and 245 deletions
60
test/test.py
Normal file
60
test/test.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
from ultralytics import YOLO
|
||||
import cv2
|
||||
import os
|
||||
|
||||
# Load the model
|
||||
# model = YOLO('../models/webcam-local-01/4/bangchak_poc/yolo11n.pt')
|
||||
model = YOLO('yolo11m.pt')
|
||||
|
||||
def test_image(image_path):
|
||||
"""Test a single image with YOLO model"""
|
||||
if not os.path.exists(image_path):
|
||||
print(f"Image not found: {image_path}")
|
||||
return
|
||||
|
||||
# Run inference - filter for car class only (class 2 in COCO)
|
||||
results = model(image_path, classes=[2, 5, 7]) # 2, 5, 7 = car, bus, truck in COCO dataset
|
||||
|
||||
# Display results
|
||||
for r in results:
|
||||
im_array = r.plot() # plot a BGR numpy array of predictions
|
||||
|
||||
# Resize image for display (max width/height 800px)
|
||||
height, width = im_array.shape[:2]
|
||||
max_dimension = 800
|
||||
if width > max_dimension or height > max_dimension:
|
||||
if width > height:
|
||||
new_width = max_dimension
|
||||
new_height = int(height * (max_dimension / width))
|
||||
else:
|
||||
new_height = max_dimension
|
||||
new_width = int(width * (max_dimension / height))
|
||||
im_array = cv2.resize(im_array, (new_width, new_height))
|
||||
|
||||
# Show image with predictions
|
||||
cv2.imshow('YOLO Test - Car Detection Only', im_array)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# Print detection info
|
||||
print(f"\nDetections for {image_path}:")
|
||||
if r.boxes is not None and len(r.boxes) > 0:
|
||||
for i, box in enumerate(r.boxes):
|
||||
cls = int(box.cls[0])
|
||||
conf = float(box.conf[0])
|
||||
original_class = model.names[cls] # Original class name (car/bus/truck)
|
||||
# Get bounding box coordinates
|
||||
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
||||
# Rename all vehicle types to "car"
|
||||
print(f"Detection {i+1}: car (was: {original_class}) - Confidence: {conf:.3f} - BBox: ({x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f})")
|
||||
print(f"Total cars detected: {len(r.boxes)}")
|
||||
else:
|
||||
print("No cars detected in the image")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Test with an image file
|
||||
image_path = input("Enter image path (or press Enter for default test): ")
|
||||
if not image_path:
|
||||
image_path = "sample.png" # Default test image
|
||||
|
||||
test_image(image_path)
|
Loading…
Add table
Add a link
Reference in a new issue