fix: model calling method
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m44s
Build Worker Base and Application Images / deploy-stack (push) Successful in 9s

This commit is contained in:
ziesorx 2025-09-25 15:06:41 +07:00
parent 5bb68b6e10
commit 2e5316ca01
3 changed files with 82 additions and 33 deletions

View file

@ -438,11 +438,22 @@ class BranchProcessor:
f"({input_frame.shape[1]}x{input_frame.shape[0]}) with confidence={min_confidence}")
# Use .predict() method for both detection and classification models
# Determine model type and use appropriate calling method (like ML engineer's approach)
inference_start = time.time()
detection_results = model.model.predict(input_frame, conf=min_confidence, verbose=False)
# Check if this is a classification model based on filename or model structure
is_classification = 'cls' in branch_id.lower() or 'classify' in branch_id.lower()
if is_classification:
# Use .predict() method for classification models (like ML engineer's classification_test.py)
detection_results = model.model.predict(source=input_frame, verbose=False)
logger.info(f"[INFERENCE DONE] {branch_id}: Classification completed in {time.time() - inference_start:.3f}s using .predict()")
else:
# Use direct model call for detection models (like ML engineer's detection_test.py)
detection_results = model.model(input_frame, conf=min_confidence, verbose=False)
logger.info(f"[INFERENCE DONE] {branch_id}: Detection completed in {time.time() - inference_start:.3f}s using direct call")
inference_time = time.time() - inference_start
logger.info(f"[INFERENCE DONE] {branch_id}: Predict completed in {inference_time:.3f}s using .predict() method")
# Initialize branch_detections outside the conditional
branch_detections = []
@ -648,17 +659,11 @@ class BranchProcessor:
# Format key with context
key = action.params['key'].format(**context)
# Convert image to bytes
# Get image format parameters
import cv2
image_format = action.params.get('format', 'jpeg')
quality = action.params.get('quality', 90)
if image_format.lower() == 'jpeg':
encode_param = [cv2.IMWRITE_JPEG_QUALITY, quality]
_, image_bytes = cv2.imencode('.jpg', image_to_save, encode_param)
else:
_, image_bytes = cv2.imencode('.png', image_to_save)
# Save to Redis synchronously using a sync Redis client
try:
import redis

View file

@ -133,32 +133,43 @@ class DetectionPipeline:
async def _initialize_detection_model(self) -> bool:
"""
Load and initialize the main detection model.
Load and initialize the main detection model from pipeline.json configuration.
Returns:
True if successful, False otherwise
"""
try:
if not self.pipeline_config:
logger.warning("No pipeline configuration found")
logger.error("No pipeline configuration found - cannot initialize detection model")
return False
model_file = getattr(self.pipeline_config, 'model_file', None)
model_id = getattr(self.pipeline_config, 'model_id', None)
min_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
crop = getattr(self.pipeline_config, 'crop', False)
if not model_file:
logger.warning("No detection model file specified")
logger.error("No detection model file specified in pipeline configuration")
return False
# Load detection model
logger.info(f"Loading detection model: {model_id} ({model_file})")
# Log complete pipeline configuration for main detection model
logger.info(f"[MAIN MODEL CONFIG] Initializing from pipeline.json:")
logger.info(f"[MAIN MODEL CONFIG] modelId: {model_id}")
logger.info(f"[MAIN MODEL CONFIG] modelFile: {model_file}")
logger.info(f"[MAIN MODEL CONFIG] minConfidence: {min_confidence}")
logger.info(f"[MAIN MODEL CONFIG] triggerClasses: {trigger_classes}")
logger.info(f"[MAIN MODEL CONFIG] crop: {crop}")
# Load detection model using model manager
logger.info(f"[MAIN MODEL LOADING] Loading {model_file} from model directory {self.model_id}")
self.detection_model = self.model_manager.get_yolo_model(self.model_id, model_file)
if not self.detection_model:
logger.error(f"Failed to load detection model {model_file} from model {self.model_id}")
logger.error(f"[MAIN MODEL ERROR] Failed to load detection model {model_file} from model {self.model_id}")
return False
self.detection_model_id = model_id
logger.info(f"Detection model {model_id} loaded successfully")
logger.info(f"[MAIN MODEL SUCCESS] Detection model {model_id} ({model_file}) loaded successfully")
return True
except Exception as e:
@ -462,10 +473,13 @@ class DetectionPipeline:
'timestamp_ms': int(time.time() * 1000)
}
# Run inference on single snapshot using .predict() method
detection_results = self.detection_model.model.predict(
# Run inference using direct model call (like ML engineer's approach)
# Use minConfidence from pipeline.json configuration
model_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
logger.info(f"[DETECTION PHASE] Running {self.pipeline_config.model_id} with conf={model_confidence} (from pipeline.json)")
detection_results = self.detection_model.model(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
conf=model_confidence,
verbose=False
)
@ -477,7 +491,7 @@ class DetectionPipeline:
result_obj = detection_results[0]
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
# Handle .predict() results which have .boxes for detection models
# Handle direct model call results which have .boxes for detection models
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[DETECTION PHASE] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
@ -586,10 +600,13 @@ class DetectionPipeline:
# If no detected_regions provided, re-run detection to get them
if not detected_regions:
# Use .predict() method for detection
detection_results = self.detection_model.model.predict(
# Use direct model call for detection (like ML engineer's approach)
# Use minConfidence from pipeline.json configuration
model_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
logger.info(f"[PROCESSING PHASE] Re-running {self.pipeline_config.model_id} with conf={model_confidence} (from pipeline.json)")
detection_results = self.detection_model.model(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
conf=model_confidence,
verbose=False
)
@ -742,10 +759,13 @@ class DetectionPipeline:
}
# Run inference on single snapshot using .predict() method
detection_results = self.detection_model.model.predict(
# Run inference using direct model call (like ML engineer's approach)
# Use minConfidence from pipeline.json configuration
model_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
logger.info(f"[PIPELINE EXECUTE] Running {self.pipeline_config.model_id} with conf={model_confidence} (from pipeline.json)")
detection_results = self.detection_model.model(
frame,
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
conf=model_confidence,
verbose=False
)
@ -757,7 +777,7 @@ class DetectionPipeline:
result_obj = detection_results[0]
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
# Handle .predict() results which have .boxes for detection models
# Handle direct model call results which have .boxes for detection models
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
logger.info(f"[PIPELINE RAW] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")

View file

@ -81,8 +81,28 @@ class YOLOWrapper:
from ultralytics import YOLO
logger.info(f"Loading YOLO model from {self.model_path}")
# Load model normally first
self.model = YOLO(str(self.model_path))
# Determine if this is a classification model based on filename or model structure
# Classification models typically have 'cls' in filename
is_classification = 'cls' in str(self.model_path).lower()
# For classification models, create a separate instance with task parameter
if is_classification:
try:
# Reload with classification task (like ML engineer's approach)
self.model = YOLO(str(self.model_path), task="classify")
logger.info(f"Loaded classification model {self.model_id} with task='classify'")
except Exception as e:
logger.warning(f"Failed to load with task='classify', using default: {e}")
# Fall back to regular loading
self.model = YOLO(str(self.model_path))
logger.info(f"Loaded model {self.model_id} with default task")
else:
logger.info(f"Loaded detection model {self.model_id}")
# Move model to device
if self.device == 'cuda' and torch.cuda.is_available():
self.model.to('cuda')
@ -141,7 +161,7 @@ class YOLOWrapper:
import time
start_time = time.time()
# Run inference
# Run inference using direct model call (like ML engineer's approach)
results = self.model(
image,
conf=confidence_threshold,
@ -291,11 +311,11 @@ class YOLOWrapper:
raise RuntimeError(f"Model {self.model_id} not loaded")
try:
# Run inference
results = self.model(image, verbose=False)
# Run inference using predict method for classification (like ML engineer's approach)
results = self.model.predict(source=image, verbose=False)
# For classification models, extract probabilities
if hasattr(results[0], 'probs'):
if results and len(results) > 0 and hasattr(results[0], 'probs') and results[0].probs is not None:
probs = results[0].probs
top_indices = probs.top5[:top_k]
top_conf = probs.top5conf[:top_k].cpu().numpy()
@ -307,7 +327,7 @@ class YOLOWrapper:
return predictions
else:
logger.warning(f"Model {self.model_id} does not support classification")
logger.warning(f"Model {self.model_id} does not support classification or no probs found")
return {}
except Exception as e:
@ -350,6 +370,10 @@ class YOLOWrapper:
"""Get the number of classes the model can detect"""
return len(self._class_names)
def is_classification_model(self) -> bool:
"""Check if this is a classification model"""
return 'cls' in str(self.model_path).lower() or 'classify' in str(self.model_path).lower()
def clear_cache(self) -> None:
"""Clear the model cache"""
with self._cache_lock: