resolve merge conflicts by accepting main branch versions
This commit is contained in:
commit
48db3234ed
11 changed files with 1278 additions and 243 deletions
|
@ -1,13 +1,68 @@
|
||||||
name: Build Backend Application and Docker Image
|
name: Build Worker Base and Application Images
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- main
|
- main
|
||||||
|
- dev
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
|
inputs:
|
||||||
|
force_base_build:
|
||||||
|
description: 'Force base image build regardless of changes'
|
||||||
|
required: false
|
||||||
|
default: 'false'
|
||||||
|
type: boolean
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
|
check-base-changes:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
outputs:
|
||||||
|
base-changed: ${{ steps.changes.outputs.base-changed }}
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 2
|
||||||
|
- name: Check for base changes
|
||||||
|
id: changes
|
||||||
|
run: |
|
||||||
|
if git diff HEAD^ HEAD --name-only | grep -E "(Dockerfile\.base|requirements\.base\.txt)" > /dev/null; then
|
||||||
|
echo "base-changed=true" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "base-changed=false" >> $GITHUB_OUTPUT
|
||||||
|
fi
|
||||||
|
|
||||||
|
build-base:
|
||||||
|
needs: check-base-changes
|
||||||
|
if: needs.check-base-changes.outputs.base-changed == 'true' || (github.event_name == 'workflow_dispatch' && github.event.inputs.force_base_build == 'true')
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
packages: write
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v2
|
||||||
|
|
||||||
|
- name: Login to GitHub Container Registry
|
||||||
|
uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
registry: git.siwatsystem.com
|
||||||
|
username: ${{ github.actor }}
|
||||||
|
password: ${{ secrets.RUNNER_TOKEN }}
|
||||||
|
|
||||||
|
- name: Build and push base Docker image
|
||||||
|
uses: docker/build-push-action@v4
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
file: ./Dockerfile.base
|
||||||
|
push: true
|
||||||
|
tags: git.siwatsystem.com/adsist-cms/worker-base:latest
|
||||||
|
|
||||||
build-docker:
|
build-docker:
|
||||||
|
needs: [check-base-changes, build-base]
|
||||||
|
if: always() && (needs.build-base.result == 'success' || needs.build-base.result == 'skipped')
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
permissions:
|
permissions:
|
||||||
packages: write
|
packages: write
|
||||||
|
@ -31,4 +86,27 @@ jobs:
|
||||||
context: .
|
context: .
|
||||||
file: ./Dockerfile
|
file: ./Dockerfile
|
||||||
push: true
|
push: true
|
||||||
tags: git.siwatsystem.com/adsist-cms/worker:latest
|
tags: git.siwatsystem.com/adsist-cms/worker:${{ github.ref_name == 'main' && 'latest' || 'dev' }}
|
||||||
|
|
||||||
|
deploy-stack:
|
||||||
|
needs: build-docker
|
||||||
|
runs-on: adsist
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Set up SSH connection
|
||||||
|
run: |
|
||||||
|
mkdir -p ~/.ssh
|
||||||
|
echo "${{ secrets.DEPLOY_KEY_CMS }}" > ~/.ssh/id_rsa
|
||||||
|
chmod 600 ~/.ssh/id_rsa
|
||||||
|
ssh-keyscan -H ${{ vars.DEPLOY_HOST_CMS }} >> ~/.ssh/known_hosts
|
||||||
|
- name: Deploy stack
|
||||||
|
run: |
|
||||||
|
echo "Pulling and starting containers on server..."
|
||||||
|
if [ "${{ github.ref_name }}" = "main" ]; then
|
||||||
|
echo "Deploying production stack..."
|
||||||
|
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.production.yml pull && docker compose -f docker-compose.production.yml up -d"
|
||||||
|
else
|
||||||
|
echo "Deploying staging stack..."
|
||||||
|
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.staging.yml pull && docker compose -f docker-compose.staging.yml up -d"
|
||||||
|
fi
|
135
CLAUDE.md
135
CLAUDE.md
|
@ -1,13 +1,23 @@
|
||||||
# Python Detector Worker - CLAUDE.md
|
# Python Detector Worker - CLAUDE.md
|
||||||
|
|
||||||
## Project Overview
|
## Project Overview
|
||||||
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
|
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs advanced YOLO-based machine learning pipelines for multi-class object detection and parallel classification. The system features comprehensive database integration, Redis support, and hierarchical pipeline execution designed to work within a larger CMS (Content Management System) architecture.
|
||||||
|
|
||||||
|
### Key Features
|
||||||
|
- **Multi-Class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
|
||||||
|
- **Parallel Processing**: Concurrent execution of classification branches using ThreadPoolExecutor
|
||||||
|
- **Database Integration**: Automatic PostgreSQL schema management and record updates
|
||||||
|
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
|
||||||
|
- **Pipeline Synchronization**: Branch coordination with `waitForBranches` functionality
|
||||||
|
- **Dynamic Field Mapping**: Template-based field resolution for database operations
|
||||||
|
|
||||||
## Architecture & Technology Stack
|
## Architecture & Technology Stack
|
||||||
- **Framework**: FastAPI with WebSocket support
|
- **Framework**: FastAPI with WebSocket support
|
||||||
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
|
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
|
||||||
- **Containerization**: Docker (Python 3.13-bookworm base)
|
- **Containerization**: Docker (Python 3.13-bookworm base)
|
||||||
- **Data Storage**: Redis integration for action handling
|
- **Data Storage**: Redis integration for action handling + PostgreSQL for persistent storage
|
||||||
|
- **Database**: Automatic schema management with gas_station_1 database
|
||||||
|
- **Parallel Processing**: ThreadPoolExecutor for concurrent classification
|
||||||
- **Communication**: WebSocket-based real-time protocol
|
- **Communication**: WebSocket-based real-time protocol
|
||||||
|
|
||||||
## Core Components
|
## Core Components
|
||||||
|
@ -24,9 +34,20 @@ This is a FastAPI-based computer vision detection worker that processes video st
|
||||||
### Pipeline System (`siwatsystem/pympta.py`)
|
### Pipeline System (`siwatsystem/pympta.py`)
|
||||||
- **MPTA file handling** - ZIP archives containing model configurations
|
- **MPTA file handling** - ZIP archives containing model configurations
|
||||||
- **Hierarchical pipeline execution** with detection → classification branching
|
- **Hierarchical pipeline execution** with detection → classification branching
|
||||||
- **Redis action system** for image saving and message publishing
|
- **Multi-class detection** - Simultaneous detection of multiple classes (Car + Frontal)
|
||||||
|
- **Parallel processing** - Concurrent classification branches with ThreadPoolExecutor
|
||||||
|
- **Redis action system** - Image saving with region cropping and message publishing
|
||||||
|
- **PostgreSQL integration** - Automatic table creation and combined updates
|
||||||
- **Dynamic model loading** with GPU optimization
|
- **Dynamic model loading** with GPU optimization
|
||||||
- **Configurable trigger classes and confidence thresholds**
|
- **Configurable trigger classes and confidence thresholds**
|
||||||
|
- **Branch synchronization** - waitForBranches coordination for database updates
|
||||||
|
|
||||||
|
### Database System (`siwatsystem/database.py`)
|
||||||
|
- **DatabaseManager class** for PostgreSQL operations
|
||||||
|
- **Automatic table creation** with gas_station_1.car_frontal_info schema
|
||||||
|
- **Combined update operations** with field mapping from branch results
|
||||||
|
- **Session management** with UUID generation
|
||||||
|
- **Error handling** and connection management
|
||||||
|
|
||||||
### Testing & Debugging
|
### Testing & Debugging
|
||||||
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
|
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
|
||||||
|
@ -92,33 +113,61 @@ This is a FastAPI-based computer vision detection worker that processes video st
|
||||||
|
|
||||||
## Model Pipeline (MPTA) Format
|
## Model Pipeline (MPTA) Format
|
||||||
|
|
||||||
### Structure
|
### Enhanced Structure
|
||||||
- **ZIP archive** containing models and configuration
|
- **ZIP archive** containing models and configuration
|
||||||
- **pipeline.json** - Main configuration file
|
- **pipeline.json** - Main configuration file with Redis + PostgreSQL settings
|
||||||
- **Model files** - YOLO .pt files for detection/classification
|
- **Model files** - YOLO .pt files for detection/classification
|
||||||
- **Redis configuration** - Optional for action execution
|
- **Multi-model support** - Detection + multiple classification models
|
||||||
|
|
||||||
### Pipeline Flow
|
### Advanced Pipeline Flow
|
||||||
1. **Detection stage** - YOLO object detection with bounding boxes
|
1. **Multi-class detection stage** - YOLO detection of Car + Frontal simultaneously
|
||||||
2. **Trigger evaluation** - Check if detected class matches trigger conditions
|
2. **Validation stage** - Check for expected classes (flexible matching)
|
||||||
3. **Classification stage** - Crop detected region and run classification model
|
3. **Database initialization** - Create initial record with session_id
|
||||||
4. **Action execution** - Redis operations (image saving, message publishing)
|
4. **Redis actions** - Save cropped frontal images with expiration
|
||||||
|
5. **Parallel classification** - Concurrent brand and body type classification
|
||||||
|
6. **Branch synchronization** - Wait for all classification branches to complete
|
||||||
|
7. **Database update** - Combined update with all classification results
|
||||||
|
|
||||||
### Branch Configuration
|
### Enhanced Branch Configuration
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"modelId": "detector-v1",
|
"modelId": "car_frontal_detection_v1",
|
||||||
"modelFile": "detector.pt",
|
"modelFile": "car_frontal_detection_v1.pt",
|
||||||
"triggerClasses": ["car", "truck"],
|
"multiClass": true,
|
||||||
"minConfidence": 0.5,
|
"expectedClasses": ["Car", "Frontal"],
|
||||||
"branches": [{
|
"triggerClasses": ["Car", "Frontal"],
|
||||||
"modelId": "classifier-v1",
|
"minConfidence": 0.8,
|
||||||
"modelFile": "classifier.pt",
|
"actions": [
|
||||||
|
{
|
||||||
|
"type": "redis_save_image",
|
||||||
|
"region": "Frontal",
|
||||||
|
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
||||||
|
"expire_seconds": 600
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"branches": [
|
||||||
|
{
|
||||||
|
"modelId": "car_brand_cls_v1",
|
||||||
|
"modelFile": "car_brand_cls_v1.pt",
|
||||||
|
"parallel": true,
|
||||||
"crop": true,
|
"crop": true,
|
||||||
"triggerClasses": ["car"],
|
"cropClass": "Frontal",
|
||||||
"minConfidence": 0.3,
|
"triggerClasses": ["Frontal"],
|
||||||
"actions": [...]
|
"minConfidence": 0.85
|
||||||
}]
|
}
|
||||||
|
],
|
||||||
|
"parallelActions": [
|
||||||
|
{
|
||||||
|
"type": "postgresql_update_combined",
|
||||||
|
"table": "car_frontal_info",
|
||||||
|
"key_field": "session_id",
|
||||||
|
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
||||||
|
"fields": {
|
||||||
|
"car_brand": "{car_brand_cls_v1.brand}",
|
||||||
|
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -173,6 +222,9 @@ docker run -p 8000:8000 -v ./models:/app/models detector-worker
|
||||||
- **opencv-python**: Computer vision operations
|
- **opencv-python**: Computer vision operations
|
||||||
- **websockets**: WebSocket client/server
|
- **websockets**: WebSocket client/server
|
||||||
- **redis**: Redis client for action execution
|
- **redis**: Redis client for action execution
|
||||||
|
- **psycopg2-binary**: PostgreSQL database adapter
|
||||||
|
- **scipy**: Scientific computing for advanced algorithms
|
||||||
|
- **filterpy**: Kalman filtering and state estimation
|
||||||
|
|
||||||
## Security Considerations
|
## Security Considerations
|
||||||
- Model files are loaded from trusted sources only
|
- Model files are loaded from trusted sources only
|
||||||
|
@ -180,9 +232,46 @@ docker run -p 8000:8000 -v ./models:/app/models detector-worker
|
||||||
- WebSocket connections handle disconnects gracefully
|
- WebSocket connections handle disconnects gracefully
|
||||||
- Resource usage is monitored to prevent DoS
|
- Resource usage is monitored to prevent DoS
|
||||||
|
|
||||||
|
## Database Integration
|
||||||
|
|
||||||
|
### Schema Management
|
||||||
|
The system automatically creates and manages PostgreSQL tables:
|
||||||
|
|
||||||
|
```sql
|
||||||
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||||
|
display_id VARCHAR(255),
|
||||||
|
captured_timestamp VARCHAR(255),
|
||||||
|
session_id VARCHAR(255) PRIMARY KEY,
|
||||||
|
license_character VARCHAR(255) DEFAULT NULL,
|
||||||
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||||
|
car_brand VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_model VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||||
|
created_at TIMESTAMP DEFAULT NOW(),
|
||||||
|
updated_at TIMESTAMP DEFAULT NOW()
|
||||||
|
);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Workflow
|
||||||
|
1. **Detection**: When both "Car" and "Frontal" are detected, create initial database record with UUID session_id
|
||||||
|
2. **Redis Storage**: Save cropped frontal image to Redis with session_id in key
|
||||||
|
3. **Parallel Processing**: Run brand and body type classification concurrently
|
||||||
|
4. **Synchronization**: Wait for all branches to complete using `waitForBranches`
|
||||||
|
5. **Database Update**: Update record with combined classification results using field mapping
|
||||||
|
|
||||||
|
### Field Mapping
|
||||||
|
Templates like `{car_brand_cls_v1.brand}` are resolved to actual classification results:
|
||||||
|
- `car_brand_cls_v1.brand` → "Honda"
|
||||||
|
- `car_bodytype_cls_v1.body_type` → "Sedan"
|
||||||
|
|
||||||
## Performance Optimizations
|
## Performance Optimizations
|
||||||
- GPU acceleration when CUDA is available
|
- GPU acceleration when CUDA is available
|
||||||
- Shared camera streams reduce resource usage
|
- Shared camera streams reduce resource usage
|
||||||
- Frame queue optimization (single latest frame)
|
- Frame queue optimization (single latest frame)
|
||||||
- Model caching across subscriptions
|
- Model caching across subscriptions
|
||||||
- Trigger class filtering for faster inference
|
- Trigger class filtering for faster inference
|
||||||
|
- Parallel processing with ThreadPoolExecutor for classification branches
|
||||||
|
- Multi-class detection reduces inference passes
|
||||||
|
- Region-based cropping minimizes processing overhead
|
||||||
|
- Database connection pooling and prepared statements
|
||||||
|
- Redis image storage with automatic expiration
|
22
Dockerfile
22
Dockerfile
|
@ -1,20 +1,12 @@
|
||||||
# Use newer, more secure base image
|
# Use our pre-built base image with ML dependencies
|
||||||
FROM python:3.13-alpine
|
FROM git.siwatsystem.com/adsist-cms/worker-base:latest
|
||||||
|
|
||||||
# Update system packages first
|
# Copy and install application requirements (frequently changing dependencies)
|
||||||
RUN apk update && apk upgrade
|
|
||||||
|
|
||||||
# Install minimal dependencies
|
|
||||||
RUN apk add --no-cache mesa-gl
|
|
||||||
|
|
||||||
# Use specific package versions
|
|
||||||
COPY requirements.txt .
|
COPY requirements.txt .
|
||||||
RUN pip install --no-cache-dir --upgrade pip && \
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
pip install --no-cache-dir -r requirements.txt
|
|
||||||
|
|
||||||
# Run as non-root user
|
|
||||||
RUN adduser -D -s /bin/sh appuser
|
|
||||||
USER appuser
|
|
||||||
|
|
||||||
|
# Copy the application code
|
||||||
COPY . .
|
COPY . .
|
||||||
|
|
||||||
|
# Run the application
|
||||||
CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
|
CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
|
15
Dockerfile.base
Normal file
15
Dockerfile.base
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
# Base image with all ML dependencies
|
||||||
|
FROM python:3.13-bookworm
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt update && apt install -y libgl1 && rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Copy and install base requirements (ML dependencies that rarely change)
|
||||||
|
COPY requirements.base.txt .
|
||||||
|
RUN pip install --no-cache-dir -r requirements.base.txt
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# This base image will be reused for all worker builds
|
||||||
|
CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
|
108
app.py
108
app.py
|
@ -35,6 +35,8 @@ session_ids: Dict[str, int] = {}
|
||||||
camera_streams: Dict[str, Dict[str, Any]] = {}
|
camera_streams: Dict[str, Dict[str, Any]] = {}
|
||||||
# Map subscriptions to their camera URL
|
# Map subscriptions to their camera URL
|
||||||
subscription_to_camera: Dict[str, str] = {}
|
subscription_to_camera: Dict[str, str] = {}
|
||||||
|
# Store latest frames for REST API access (separate from processing buffer)
|
||||||
|
latest_frames: Dict[str, Any] = {}
|
||||||
|
|
||||||
with open("config.json", "r") as f:
|
with open("config.json", "r") as f:
|
||||||
config = json.load(f)
|
config = json.load(f)
|
||||||
|
@ -109,20 +111,60 @@ def download_mpta(url: str, dest_path: str) -> str:
|
||||||
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
||||||
def fetch_snapshot(url: str):
|
def fetch_snapshot(url: str):
|
||||||
try:
|
try:
|
||||||
response = requests.get(url, timeout=10)
|
from requests.auth import HTTPBasicAuth, HTTPDigestAuth
|
||||||
|
|
||||||
|
# Parse URL to extract credentials
|
||||||
|
parsed = urlparse(url)
|
||||||
|
|
||||||
|
# Prepare headers - some cameras require User-Agent
|
||||||
|
headers = {
|
||||||
|
'User-Agent': 'Mozilla/5.0 (compatible; DetectorWorker/1.0)'
|
||||||
|
}
|
||||||
|
|
||||||
|
# Reconstruct URL without credentials
|
||||||
|
clean_url = f"{parsed.scheme}://{parsed.hostname}"
|
||||||
|
if parsed.port:
|
||||||
|
clean_url += f":{parsed.port}"
|
||||||
|
clean_url += parsed.path
|
||||||
|
if parsed.query:
|
||||||
|
clean_url += f"?{parsed.query}"
|
||||||
|
|
||||||
|
auth = None
|
||||||
|
if parsed.username and parsed.password:
|
||||||
|
# Try HTTP Digest authentication first (common for IP cameras)
|
||||||
|
try:
|
||||||
|
auth = HTTPDigestAuth(parsed.username, parsed.password)
|
||||||
|
response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.debug(f"Successfully authenticated using HTTP Digest for {clean_url}")
|
||||||
|
elif response.status_code == 401:
|
||||||
|
# If Digest fails, try Basic auth
|
||||||
|
logger.debug(f"HTTP Digest failed, trying Basic auth for {clean_url}")
|
||||||
|
auth = HTTPBasicAuth(parsed.username, parsed.password)
|
||||||
|
response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.debug(f"Successfully authenticated using HTTP Basic for {clean_url}")
|
||||||
|
except Exception as auth_error:
|
||||||
|
logger.debug(f"Authentication setup error: {auth_error}")
|
||||||
|
# Fallback to original URL with embedded credentials
|
||||||
|
response = requests.get(url, headers=headers, timeout=10)
|
||||||
|
else:
|
||||||
|
# No credentials in URL, make request as-is
|
||||||
|
response = requests.get(url, headers=headers, timeout=10)
|
||||||
|
|
||||||
if response.status_code == 200:
|
if response.status_code == 200:
|
||||||
# Convert response content to numpy array
|
# Convert response content to numpy array
|
||||||
nparr = np.frombuffer(response.content, np.uint8)
|
nparr = np.frombuffer(response.content, np.uint8)
|
||||||
# Decode image
|
# Decode image
|
||||||
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||||
if frame is not None:
|
if frame is not None:
|
||||||
logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
|
logger.debug(f"Successfully fetched snapshot from {clean_url}, shape: {frame.shape}")
|
||||||
return frame
|
return frame
|
||||||
else:
|
else:
|
||||||
logger.error(f"Failed to decode image from snapshot URL: {url}")
|
logger.error(f"Failed to decode image from snapshot URL: {clean_url}")
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
|
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {clean_url}")
|
||||||
return None
|
return None
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
||||||
|
@ -146,26 +188,24 @@ async def get_camera_image(camera_id: str):
|
||||||
Get the current frame from a camera as JPEG image
|
Get the current frame from a camera as JPEG image
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
|
# URL decode the camera_id to handle encoded characters like %3B for semicolon
|
||||||
|
from urllib.parse import unquote
|
||||||
|
original_camera_id = camera_id
|
||||||
|
camera_id = unquote(camera_id)
|
||||||
|
logger.debug(f"REST API request: original='{original_camera_id}', decoded='{camera_id}'")
|
||||||
|
|
||||||
with streams_lock:
|
with streams_lock:
|
||||||
if camera_id not in streams:
|
if camera_id not in streams:
|
||||||
logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
|
logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
|
||||||
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
||||||
|
|
||||||
stream = streams[camera_id]
|
# Check if we have a cached frame for this camera
|
||||||
buffer = stream["buffer"]
|
if camera_id not in latest_frames:
|
||||||
logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
|
logger.warning(f"No cached frame available for camera '{camera_id}'.")
|
||||||
logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
|
|
||||||
|
|
||||||
if buffer.empty():
|
|
||||||
logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
|
|
||||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||||
|
|
||||||
# Get the latest frame (non-blocking)
|
frame = latest_frames[camera_id]
|
||||||
try:
|
logger.debug(f"Retrieved cached frame for camera '{camera_id}', frame shape: {frame.shape}")
|
||||||
frame = buffer.queue[-1] # Get the most recent frame without removing it
|
|
||||||
except IndexError:
|
|
||||||
logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
|
|
||||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
|
||||||
# Encode frame as JPEG
|
# Encode frame as JPEG
|
||||||
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||||
if not success:
|
if not success:
|
||||||
|
@ -199,7 +239,20 @@ async def detect(websocket: WebSocket):
|
||||||
|
|
||||||
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
detection_result = run_pipeline(cropped_frame, model_tree)
|
|
||||||
|
# Extract display identifier for session ID lookup
|
||||||
|
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||||
|
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||||
|
session_id = session_ids.get(display_identifier) if display_identifier else None
|
||||||
|
|
||||||
|
# Create context for pipeline execution
|
||||||
|
pipeline_context = {
|
||||||
|
"camera_id": camera_id,
|
||||||
|
"display_id": display_identifier,
|
||||||
|
"session_id": session_id
|
||||||
|
}
|
||||||
|
|
||||||
|
detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
|
||||||
process_time = (time.time() - start_time) * 1000
|
process_time = (time.time() - start_time) * 1000
|
||||||
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
||||||
|
|
||||||
|
@ -258,11 +311,6 @@ async def detect(websocket: WebSocket):
|
||||||
if key not in ["box", "id"]: # Skip internal fields
|
if key not in ["box", "id"]: # Skip internal fields
|
||||||
detection_dict[key] = value
|
detection_dict[key] = value
|
||||||
|
|
||||||
# Extract display identifier for session ID lookup
|
|
||||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
|
||||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
|
||||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
|
||||||
|
|
||||||
detection_data = {
|
detection_data = {
|
||||||
"type": "imageDetection",
|
"type": "imageDetection",
|
||||||
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||||
|
@ -282,9 +330,6 @@ async def detect(websocket: WebSocket):
|
||||||
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
|
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
|
||||||
|
|
||||||
# Log session ID if available
|
# Log session ID if available
|
||||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
|
||||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
|
||||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
|
||||||
if session_id:
|
if session_id:
|
||||||
logger.debug(f"Detection associated with session ID: {session_id}")
|
logger.debug(f"Detection associated with session ID: {session_id}")
|
||||||
|
|
||||||
|
@ -476,6 +521,10 @@ async def detect(websocket: WebSocket):
|
||||||
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
||||||
frame = buffer.get()
|
frame = buffer.get()
|
||||||
|
|
||||||
|
# Cache the frame for REST API access
|
||||||
|
latest_frames[camera_id] = frame.copy()
|
||||||
|
logger.debug(f"Cached frame for REST API access for camera {camera_id}")
|
||||||
|
|
||||||
with models_lock:
|
with models_lock:
|
||||||
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
||||||
if not model_tree:
|
if not model_tree:
|
||||||
|
@ -647,7 +696,7 @@ async def detect(websocket: WebSocket):
|
||||||
|
|
||||||
if snapshot_url and snapshot_interval:
|
if snapshot_url and snapshot_interval:
|
||||||
logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
|
logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
|
||||||
thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
|
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
|
||||||
thread.daemon = True
|
thread.daemon = True
|
||||||
thread.start()
|
thread.start()
|
||||||
mode = "snapshot"
|
mode = "snapshot"
|
||||||
|
@ -670,7 +719,7 @@ async def detect(websocket: WebSocket):
|
||||||
if not cap.isOpened():
|
if not cap.isOpened():
|
||||||
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||||
continue
|
continue
|
||||||
thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||||
thread.daemon = True
|
thread.daemon = True
|
||||||
thread.start()
|
thread.start()
|
||||||
mode = "rtsp"
|
mode = "rtsp"
|
||||||
|
@ -744,6 +793,8 @@ async def detect(websocket: WebSocket):
|
||||||
else:
|
else:
|
||||||
logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
|
logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
|
||||||
|
|
||||||
|
# Clean up cached frame
|
||||||
|
latest_frames.pop(camera_id, None)
|
||||||
logger.info(f"Unsubscribed from camera {camera_id}")
|
logger.info(f"Unsubscribed from camera {camera_id}")
|
||||||
# Note: Keep models in memory for potential reuse
|
# Note: Keep models in memory for potential reuse
|
||||||
elif msg_type == "requestState":
|
elif msg_type == "requestState":
|
||||||
|
@ -847,5 +898,6 @@ async def detect(websocket: WebSocket):
|
||||||
subscription_to_camera.clear()
|
subscription_to_camera.clear()
|
||||||
with models_lock:
|
with models_lock:
|
||||||
models.clear()
|
models.clear()
|
||||||
|
latest_frames.clear()
|
||||||
session_ids.clear()
|
session_ids.clear()
|
||||||
logger.info("WebSocket connection closed")
|
logger.info("WebSocket connection closed")
|
||||||
|
|
165
pympta.md
165
pympta.md
|
@ -32,14 +32,15 @@ This modular structure allows for creating complex and efficient inference logic
|
||||||
|
|
||||||
## `pipeline.json` Specification
|
## `pipeline.json` Specification
|
||||||
|
|
||||||
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition and an optional `redis` key for Redis configuration.
|
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition, optional `redis` key for Redis configuration, and optional `postgresql` key for database integration.
|
||||||
|
|
||||||
### Top-Level Object Structure
|
### Top-Level Object Structure
|
||||||
|
|
||||||
| Key | Type | Required | Description |
|
| Key | Type | Required | Description |
|
||||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
| ------------ | ------ | -------- | ------------------------------------------------------- |
|
||||||
| `pipeline` | Object | Yes | The root node object of the pipeline. |
|
| `pipeline` | Object | Yes | The root node object of the pipeline. |
|
||||||
| `redis` | Object | No | Configuration for connecting to a Redis server. |
|
| `redis` | Object | No | Configuration for connecting to a Redis server. |
|
||||||
|
| `postgresql` | Object | No | Configuration for connecting to a PostgreSQL database. |
|
||||||
|
|
||||||
### Redis Configuration (`redis`)
|
### Redis Configuration (`redis`)
|
||||||
|
|
||||||
|
@ -50,6 +51,16 @@ This file defines the entire pipeline logic. The root object contains a `pipelin
|
||||||
| `password` | String | No | The password for Redis authentication. |
|
| `password` | String | No | The password for Redis authentication. |
|
||||||
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
|
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
|
||||||
|
|
||||||
|
### PostgreSQL Configuration (`postgresql`)
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||||
|
| `host` | String | Yes | The hostname or IP address of the PostgreSQL server. |
|
||||||
|
| `port` | Number | Yes | The port number of the PostgreSQL server. |
|
||||||
|
| `database` | String | Yes | The database name to connect to. |
|
||||||
|
| `username` | String | Yes | The username for database authentication. |
|
||||||
|
| `password` | String | Yes | The password for database authentication. |
|
||||||
|
|
||||||
### Node Object Structure
|
### Node Object Structure
|
||||||
|
|
||||||
| Key | Type | Required | Description |
|
| Key | Type | Required | Description |
|
||||||
|
@ -59,12 +70,17 @@ This file defines the entire pipeline logic. The root object contains a `pipelin
|
||||||
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
|
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
|
||||||
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
|
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
|
||||||
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
|
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
|
||||||
|
| `cropClass` | String | No | The specific class to use for cropping (e.g., "Frontal" for frontal view cropping). |
|
||||||
|
| `multiClass` | Boolean | No | If `true`, enables multi-class detection mode where multiple classes can be detected simultaneously. |
|
||||||
|
| `expectedClasses` | Array<String> | No | When `multiClass` is true, defines which classes are expected. At least one must be detected for processing to continue. |
|
||||||
|
| `parallel` | Boolean | No | If `true`, this branch will be processed in parallel with other parallel branches. |
|
||||||
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
|
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
|
||||||
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
|
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
|
||||||
|
| `parallelActions` | Array<Action> | No | A list of actions to execute after all specified branches have completed. |
|
||||||
|
|
||||||
### Action Object Structure
|
### Action Object Structure
|
||||||
|
|
||||||
Actions allow the pipeline to interact with Redis. They are executed sequentially for a given detection.
|
Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.
|
||||||
|
|
||||||
#### Action Context & Dynamic Keys
|
#### Action Context & Dynamic Keys
|
||||||
|
|
||||||
|
@ -72,7 +88,12 @@ All actions have access to a dynamic context for formatting keys and messages. T
|
||||||
|
|
||||||
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
|
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
|
||||||
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
|
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
|
||||||
|
- `{timestamp}`: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
|
||||||
- `{uuid}`: A unique identifier (UUID4) for the detection event.
|
- `{uuid}`: A unique identifier (UUID4) for the detection event.
|
||||||
|
- `{filename}`: Generated filename with UUID.
|
||||||
|
- `{camera_id}`: Full camera subscription identifier.
|
||||||
|
- `{display_id}`: Display identifier extracted from subscription.
|
||||||
|
- `{session_id}`: Session ID for database operations.
|
||||||
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
|
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
|
||||||
|
|
||||||
#### `redis_save_image`
|
#### `redis_save_image`
|
||||||
|
@ -83,6 +104,9 @@ Saves the current image frame (or cropped sub-image) to a Redis key.
|
||||||
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||||
| `type` | String | Yes | Must be `"redis_save_image"`. |
|
| `type` | String | Yes | Must be `"redis_save_image"`. |
|
||||||
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
|
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
|
||||||
|
| `region` | String | No | Specific detected region to crop and save (e.g., "Frontal"). |
|
||||||
|
| `format` | String | No | Image format: "jpeg" or "png". Defaults to "jpeg". |
|
||||||
|
| `quality` | Number | No | JPEG quality (1-100). Defaults to 90. |
|
||||||
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
|
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
|
||||||
|
|
||||||
#### `redis_publish`
|
#### `redis_publish`
|
||||||
|
@ -95,35 +119,98 @@ Publishes a message to a Redis channel.
|
||||||
| `channel` | String | Yes | The Redis channel to publish the message to. |
|
| `channel` | String | Yes | The Redis channel to publish the message to. |
|
||||||
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
|
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
|
||||||
|
|
||||||
### Example `pipeline.json` with Redis
|
#### `postgresql_update_combined`
|
||||||
|
|
||||||
This example demonstrates a pipeline that detects vehicles, saves a uniquely named image of each detection that expires in one hour, and then publishes a notification with the image key.
|
Updates PostgreSQL database with results from multiple branches after they complete.
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ------------------ | ------------- | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `type` | String | Yes | Must be `"postgresql_update_combined"`. |
|
||||||
|
| `table` | String | Yes | The database table name (will be prefixed with `gas_station_1.` schema). |
|
||||||
|
| `key_field` | String | Yes | The field to use as the update key (typically "session_id"). |
|
||||||
|
| `key_value` | String | Yes | Template for the key value (e.g., "{session_id}"). |
|
||||||
|
| `waitForBranches` | Array<String> | Yes | List of branch model IDs to wait for completion before executing update. |
|
||||||
|
| `fields` | Object | Yes | Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").|
|
||||||
|
|
||||||
|
### Complete Example `pipeline.json`
|
||||||
|
|
||||||
|
This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"redis": {
|
"redis": {
|
||||||
"host": "redis.local",
|
"host": "10.100.1.3",
|
||||||
"port": 6379,
|
"port": 6379,
|
||||||
"password": "your-super-secret-password"
|
"password": "your-redis-password",
|
||||||
|
"db": 0
|
||||||
|
},
|
||||||
|
"postgresql": {
|
||||||
|
"host": "10.100.1.3",
|
||||||
|
"port": 5432,
|
||||||
|
"database": "inference",
|
||||||
|
"username": "root",
|
||||||
|
"password": "your-db-password"
|
||||||
},
|
},
|
||||||
"pipeline": {
|
"pipeline": {
|
||||||
"modelId": "vehicle-detector",
|
"modelId": "car_frontal_detection_v1",
|
||||||
"modelFile": "vehicle_model.pt",
|
"modelFile": "car_frontal_detection_v1.pt",
|
||||||
"minConfidence": 0.6,
|
"crop": false,
|
||||||
"triggerClasses": ["car", "truck"],
|
"triggerClasses": ["Car", "Frontal"],
|
||||||
|
"minConfidence": 0.8,
|
||||||
|
"multiClass": true,
|
||||||
|
"expectedClasses": ["Car", "Frontal"],
|
||||||
"actions": [
|
"actions": [
|
||||||
{
|
{
|
||||||
"type": "redis_save_image",
|
"type": "redis_save_image",
|
||||||
"key": "detections:{class}:{timestamp_ms}:{uuid}",
|
"region": "Frontal",
|
||||||
"expire_seconds": 3600
|
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
||||||
|
"expire_seconds": 600,
|
||||||
|
"format": "jpeg",
|
||||||
|
"quality": 90
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "redis_publish",
|
"type": "redis_publish",
|
||||||
"channel": "vehicle_events",
|
"channel": "car_detections",
|
||||||
"message": "{\"event\":\"new_detection\",\"class\":\"{class}\",\"confidence\":{confidence},\"image_key\":\"{image_key}\"}"
|
"message": "{\"event\":\"frontal_detected\"}"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
"branches": [
|
||||||
|
{
|
||||||
|
"modelId": "car_brand_cls_v1",
|
||||||
|
"modelFile": "car_brand_cls_v1.pt",
|
||||||
|
"crop": true,
|
||||||
|
"cropClass": "Frontal",
|
||||||
|
"resizeTarget": [224, 224],
|
||||||
|
"triggerClasses": ["Frontal"],
|
||||||
|
"minConfidence": 0.85,
|
||||||
|
"parallel": true,
|
||||||
"branches": []
|
"branches": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"modelId": "car_bodytype_cls_v1",
|
||||||
|
"modelFile": "car_bodytype_cls_v1.pt",
|
||||||
|
"crop": true,
|
||||||
|
"cropClass": "Car",
|
||||||
|
"resizeTarget": [224, 224],
|
||||||
|
"triggerClasses": ["Car"],
|
||||||
|
"minConfidence": 0.85,
|
||||||
|
"parallel": true,
|
||||||
|
"branches": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"parallelActions": [
|
||||||
|
{
|
||||||
|
"type": "postgresql_update_combined",
|
||||||
|
"table": "car_frontal_info",
|
||||||
|
"key_field": "session_id",
|
||||||
|
"key_value": "{session_id}",
|
||||||
|
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
||||||
|
"fields": {
|
||||||
|
"car_brand": "{car_brand_cls_v1.brand}",
|
||||||
|
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
@ -134,7 +221,7 @@ The `pympta` module exposes two main functions.
|
||||||
|
|
||||||
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
|
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
|
||||||
|
|
||||||
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes a Redis connection if configured in `pipeline.json`.
|
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in `pipeline.json`.
|
||||||
|
|
||||||
- **Parameters:**
|
- **Parameters:**
|
||||||
- `zip_source` (str): The file path to the local `.mpta` zip archive.
|
- `zip_source` (str): The file path to the local `.mpta` zip archive.
|
||||||
|
@ -142,7 +229,7 @@ Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory.
|
||||||
- **Returns:**
|
- **Returns:**
|
||||||
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
|
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
|
||||||
|
|
||||||
### `run_pipeline(frame, node: dict, return_bbox: bool = False)`
|
### `run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)`
|
||||||
|
|
||||||
Executes the inference pipeline on a single image frame.
|
Executes the inference pipeline on a single image frame.
|
||||||
|
|
||||||
|
@ -150,12 +237,43 @@ Executes the inference pipeline on a single image frame.
|
||||||
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
|
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
|
||||||
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
|
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
|
||||||
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
|
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
|
||||||
|
- `context` (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
|
||||||
- **Returns:**
|
- **Returns:**
|
||||||
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
|
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
|
||||||
|
|
||||||
|
## Database Integration
|
||||||
|
|
||||||
|
The pipeline system includes automatic PostgreSQL database management:
|
||||||
|
|
||||||
|
### Table Schema (`gas_station_1.car_frontal_info`)
|
||||||
|
|
||||||
|
The system automatically creates and manages the following table structure:
|
||||||
|
|
||||||
|
```sql
|
||||||
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||||
|
display_id VARCHAR(255),
|
||||||
|
captured_timestamp VARCHAR(255),
|
||||||
|
session_id VARCHAR(255) PRIMARY KEY,
|
||||||
|
license_character VARCHAR(255) DEFAULT NULL,
|
||||||
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||||
|
car_brand VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_model VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||||
|
created_at TIMESTAMP DEFAULT NOW(),
|
||||||
|
updated_at TIMESTAMP DEFAULT NOW()
|
||||||
|
);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Workflow
|
||||||
|
|
||||||
|
1. **Initial Record Creation**: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
|
||||||
|
2. **Redis Storage**: Vehicle images are stored in Redis with keys containing the session_id.
|
||||||
|
3. **Parallel Classification**: Brand and body type classification run concurrently.
|
||||||
|
4. **Database Update**: After all branches complete, the database record is updated with classification results.
|
||||||
|
|
||||||
## Usage Example
|
## Usage Example
|
||||||
|
|
||||||
This snippet, inspired by `pipeline_webcam.py`, shows how to use `pympta` to load a pipeline and process an image from a webcam.
|
This snippet shows how to use `pympta` with the enhanced features:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import cv2
|
import cv2
|
||||||
|
@ -181,9 +299,14 @@ while True:
|
||||||
if not ret:
|
if not ret:
|
||||||
break
|
break
|
||||||
|
|
||||||
# 4. Run the pipeline on the current frame
|
# 4. Run the pipeline on the current frame with context
|
||||||
# The function will handle the entire logic tree (e.g., find a car, then find its license plate).
|
context = {
|
||||||
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True)
|
"camera_id": "display-001;cam-001",
|
||||||
|
"display_id": "display-001",
|
||||||
|
"session_id": None # Will be generated automatically
|
||||||
|
}
|
||||||
|
|
||||||
|
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)
|
||||||
|
|
||||||
# 5. Display the results
|
# 5. Display the results
|
||||||
if detection_result:
|
if detection_result:
|
||||||
|
|
7
requirements.base.txt
Normal file
7
requirements.base.txt
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
torch
|
||||||
|
torchvision
|
||||||
|
ultralytics
|
||||||
|
opencv-python
|
||||||
|
scipy
|
||||||
|
filterpy
|
||||||
|
psycopg2-binary
|
|
@ -1,66 +1,6 @@
|
||||||
fastapi
|
fastapi
|
||||||
uvicorn
|
uvicorn
|
||||||
# torch
|
|
||||||
# torchvision
|
|
||||||
# ultralytics
|
|
||||||
# opencv-python
|
|
||||||
websockets
|
websockets
|
||||||
fastapi[standard]
|
fastapi[standard]
|
||||||
redis
|
redis
|
||||||
|
urllib3<2.0.0
|
||||||
# Trackers Environment
|
|
||||||
# pip install -r requirements.txt
|
|
||||||
ultralytics==8.0.20
|
|
||||||
|
|
||||||
# Base ----------------------------------------
|
|
||||||
gitpython
|
|
||||||
ipython # interactive notebook
|
|
||||||
matplotlib>=3.2.2
|
|
||||||
numpy==1.23.1
|
|
||||||
opencv-python>=4.1.1
|
|
||||||
Pillow>=7.1.2
|
|
||||||
psutil # system resources
|
|
||||||
PyYAML>=5.3.1
|
|
||||||
requests>=2.23.0
|
|
||||||
scipy>=1.4.1
|
|
||||||
thop>=0.1.1 # FLOPs computation
|
|
||||||
torch>=1.7.0,<=2.5.1 # see https://pytorch.org/get-started/locally (recommended)
|
|
||||||
torchvision>=0.8.1,<=0.20.1
|
|
||||||
tqdm>=4.64.0
|
|
||||||
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
|
|
||||||
|
|
||||||
# Logging ---------------------------------------------------------------------
|
|
||||||
tensorboard>=2.4.1
|
|
||||||
# clearml>=1.2.0
|
|
||||||
# comet
|
|
||||||
|
|
||||||
# Plotting --------------------------------------------------------------------
|
|
||||||
pandas>=1.1.4
|
|
||||||
seaborn>=0.11.0
|
|
||||||
|
|
||||||
# StrongSORT ------------------------------------------------------------------
|
|
||||||
easydict
|
|
||||||
|
|
||||||
# torchreid -------------------------------------------------------------------
|
|
||||||
gdown
|
|
||||||
|
|
||||||
# ByteTrack -------------------------------------------------------------------
|
|
||||||
lap
|
|
||||||
|
|
||||||
# OCSORT ----------------------------------------------------------------------
|
|
||||||
filterpy
|
|
||||||
|
|
||||||
# Export ----------------------------------------------------------------------
|
|
||||||
# onnx>=1.9.0 # ONNX export
|
|
||||||
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
|
||||||
# nvidia-pyindex # TensorRT export
|
|
||||||
# nvidia-tensorrt # TensorRT export
|
|
||||||
# openvino-dev # OpenVINO export
|
|
||||||
|
|
||||||
# Hyperparam search -----------------------------------------------------------
|
|
||||||
# optuna
|
|
||||||
# plotly # for hp importance and pareto front plots
|
|
||||||
# kaleido
|
|
||||||
# joblib
|
|
||||||
pyzmq
|
|
||||||
loguru
|
|
211
siwatsystem/database.py
Normal file
211
siwatsystem/database.py
Normal file
|
@ -0,0 +1,211 @@
|
||||||
|
import psycopg2
|
||||||
|
import psycopg2.extras
|
||||||
|
from typing import Optional, Dict, Any
|
||||||
|
import logging
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class DatabaseManager:
|
||||||
|
def __init__(self, config: Dict[str, Any]):
|
||||||
|
self.config = config
|
||||||
|
self.connection: Optional[psycopg2.extensions.connection] = None
|
||||||
|
|
||||||
|
def connect(self) -> bool:
|
||||||
|
try:
|
||||||
|
self.connection = psycopg2.connect(
|
||||||
|
host=self.config['host'],
|
||||||
|
port=self.config['port'],
|
||||||
|
database=self.config['database'],
|
||||||
|
user=self.config['username'],
|
||||||
|
password=self.config['password']
|
||||||
|
)
|
||||||
|
logger.info("PostgreSQL connection established successfully")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to connect to PostgreSQL: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def disconnect(self):
|
||||||
|
if self.connection:
|
||||||
|
self.connection.close()
|
||||||
|
self.connection = None
|
||||||
|
logger.info("PostgreSQL connection closed")
|
||||||
|
|
||||||
|
def is_connected(self) -> bool:
|
||||||
|
try:
|
||||||
|
if self.connection and not self.connection.closed:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
cur.execute("SELECT 1")
|
||||||
|
cur.fetchone()
|
||||||
|
cur.close()
|
||||||
|
return True
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
|
||||||
|
def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
query = """
|
||||||
|
INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
|
||||||
|
VALUES (%s, %s, %s, %s, NOW())
|
||||||
|
ON CONFLICT (session_id)
|
||||||
|
DO UPDATE SET
|
||||||
|
car_brand = EXCLUDED.car_brand,
|
||||||
|
car_model = EXCLUDED.car_model,
|
||||||
|
car_body_type = EXCLUDED.car_body_type,
|
||||||
|
updated_at = NOW()
|
||||||
|
"""
|
||||||
|
cur.execute(query, (session_id, brand, model, body_type))
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to update car info: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
|
||||||
|
# Build the UPDATE query dynamically
|
||||||
|
set_clauses = []
|
||||||
|
values = []
|
||||||
|
|
||||||
|
for field, value in fields.items():
|
||||||
|
if value == "NOW()":
|
||||||
|
set_clauses.append(f"{field} = NOW()")
|
||||||
|
else:
|
||||||
|
set_clauses.append(f"{field} = %s")
|
||||||
|
values.append(value)
|
||||||
|
|
||||||
|
# Add schema prefix if table doesn't already have it
|
||||||
|
full_table_name = table if '.' in table else f"gas_station_1.{table}"
|
||||||
|
|
||||||
|
query = f"""
|
||||||
|
INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
|
||||||
|
VALUES (%s, {', '.join(['%s'] * len(fields))})
|
||||||
|
ON CONFLICT ({key_field})
|
||||||
|
DO UPDATE SET {', '.join(set_clauses)}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Add key_value to the beginning of values list
|
||||||
|
all_values = [key_value] + list(fields.values()) + values
|
||||||
|
|
||||||
|
cur.execute(query, all_values)
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info(f"Updated {table} for {key_field}={key_value}")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to execute update on {table}: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def create_car_frontal_info_table(self) -> bool:
|
||||||
|
"""Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
|
||||||
|
# Create schema if it doesn't exist
|
||||||
|
cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
|
||||||
|
|
||||||
|
# Create table if it doesn't exist
|
||||||
|
create_table_query = """
|
||||||
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||||
|
display_id VARCHAR(255),
|
||||||
|
captured_timestamp VARCHAR(255),
|
||||||
|
session_id VARCHAR(255) PRIMARY KEY,
|
||||||
|
license_character VARCHAR(255) DEFAULT NULL,
|
||||||
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||||
|
car_brand VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_model VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||||
|
updated_at TIMESTAMP DEFAULT NOW()
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
|
||||||
|
cur.execute(create_table_query)
|
||||||
|
|
||||||
|
# Add columns if they don't exist (for existing tables)
|
||||||
|
alter_queries = [
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL",
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
|
||||||
|
]
|
||||||
|
|
||||||
|
for alter_query in alter_queries:
|
||||||
|
try:
|
||||||
|
cur.execute(alter_query)
|
||||||
|
logger.debug(f"Executed: {alter_query}")
|
||||||
|
except Exception as e:
|
||||||
|
# Ignore errors if column already exists (for older PostgreSQL versions)
|
||||||
|
if "already exists" in str(e).lower():
|
||||||
|
logger.debug(f"Column already exists, skipping: {alter_query}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Error in ALTER TABLE: {e}")
|
||||||
|
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info("Successfully created/verified car_frontal_info table with all required columns")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to create car_frontal_info table: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
|
||||||
|
"""Insert initial detection record and return the session_id."""
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Generate session_id if not provided
|
||||||
|
if not session_id:
|
||||||
|
session_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Ensure table exists
|
||||||
|
if not self.create_car_frontal_info_table():
|
||||||
|
logger.error("Failed to create/verify table before insertion")
|
||||||
|
return None
|
||||||
|
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
insert_query = """
|
||||||
|
INSERT INTO gas_station_1.car_frontal_info
|
||||||
|
(display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
|
||||||
|
VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
|
||||||
|
ON CONFLICT (session_id) DO NOTHING
|
||||||
|
"""
|
||||||
|
|
||||||
|
cur.execute(insert_query, (display_id, captured_timestamp, session_id))
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info(f"Inserted initial detection record with session_id: {session_id}")
|
||||||
|
return session_id
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to insert initial detection record: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return None
|
|
@ -3,20 +3,72 @@ import json
|
||||||
import logging
|
import logging
|
||||||
import torch
|
import torch
|
||||||
import cv2
|
import cv2
|
||||||
import requests
|
|
||||||
import zipfile
|
import zipfile
|
||||||
import shutil
|
import shutil
|
||||||
import traceback
|
import traceback
|
||||||
import redis
|
import redis
|
||||||
import time
|
import time
|
||||||
import uuid
|
import uuid
|
||||||
|
import concurrent.futures
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
from .database import DatabaseManager
|
||||||
|
|
||||||
# Create a logger specifically for this module
|
# Create a logger specifically for this module
|
||||||
logger = logging.getLogger("detector_worker.pympta")
|
logger = logging.getLogger("detector_worker.pympta")
|
||||||
|
|
||||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
|
def validate_redis_config(redis_config: dict) -> bool:
|
||||||
|
"""Validate Redis configuration parameters."""
|
||||||
|
required_fields = ["host", "port"]
|
||||||
|
for field in required_fields:
|
||||||
|
if field not in redis_config:
|
||||||
|
logger.error(f"Missing required Redis config field: {field}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
|
||||||
|
logger.error(f"Invalid Redis port: {redis_config['port']}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
def validate_postgresql_config(pg_config: dict) -> bool:
|
||||||
|
"""Validate PostgreSQL configuration parameters."""
|
||||||
|
required_fields = ["host", "port", "database", "username", "password"]
|
||||||
|
for field in required_fields:
|
||||||
|
if field not in pg_config:
|
||||||
|
logger.error(f"Missing required PostgreSQL config field: {field}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
|
||||||
|
logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
def crop_region_by_class(frame, regions_dict, class_name):
|
||||||
|
"""Crop a specific region from frame based on detected class."""
|
||||||
|
if class_name not in regions_dict:
|
||||||
|
logger.warning(f"Class '{class_name}' not found in detected regions")
|
||||||
|
return None
|
||||||
|
|
||||||
|
bbox = regions_dict[class_name]['bbox']
|
||||||
|
x1, y1, x2, y2 = bbox
|
||||||
|
cropped = frame[y1:y2, x1:x2]
|
||||||
|
|
||||||
|
if cropped.size == 0:
|
||||||
|
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
return cropped
|
||||||
|
|
||||||
|
def format_action_context(base_context, additional_context=None):
|
||||||
|
"""Format action context with dynamic values."""
|
||||||
|
context = {**base_context}
|
||||||
|
if additional_context:
|
||||||
|
context.update(additional_context)
|
||||||
|
return context
|
||||||
|
|
||||||
|
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
|
||||||
# Recursively load a model node from configuration.
|
# Recursively load a model node from configuration.
|
||||||
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
||||||
if not os.path.exists(model_path):
|
if not os.path.exists(model_path):
|
||||||
|
@ -46,16 +98,22 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
|
||||||
"triggerClasses": trigger_classes,
|
"triggerClasses": trigger_classes,
|
||||||
"triggerClassIndices": trigger_class_indices,
|
"triggerClassIndices": trigger_class_indices,
|
||||||
"crop": node_config.get("crop", False),
|
"crop": node_config.get("crop", False),
|
||||||
|
"cropClass": node_config.get("cropClass"),
|
||||||
"minConfidence": node_config.get("minConfidence", None),
|
"minConfidence": node_config.get("minConfidence", None),
|
||||||
|
"multiClass": node_config.get("multiClass", False),
|
||||||
|
"expectedClasses": node_config.get("expectedClasses", []),
|
||||||
|
"parallel": node_config.get("parallel", False),
|
||||||
"actions": node_config.get("actions", []),
|
"actions": node_config.get("actions", []),
|
||||||
|
"parallelActions": node_config.get("parallelActions", []),
|
||||||
"model": model,
|
"model": model,
|
||||||
"branches": [],
|
"branches": [],
|
||||||
"redis_client": redis_client
|
"redis_client": redis_client,
|
||||||
|
"db_manager": db_manager
|
||||||
}
|
}
|
||||||
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
||||||
for child in node_config.get("branches", []):
|
for child in node_config.get("branches", []):
|
||||||
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
||||||
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
|
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
|
||||||
return node
|
return node
|
||||||
|
|
||||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
|
@ -183,6 +241,9 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
redis_client = None
|
redis_client = None
|
||||||
if "redis" in pipeline_config:
|
if "redis" in pipeline_config:
|
||||||
redis_config = pipeline_config["redis"]
|
redis_config = pipeline_config["redis"]
|
||||||
|
if not validate_redis_config(redis_config):
|
||||||
|
logger.error("Invalid Redis configuration, skipping Redis connection")
|
||||||
|
else:
|
||||||
try:
|
try:
|
||||||
redis_client = redis.Redis(
|
redis_client = redis.Redis(
|
||||||
host=redis_config["host"],
|
host=redis_config["host"],
|
||||||
|
@ -197,7 +258,25 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
logger.error(f"Failed to connect to Redis: {e}")
|
logger.error(f"Failed to connect to Redis: {e}")
|
||||||
redis_client = None
|
redis_client = None
|
||||||
|
|
||||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
|
# Establish PostgreSQL connection if configured
|
||||||
|
db_manager = None
|
||||||
|
if "postgresql" in pipeline_config:
|
||||||
|
pg_config = pipeline_config["postgresql"]
|
||||||
|
if not validate_postgresql_config(pg_config):
|
||||||
|
logger.error("Invalid PostgreSQL configuration, skipping database connection")
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
db_manager = DatabaseManager(pg_config)
|
||||||
|
if db_manager.connect():
|
||||||
|
logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
|
||||||
|
else:
|
||||||
|
logger.error("Failed to connect to PostgreSQL")
|
||||||
|
db_manager = None
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error initializing PostgreSQL connection: {e}")
|
||||||
|
db_manager = None
|
||||||
|
|
||||||
|
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
|
||||||
except json.JSONDecodeError as e:
|
except json.JSONDecodeError as e:
|
||||||
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
||||||
return None
|
return None
|
||||||
|
@ -208,22 +287,53 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def execute_actions(node, frame, detection_result):
|
def execute_actions(node, frame, detection_result, regions_dict=None):
|
||||||
if not node["redis_client"] or not node["actions"]:
|
if not node["redis_client"] or not node["actions"]:
|
||||||
return
|
return
|
||||||
|
|
||||||
# Create a dynamic context for this detection event
|
# Create a dynamic context for this detection event
|
||||||
|
from datetime import datetime
|
||||||
action_context = {
|
action_context = {
|
||||||
**detection_result,
|
**detection_result,
|
||||||
"timestamp_ms": int(time.time() * 1000),
|
"timestamp_ms": int(time.time() * 1000),
|
||||||
"uuid": str(uuid.uuid4()),
|
"uuid": str(uuid.uuid4()),
|
||||||
|
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
|
||||||
|
"filename": f"{uuid.uuid4()}.jpg"
|
||||||
}
|
}
|
||||||
|
|
||||||
for action in node["actions"]:
|
for action in node["actions"]:
|
||||||
try:
|
try:
|
||||||
if action["type"] == "redis_save_image":
|
if action["type"] == "redis_save_image":
|
||||||
key = action["key"].format(**action_context)
|
key = action["key"].format(**action_context)
|
||||||
_, buffer = cv2.imencode('.jpg', frame)
|
|
||||||
|
# Check if we need to crop a specific region
|
||||||
|
region_name = action.get("region")
|
||||||
|
image_to_save = frame
|
||||||
|
|
||||||
|
if region_name and regions_dict:
|
||||||
|
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
|
||||||
|
if cropped_image is not None:
|
||||||
|
image_to_save = cropped_image
|
||||||
|
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
|
||||||
|
|
||||||
|
# Encode image with specified format and quality (default to JPEG)
|
||||||
|
img_format = action.get("format", "jpeg").lower()
|
||||||
|
quality = action.get("quality", 90)
|
||||||
|
|
||||||
|
if img_format == "jpeg":
|
||||||
|
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
|
||||||
|
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
|
||||||
|
elif img_format == "png":
|
||||||
|
success, buffer = cv2.imencode('.png', image_to_save)
|
||||||
|
else:
|
||||||
|
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
logger.error(f"Failed to encode image for redis_save_image")
|
||||||
|
continue
|
||||||
|
|
||||||
expire_seconds = action.get("expire_seconds")
|
expire_seconds = action.get("expire_seconds")
|
||||||
if expire_seconds:
|
if expire_seconds:
|
||||||
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
||||||
|
@ -231,60 +341,244 @@ def execute_actions(node, frame, detection_result):
|
||||||
else:
|
else:
|
||||||
node["redis_client"].set(key, buffer.tobytes())
|
node["redis_client"].set(key, buffer.tobytes())
|
||||||
logger.info(f"Saved image to Redis with key: {key}")
|
logger.info(f"Saved image to Redis with key: {key}")
|
||||||
# Add the generated key to the context for subsequent actions
|
|
||||||
action_context["image_key"] = key
|
action_context["image_key"] = key
|
||||||
elif action["type"] == "redis_publish":
|
elif action["type"] == "redis_publish":
|
||||||
channel = action["channel"]
|
channel = action["channel"]
|
||||||
message = action["message"].format(**action_context)
|
try:
|
||||||
node["redis_client"].publish(channel, message)
|
# Handle JSON message format by creating it programmatically
|
||||||
|
message_template = action["message"]
|
||||||
|
|
||||||
|
# Check if the message is JSON-like (starts and ends with braces)
|
||||||
|
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
|
||||||
|
# Create JSON data programmatically to avoid formatting issues
|
||||||
|
json_data = {}
|
||||||
|
|
||||||
|
# Add common fields
|
||||||
|
json_data["event"] = "frontal_detected"
|
||||||
|
json_data["display_id"] = action_context.get("display_id", "unknown")
|
||||||
|
json_data["session_id"] = action_context.get("session_id")
|
||||||
|
json_data["timestamp"] = action_context.get("timestamp", "")
|
||||||
|
json_data["image_key"] = action_context.get("image_key", "")
|
||||||
|
|
||||||
|
# Convert to JSON string
|
||||||
|
message = json.dumps(json_data)
|
||||||
|
else:
|
||||||
|
# Use regular string formatting for non-JSON messages
|
||||||
|
message = message_template.format(**action_context)
|
||||||
|
|
||||||
|
# Publish to Redis
|
||||||
|
if not node["redis_client"]:
|
||||||
|
logger.error("Redis client is None, cannot publish message")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Test Redis connection
|
||||||
|
try:
|
||||||
|
node["redis_client"].ping()
|
||||||
|
logger.debug("Redis connection is active")
|
||||||
|
except Exception as ping_error:
|
||||||
|
logger.error(f"Redis connection test failed: {ping_error}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
result = node["redis_client"].publish(channel, message)
|
||||||
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
||||||
|
logger.info(f"Redis publish result (subscribers count): {result}")
|
||||||
|
|
||||||
|
# Additional debug info
|
||||||
|
if result == 0:
|
||||||
|
logger.warning(f"No subscribers listening to channel '{channel}'")
|
||||||
|
else:
|
||||||
|
logger.info(f"Message delivered to {result} subscriber(s)")
|
||||||
|
|
||||||
|
except KeyError as e:
|
||||||
|
logger.error(f"Missing key in redis_publish message template: {e}")
|
||||||
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in redis_publish action: {e}")
|
||||||
|
logger.debug(f"Message template: {action['message']}")
|
||||||
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error executing action {action['type']}: {e}")
|
logger.error(f"Error executing action {action['type']}: {e}")
|
||||||
|
|
||||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
def execute_parallel_actions(node, frame, detection_result, regions_dict):
|
||||||
|
"""Execute parallel actions after all required branches have completed."""
|
||||||
|
if not node.get("parallelActions"):
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.debug("Executing parallel actions...")
|
||||||
|
branch_results = detection_result.get("branch_results", {})
|
||||||
|
|
||||||
|
for action in node["parallelActions"]:
|
||||||
|
try:
|
||||||
|
action_type = action.get("type")
|
||||||
|
logger.debug(f"Processing parallel action: {action_type}")
|
||||||
|
|
||||||
|
if action_type == "postgresql_update_combined":
|
||||||
|
# Check if all required branches have completed
|
||||||
|
wait_for_branches = action.get("waitForBranches", [])
|
||||||
|
missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
|
||||||
|
|
||||||
|
if missing_branches:
|
||||||
|
logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.info(f"All required branches completed: {wait_for_branches}")
|
||||||
|
|
||||||
|
# Execute the database update
|
||||||
|
execute_postgresql_update_combined(node, action, detection_result, branch_results)
|
||||||
|
else:
|
||||||
|
logger.warning(f"Unknown parallel action type: {action_type}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||||
|
|
||||||
|
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
|
||||||
|
"""Execute a PostgreSQL update with combined branch results."""
|
||||||
|
if not node.get("db_manager"):
|
||||||
|
logger.error("No database manager available for postgresql_update_combined action")
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
table = action["table"]
|
||||||
|
key_field = action["key_field"]
|
||||||
|
key_value_template = action["key_value"]
|
||||||
|
fields = action["fields"]
|
||||||
|
|
||||||
|
# Create context for key value formatting
|
||||||
|
action_context = {**detection_result}
|
||||||
|
key_value = key_value_template.format(**action_context)
|
||||||
|
|
||||||
|
logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
|
||||||
|
|
||||||
|
# Process field mappings
|
||||||
|
mapped_fields = {}
|
||||||
|
for db_field, value_template in fields.items():
|
||||||
|
try:
|
||||||
|
mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
|
||||||
|
if mapped_value is not None:
|
||||||
|
mapped_fields[db_field] = mapped_value
|
||||||
|
logger.debug(f"Mapped field: {db_field} = {mapped_value}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
|
||||||
|
|
||||||
|
if not mapped_fields:
|
||||||
|
logger.warning("No fields mapped successfully, skipping database update")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Execute the database update
|
||||||
|
success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
|
||||||
|
|
||||||
|
if success:
|
||||||
|
logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to update database: {table}")
|
||||||
|
|
||||||
|
except KeyError as e:
|
||||||
|
logger.error(f"Missing required field in postgresql_update_combined action: {e}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in postgresql_update_combined action: {e}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||||
|
|
||||||
|
def resolve_field_mapping(value_template, branch_results, action_context):
|
||||||
|
"""Resolve field mapping templates like {car_brand_cls_v1.brand}."""
|
||||||
|
try:
|
||||||
|
# Handle simple context variables first (non-branch references)
|
||||||
|
if not '.' in value_template:
|
||||||
|
return value_template.format(**action_context)
|
||||||
|
|
||||||
|
# Handle branch result references like {model_id.field}
|
||||||
|
import re
|
||||||
|
branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
|
||||||
|
|
||||||
|
resolved_template = value_template
|
||||||
|
for ref in branch_refs:
|
||||||
|
try:
|
||||||
|
model_id, field_name = ref.split('.', 1)
|
||||||
|
|
||||||
|
if model_id in branch_results:
|
||||||
|
branch_data = branch_results[model_id]
|
||||||
|
if field_name in branch_data:
|
||||||
|
field_value = branch_data[field_name]
|
||||||
|
resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
|
||||||
|
logger.debug(f"Resolved {ref} to {field_value}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
|
||||||
|
return None
|
||||||
|
except ValueError as e:
|
||||||
|
logger.error(f"Invalid branch reference format: {ref}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Format any remaining simple variables
|
||||||
|
try:
|
||||||
|
final_value = resolved_template.format(**action_context)
|
||||||
|
return final_value
|
||||||
|
except KeyError as e:
|
||||||
|
logger.warning(f"Could not resolve context variable in template: {e}")
|
||||||
|
return resolved_template
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error resolving field mapping '{value_template}': {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
|
||||||
"""
|
"""
|
||||||
- For detection nodes (task != 'classify'):
|
Enhanced pipeline that supports:
|
||||||
• runs `track(..., classes=triggerClassIndices)`
|
- Multi-class detection (detecting multiple classes simultaneously)
|
||||||
• picks top box ≥ minConfidence
|
- Parallel branch processing
|
||||||
• optionally crops & resizes → recurse into child
|
- Region-based actions and cropping
|
||||||
• else returns (det_dict, bbox)
|
- Context passing for session/camera information
|
||||||
- For classify nodes:
|
|
||||||
• runs `predict()`
|
|
||||||
• returns top (class,confidence) and no bbox
|
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
task = getattr(node["model"], "task", None)
|
task = getattr(node["model"], "task", None)
|
||||||
|
|
||||||
# ─── Classification stage ───────────────────────────────────
|
# ─── Classification stage ───────────────────────────────────
|
||||||
if task == "classify":
|
if task == "classify":
|
||||||
# run the classifier and grab its top-1 directly via the Probs API
|
|
||||||
results = node["model"].predict(frame, stream=False)
|
results = node["model"].predict(frame, stream=False)
|
||||||
# nothing returned?
|
|
||||||
if not results:
|
if not results:
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
# take the first result's probs object
|
|
||||||
r = results[0]
|
r = results[0]
|
||||||
probs = r.probs
|
probs = r.probs
|
||||||
if probs is None:
|
if probs is None:
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
# get the top-1 class index and its confidence
|
|
||||||
top1_idx = int(probs.top1)
|
top1_idx = int(probs.top1)
|
||||||
top1_conf = float(probs.top1conf)
|
top1_conf = float(probs.top1conf)
|
||||||
|
class_name = node["model"].names[top1_idx]
|
||||||
|
|
||||||
det = {
|
det = {
|
||||||
"class": node["model"].names[top1_idx],
|
"class": class_name,
|
||||||
"confidence": top1_conf,
|
"confidence": top1_conf,
|
||||||
"id": None
|
"id": None,
|
||||||
|
class_name: class_name # Add class name as key for backward compatibility
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Add specific field mappings for database operations based on model type
|
||||||
|
model_id = node.get("modelId", "").lower()
|
||||||
|
if "brand" in model_id or "brand_cls" in model_id:
|
||||||
|
det["brand"] = class_name
|
||||||
|
elif "bodytype" in model_id or "body" in model_id:
|
||||||
|
det["body_type"] = class_name
|
||||||
|
elif "color" in model_id:
|
||||||
|
det["color"] = class_name
|
||||||
|
|
||||||
execute_actions(node, frame, det)
|
execute_actions(node, frame, det)
|
||||||
return (det, None) if return_bbox else det
|
return (det, None) if return_bbox else det
|
||||||
|
|
||||||
|
# ─── Detection stage - Multi-class support ──────────────────
|
||||||
# ─── Detection stage ────────────────────────────────────────
|
|
||||||
# only look for your triggerClasses
|
|
||||||
tk = node["triggerClassIndices"]
|
tk = node["triggerClassIndices"]
|
||||||
|
logger.debug(f"Running detection for node {node['modelId']} with trigger classes: {node.get('triggerClasses', [])} (indices: {tk})")
|
||||||
|
logger.debug(f"Node configuration: minConfidence={node['minConfidence']}, multiClass={node.get('multiClass', False)}")
|
||||||
|
|
||||||
res = node["model"].track(
|
res = node["model"].track(
|
||||||
frame,
|
frame,
|
||||||
stream=False,
|
stream=False,
|
||||||
|
@ -292,48 +586,228 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
||||||
**({"classes": tk} if tk else {})
|
**({"classes": tk} if tk else {})
|
||||||
)[0]
|
)[0]
|
||||||
|
|
||||||
dets, boxes = [], []
|
# Collect all detections above confidence threshold
|
||||||
for box in res.boxes:
|
all_detections = []
|
||||||
|
all_boxes = []
|
||||||
|
regions_dict = {}
|
||||||
|
|
||||||
|
logger.debug(f"Raw detection results from model: {len(res.boxes) if res.boxes is not None else 0} detections")
|
||||||
|
|
||||||
|
for i, box in enumerate(res.boxes):
|
||||||
conf = float(box.cpu().conf[0])
|
conf = float(box.cpu().conf[0])
|
||||||
cid = int(box.cpu().cls[0])
|
cid = int(box.cpu().cls[0])
|
||||||
name = node["model"].names[cid]
|
name = node["model"].names[cid]
|
||||||
|
|
||||||
|
logger.debug(f"Detection {i}: class='{name}' (id={cid}), confidence={conf:.3f}, threshold={node['minConfidence']}")
|
||||||
|
|
||||||
if conf < node["minConfidence"]:
|
if conf < node["minConfidence"]:
|
||||||
|
logger.debug(f" -> REJECTED: confidence {conf:.3f} < threshold {node['minConfidence']}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
xy = box.cpu().xyxy[0]
|
xy = box.cpu().xyxy[0]
|
||||||
x1, y1, x2, y2 = map(int, xy)
|
x1, y1, x2, y2 = map(int, xy)
|
||||||
dets.append({"class": name, "confidence": conf,
|
bbox = (x1, y1, x2, y2)
|
||||||
"id": box.id.item() if hasattr(box, "id") else None})
|
|
||||||
boxes.append((x1, y1, x2, y2))
|
|
||||||
|
|
||||||
if not dets:
|
detection = {
|
||||||
|
"class": name,
|
||||||
|
"confidence": conf,
|
||||||
|
"id": box.id.item() if hasattr(box, "id") else None,
|
||||||
|
"bbox": bbox
|
||||||
|
}
|
||||||
|
|
||||||
|
all_detections.append(detection)
|
||||||
|
all_boxes.append(bbox)
|
||||||
|
|
||||||
|
logger.debug(f" -> ACCEPTED: {name} with confidence {conf:.3f}, bbox={bbox}")
|
||||||
|
|
||||||
|
# Store highest confidence detection for each class
|
||||||
|
if name not in regions_dict or conf > regions_dict[name]["confidence"]:
|
||||||
|
regions_dict[name] = {
|
||||||
|
"bbox": bbox,
|
||||||
|
"confidence": conf,
|
||||||
|
"detection": detection
|
||||||
|
}
|
||||||
|
logger.debug(f" -> Updated regions_dict['{name}'] with confidence {conf:.3f}")
|
||||||
|
|
||||||
|
logger.info(f"Detection summary: {len(all_detections)} accepted detections from {len(res.boxes) if res.boxes is not None else 0} total")
|
||||||
|
logger.info(f"Detected classes: {list(regions_dict.keys())}")
|
||||||
|
|
||||||
|
if not all_detections:
|
||||||
|
logger.warning("No detections above confidence threshold - returning null")
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
# take highest‐confidence
|
# ─── Multi-class validation ─────────────────────────────────
|
||||||
best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
|
if node.get("multiClass", False) and node.get("expectedClasses"):
|
||||||
best_det = dets[best_idx]
|
expected_classes = node["expectedClasses"]
|
||||||
best_box = boxes[best_idx]
|
detected_classes = list(regions_dict.keys())
|
||||||
|
|
||||||
# ─── Branch (classification) ───────────────────────────────
|
logger.info(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
|
||||||
|
|
||||||
|
# Check if at least one expected class is detected (flexible mode)
|
||||||
|
matching_classes = [cls for cls in expected_classes if cls in detected_classes]
|
||||||
|
missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
|
||||||
|
|
||||||
|
logger.debug(f"Matching classes: {matching_classes}, Missing classes: {missing_classes}")
|
||||||
|
|
||||||
|
if not matching_classes:
|
||||||
|
# No expected classes found at all
|
||||||
|
logger.warning(f"PIPELINE REJECTED: No expected classes detected. Expected: {expected_classes}, Detected: {detected_classes}")
|
||||||
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
|
if missing_classes:
|
||||||
|
logger.info(f"Partial multi-class detection: {matching_classes} found, {missing_classes} missing")
|
||||||
|
else:
|
||||||
|
logger.info(f"Complete multi-class detection success: {detected_classes}")
|
||||||
|
else:
|
||||||
|
logger.debug("No multi-class validation - proceeding with all detections")
|
||||||
|
|
||||||
|
# ─── Execute actions with region information ────────────────
|
||||||
|
detection_result = {
|
||||||
|
"detections": all_detections,
|
||||||
|
"regions": regions_dict,
|
||||||
|
**(context or {})
|
||||||
|
}
|
||||||
|
|
||||||
|
# ─── Create initial database record when Car+Frontal detected ────
|
||||||
|
if node.get("db_manager") and node.get("multiClass", False):
|
||||||
|
# Only create database record if we have both Car and Frontal
|
||||||
|
has_car = "Car" in regions_dict
|
||||||
|
has_frontal = "Frontal" in regions_dict
|
||||||
|
|
||||||
|
if has_car and has_frontal:
|
||||||
|
# Generate UUID session_id since client session is None for now
|
||||||
|
import uuid as uuid_lib
|
||||||
|
from datetime import datetime
|
||||||
|
generated_session_id = str(uuid_lib.uuid4())
|
||||||
|
|
||||||
|
# Insert initial detection record
|
||||||
|
display_id = detection_result.get("display_id", "unknown")
|
||||||
|
timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
||||||
|
|
||||||
|
inserted_session_id = node["db_manager"].insert_initial_detection(
|
||||||
|
display_id=display_id,
|
||||||
|
captured_timestamp=timestamp,
|
||||||
|
session_id=generated_session_id
|
||||||
|
)
|
||||||
|
|
||||||
|
if inserted_session_id:
|
||||||
|
# Update detection_result with the generated session_id for actions and branches
|
||||||
|
detection_result["session_id"] = inserted_session_id
|
||||||
|
detection_result["timestamp"] = timestamp # Update with proper timestamp
|
||||||
|
logger.info(f"Created initial database record with session_id: {inserted_session_id}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"Database record not created - missing required classes. Has Car: {has_car}, Has Frontal: {has_frontal}")
|
||||||
|
|
||||||
|
execute_actions(node, frame, detection_result, regions_dict)
|
||||||
|
|
||||||
|
# ─── Parallel branch processing ─────────────────────────────
|
||||||
|
if node["branches"]:
|
||||||
|
branch_results = {}
|
||||||
|
|
||||||
|
# Filter branches that should be triggered
|
||||||
|
active_branches = []
|
||||||
for br in node["branches"]:
|
for br in node["branches"]:
|
||||||
if (best_det["class"] in br["triggerClasses"]
|
trigger_classes = br.get("triggerClasses", [])
|
||||||
and best_det["confidence"] >= br["minConfidence"]):
|
min_conf = br.get("minConfidence", 0)
|
||||||
# crop if requested
|
|
||||||
sub = frame
|
|
||||||
if br["crop"]:
|
|
||||||
x1,y1,x2,y2 = best_box
|
|
||||||
sub = frame[y1:y2, x1:x2]
|
|
||||||
sub = cv2.resize(sub, (224, 224))
|
|
||||||
|
|
||||||
det2, _ = run_pipeline(sub, br, return_bbox=True)
|
logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
|
||||||
if det2:
|
|
||||||
# return classification result + original bbox
|
|
||||||
execute_actions(br, sub, det2)
|
|
||||||
return (det2, best_box) if return_bbox else det2
|
|
||||||
|
|
||||||
# ─── No branch matched → return this detection ─────────────
|
# Check if any detected class matches branch trigger
|
||||||
execute_actions(node, frame, best_det)
|
branch_triggered = False
|
||||||
return (best_det, best_box) if return_bbox else best_det
|
for det_class in regions_dict:
|
||||||
|
det_confidence = regions_dict[det_class]["confidence"]
|
||||||
|
logger.debug(f" Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
|
||||||
|
|
||||||
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
||||||
|
active_branches.append(br)
|
||||||
|
branch_triggered = True
|
||||||
|
logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not branch_triggered:
|
||||||
|
logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
|
||||||
|
|
||||||
|
if active_branches:
|
||||||
|
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
|
||||||
|
# Run branches in parallel
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
|
||||||
|
futures = {}
|
||||||
|
|
||||||
|
for br in active_branches:
|
||||||
|
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
|
||||||
|
sub_frame = frame
|
||||||
|
|
||||||
|
logger.info(f"Starting parallel branch: {br['modelId']}, crop_class: {crop_class}")
|
||||||
|
|
||||||
|
if br.get("crop", False) and crop_class:
|
||||||
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
||||||
|
if cropped is not None:
|
||||||
|
sub_frame = cv2.resize(cropped, (224, 224))
|
||||||
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
||||||
|
continue
|
||||||
|
|
||||||
|
future = executor.submit(run_pipeline, sub_frame, br, True, context)
|
||||||
|
futures[future] = br
|
||||||
|
|
||||||
|
# Collect results
|
||||||
|
for future in concurrent.futures.as_completed(futures):
|
||||||
|
br = futures[future]
|
||||||
|
try:
|
||||||
|
result, _ = future.result()
|
||||||
|
if result:
|
||||||
|
branch_results[br["modelId"]] = result
|
||||||
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Branch {br['modelId']} failed: {e}")
|
||||||
|
else:
|
||||||
|
# Run branches sequentially
|
||||||
|
for br in active_branches:
|
||||||
|
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
|
||||||
|
sub_frame = frame
|
||||||
|
|
||||||
|
logger.info(f"Starting sequential branch: {br['modelId']}, crop_class: {crop_class}")
|
||||||
|
|
||||||
|
if br.get("crop", False) and crop_class:
|
||||||
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
||||||
|
if cropped is not None:
|
||||||
|
sub_frame = cv2.resize(cropped, (224, 224))
|
||||||
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
result, _ = run_pipeline(sub_frame, br, True, context)
|
||||||
|
if result:
|
||||||
|
branch_results[br["modelId"]] = result
|
||||||
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Branch {br['modelId']} returned no result")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in sequential branch {br['modelId']}: {e}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Branch error traceback: {traceback.format_exc()}")
|
||||||
|
|
||||||
|
# Store branch results in detection_result for parallel actions
|
||||||
|
detection_result["branch_results"] = branch_results
|
||||||
|
|
||||||
|
# ─── Execute Parallel Actions ───────────────────────────────
|
||||||
|
if node.get("parallelActions") and "branch_results" in detection_result:
|
||||||
|
execute_parallel_actions(node, frame, detection_result, regions_dict)
|
||||||
|
|
||||||
|
# ─── Return detection result ────────────────────────────────
|
||||||
|
primary_detection = max(all_detections, key=lambda x: x["confidence"])
|
||||||
|
primary_bbox = primary_detection["bbox"]
|
||||||
|
|
||||||
|
# Add branch results to primary detection for compatibility
|
||||||
|
if "branch_results" in detection_result:
|
||||||
|
primary_detection["branch_results"] = detection_result["branch_results"]
|
||||||
|
|
||||||
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.error(f"Error in node {node.get('modelId')}: {e}")
|
logger.error(f"Error in node {node.get('modelId')}: {e}")
|
||||||
|
traceback.print_exc()
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
76
worker.md
76
worker.md
|
@ -2,6 +2,12 @@
|
||||||
|
|
||||||
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
|
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
|
||||||
|
|
||||||
|
The current Python Detector Worker implementation supports advanced computer vision pipelines with:
|
||||||
|
- Multi-class YOLO detection with parallel processing
|
||||||
|
- PostgreSQL database integration with automatic schema management
|
||||||
|
- Redis integration for image storage and pub/sub messaging
|
||||||
|
- Hierarchical pipeline execution with detection → classification branching
|
||||||
|
|
||||||
## 1. Connection
|
## 1. Connection
|
||||||
|
|
||||||
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
|
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
|
||||||
|
@ -25,14 +31,34 @@ To enable modularity and dynamic configuration, the backend will send you a URL
|
||||||
2. Extracting its contents.
|
2. Extracting its contents.
|
||||||
3. Interpreting the contents to configure its internal pipeline.
|
3. Interpreting the contents to configure its internal pipeline.
|
||||||
|
|
||||||
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
|
**The current implementation supports comprehensive pipeline configurations including:**
|
||||||
|
|
||||||
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
|
- **AI/ML Models**: YOLO models (.pt files) for detection and classification
|
||||||
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
|
- **Pipeline Configuration**: `pipeline.json` defining hierarchical detection→classification workflows
|
||||||
- Scripts: Custom Python scripts for pre-processing or post-processing.
|
- **Multi-class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
|
||||||
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
|
- **Parallel Processing**: Concurrent execution of classification branches with ThreadPoolExecutor
|
||||||
|
- **Database Integration**: PostgreSQL configuration for automatic table creation and updates
|
||||||
|
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
|
||||||
|
- **Dynamic Field Mapping**: Template-based field resolution for database operations
|
||||||
|
|
||||||
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription.
|
**Enhanced MPTA Structure:**
|
||||||
|
```
|
||||||
|
pipeline.mpta/
|
||||||
|
├── pipeline.json # Main configuration with redis/postgresql settings
|
||||||
|
├── car_detection.pt # Primary YOLO detection model
|
||||||
|
├── brand_classifier.pt # Classification model for car brands
|
||||||
|
├── bodytype_classifier.pt # Classification model for body types
|
||||||
|
└── ...
|
||||||
|
```
|
||||||
|
|
||||||
|
The `pipeline.json` now supports advanced features like:
|
||||||
|
- Multi-class detection with `expectedClasses` validation
|
||||||
|
- Parallel branch processing with `parallel: true`
|
||||||
|
- Database actions with `postgresql_update_combined`
|
||||||
|
- Redis actions with region-specific image cropping
|
||||||
|
- Branch synchronization with `waitForBranches`
|
||||||
|
|
||||||
|
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription, including complex multi-stage AI pipelines with database persistence.
|
||||||
|
|
||||||
## 4. Messages from Worker to Backend
|
## 4. Messages from Worker to Backend
|
||||||
|
|
||||||
|
@ -79,6 +105,15 @@ Sent when the worker detects a relevant object. The `detection` object should be
|
||||||
|
|
||||||
- **Type:** `imageDetection`
|
- **Type:** `imageDetection`
|
||||||
|
|
||||||
|
**Enhanced Detection Capabilities:**
|
||||||
|
|
||||||
|
The current implementation supports multi-class detection with parallel classification processing. When a vehicle is detected, the system:
|
||||||
|
|
||||||
|
1. **Multi-Class Detection**: Simultaneously detects "Car" and "Frontal" classes
|
||||||
|
2. **Parallel Processing**: Runs brand and body type classification concurrently
|
||||||
|
3. **Database Integration**: Automatically creates and updates PostgreSQL records
|
||||||
|
4. **Redis Storage**: Saves cropped frontal images with expiration
|
||||||
|
|
||||||
**Payload Example:**
|
**Payload Example:**
|
||||||
|
|
||||||
```json
|
```json
|
||||||
|
@ -88,19 +123,38 @@ Sent when the worker detects a relevant object. The `detection` object should be
|
||||||
"timestamp": "2025-07-14T12:34:56.789Z",
|
"timestamp": "2025-07-14T12:34:56.789Z",
|
||||||
"data": {
|
"data": {
|
||||||
"detection": {
|
"detection": {
|
||||||
"carModel": "Civic",
|
"class": "Car",
|
||||||
|
"confidence": 0.92,
|
||||||
"carBrand": "Honda",
|
"carBrand": "Honda",
|
||||||
"carYear": 2023,
|
"carModel": "Civic",
|
||||||
"bodyType": "Sedan",
|
"bodyType": "Sedan",
|
||||||
"licensePlateText": "ABCD1234",
|
"branch_results": {
|
||||||
"licensePlateConfidence": 0.95
|
"car_brand_cls_v1": {
|
||||||
|
"class": "Honda",
|
||||||
|
"confidence": 0.89,
|
||||||
|
"brand": "Honda"
|
||||||
|
},
|
||||||
|
"car_bodytype_cls_v1": {
|
||||||
|
"class": "Sedan",
|
||||||
|
"confidence": 0.85,
|
||||||
|
"body_type": "Sedan"
|
||||||
|
}
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"modelId": 101,
|
"modelId": 101,
|
||||||
"modelName": "US-LPR-and-Vehicle-ID"
|
"modelName": "Car Frontal Detection V1"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**Database Integration:**
|
||||||
|
|
||||||
|
Each detection automatically:
|
||||||
|
- Creates a record in `gas_station_1.car_frontal_info` table
|
||||||
|
- Generates a unique `session_id` for tracking
|
||||||
|
- Updates the record with classification results after parallel processing completes
|
||||||
|
- Stores cropped frontal images in Redis with the session_id as key
|
||||||
|
|
||||||
### 4.3. Patch Session
|
### 4.3. Patch Session
|
||||||
|
|
||||||
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
|
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue