fix: model calling method
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m44s
Build Worker Base and Application Images / deploy-stack (push) Successful in 9s
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m44s
Build Worker Base and Application Images / deploy-stack (push) Successful in 9s
This commit is contained in:
parent
5bb68b6e10
commit
2e5316ca01
3 changed files with 82 additions and 33 deletions
|
@ -438,11 +438,22 @@ class BranchProcessor:
|
|||
f"({input_frame.shape[1]}x{input_frame.shape[0]}) with confidence={min_confidence}")
|
||||
|
||||
|
||||
# Use .predict() method for both detection and classification models
|
||||
# Determine model type and use appropriate calling method (like ML engineer's approach)
|
||||
inference_start = time.time()
|
||||
detection_results = model.model.predict(input_frame, conf=min_confidence, verbose=False)
|
||||
|
||||
# Check if this is a classification model based on filename or model structure
|
||||
is_classification = 'cls' in branch_id.lower() or 'classify' in branch_id.lower()
|
||||
|
||||
if is_classification:
|
||||
# Use .predict() method for classification models (like ML engineer's classification_test.py)
|
||||
detection_results = model.model.predict(source=input_frame, verbose=False)
|
||||
logger.info(f"[INFERENCE DONE] {branch_id}: Classification completed in {time.time() - inference_start:.3f}s using .predict()")
|
||||
else:
|
||||
# Use direct model call for detection models (like ML engineer's detection_test.py)
|
||||
detection_results = model.model(input_frame, conf=min_confidence, verbose=False)
|
||||
logger.info(f"[INFERENCE DONE] {branch_id}: Detection completed in {time.time() - inference_start:.3f}s using direct call")
|
||||
|
||||
inference_time = time.time() - inference_start
|
||||
logger.info(f"[INFERENCE DONE] {branch_id}: Predict completed in {inference_time:.3f}s using .predict() method")
|
||||
|
||||
# Initialize branch_detections outside the conditional
|
||||
branch_detections = []
|
||||
|
@ -648,17 +659,11 @@ class BranchProcessor:
|
|||
# Format key with context
|
||||
key = action.params['key'].format(**context)
|
||||
|
||||
# Convert image to bytes
|
||||
# Get image format parameters
|
||||
import cv2
|
||||
image_format = action.params.get('format', 'jpeg')
|
||||
quality = action.params.get('quality', 90)
|
||||
|
||||
if image_format.lower() == 'jpeg':
|
||||
encode_param = [cv2.IMWRITE_JPEG_QUALITY, quality]
|
||||
_, image_bytes = cv2.imencode('.jpg', image_to_save, encode_param)
|
||||
else:
|
||||
_, image_bytes = cv2.imencode('.png', image_to_save)
|
||||
|
||||
# Save to Redis synchronously using a sync Redis client
|
||||
try:
|
||||
import redis
|
||||
|
|
|
@ -133,32 +133,43 @@ class DetectionPipeline:
|
|||
|
||||
async def _initialize_detection_model(self) -> bool:
|
||||
"""
|
||||
Load and initialize the main detection model.
|
||||
Load and initialize the main detection model from pipeline.json configuration.
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
if not self.pipeline_config:
|
||||
logger.warning("No pipeline configuration found")
|
||||
logger.error("No pipeline configuration found - cannot initialize detection model")
|
||||
return False
|
||||
|
||||
model_file = getattr(self.pipeline_config, 'model_file', None)
|
||||
model_id = getattr(self.pipeline_config, 'model_id', None)
|
||||
min_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
|
||||
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
|
||||
crop = getattr(self.pipeline_config, 'crop', False)
|
||||
|
||||
if not model_file:
|
||||
logger.warning("No detection model file specified")
|
||||
logger.error("No detection model file specified in pipeline configuration")
|
||||
return False
|
||||
|
||||
# Load detection model
|
||||
logger.info(f"Loading detection model: {model_id} ({model_file})")
|
||||
# Log complete pipeline configuration for main detection model
|
||||
logger.info(f"[MAIN MODEL CONFIG] Initializing from pipeline.json:")
|
||||
logger.info(f"[MAIN MODEL CONFIG] modelId: {model_id}")
|
||||
logger.info(f"[MAIN MODEL CONFIG] modelFile: {model_file}")
|
||||
logger.info(f"[MAIN MODEL CONFIG] minConfidence: {min_confidence}")
|
||||
logger.info(f"[MAIN MODEL CONFIG] triggerClasses: {trigger_classes}")
|
||||
logger.info(f"[MAIN MODEL CONFIG] crop: {crop}")
|
||||
|
||||
# Load detection model using model manager
|
||||
logger.info(f"[MAIN MODEL LOADING] Loading {model_file} from model directory {self.model_id}")
|
||||
self.detection_model = self.model_manager.get_yolo_model(self.model_id, model_file)
|
||||
if not self.detection_model:
|
||||
logger.error(f"Failed to load detection model {model_file} from model {self.model_id}")
|
||||
logger.error(f"[MAIN MODEL ERROR] Failed to load detection model {model_file} from model {self.model_id}")
|
||||
return False
|
||||
|
||||
self.detection_model_id = model_id
|
||||
logger.info(f"Detection model {model_id} loaded successfully")
|
||||
logger.info(f"[MAIN MODEL SUCCESS] Detection model {model_id} ({model_file}) loaded successfully")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
|
@ -462,10 +473,13 @@ class DetectionPipeline:
|
|||
'timestamp_ms': int(time.time() * 1000)
|
||||
}
|
||||
|
||||
# Run inference on single snapshot using .predict() method
|
||||
detection_results = self.detection_model.model.predict(
|
||||
# Run inference using direct model call (like ML engineer's approach)
|
||||
# Use minConfidence from pipeline.json configuration
|
||||
model_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
|
||||
logger.info(f"[DETECTION PHASE] Running {self.pipeline_config.model_id} with conf={model_confidence} (from pipeline.json)")
|
||||
detection_results = self.detection_model.model(
|
||||
frame,
|
||||
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
|
||||
conf=model_confidence,
|
||||
verbose=False
|
||||
)
|
||||
|
||||
|
@ -477,7 +491,7 @@ class DetectionPipeline:
|
|||
result_obj = detection_results[0]
|
||||
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
|
||||
|
||||
# Handle .predict() results which have .boxes for detection models
|
||||
# Handle direct model call results which have .boxes for detection models
|
||||
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
|
||||
logger.info(f"[DETECTION PHASE] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
|
||||
|
||||
|
@ -586,10 +600,13 @@ class DetectionPipeline:
|
|||
|
||||
# If no detected_regions provided, re-run detection to get them
|
||||
if not detected_regions:
|
||||
# Use .predict() method for detection
|
||||
detection_results = self.detection_model.model.predict(
|
||||
# Use direct model call for detection (like ML engineer's approach)
|
||||
# Use minConfidence from pipeline.json configuration
|
||||
model_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
|
||||
logger.info(f"[PROCESSING PHASE] Re-running {self.pipeline_config.model_id} with conf={model_confidence} (from pipeline.json)")
|
||||
detection_results = self.detection_model.model(
|
||||
frame,
|
||||
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
|
||||
conf=model_confidence,
|
||||
verbose=False
|
||||
)
|
||||
|
||||
|
@ -742,10 +759,13 @@ class DetectionPipeline:
|
|||
}
|
||||
|
||||
|
||||
# Run inference on single snapshot using .predict() method
|
||||
detection_results = self.detection_model.model.predict(
|
||||
# Run inference using direct model call (like ML engineer's approach)
|
||||
# Use minConfidence from pipeline.json configuration
|
||||
model_confidence = getattr(self.pipeline_config, 'min_confidence', 0.6)
|
||||
logger.info(f"[PIPELINE EXECUTE] Running {self.pipeline_config.model_id} with conf={model_confidence} (from pipeline.json)")
|
||||
detection_results = self.detection_model.model(
|
||||
frame,
|
||||
conf=getattr(self.pipeline_config, 'min_confidence', 0.6),
|
||||
conf=model_confidence,
|
||||
verbose=False
|
||||
)
|
||||
|
||||
|
@ -757,7 +777,7 @@ class DetectionPipeline:
|
|||
result_obj = detection_results[0]
|
||||
trigger_classes = getattr(self.pipeline_config, 'trigger_classes', [])
|
||||
|
||||
# Handle .predict() results which have .boxes for detection models
|
||||
# Handle direct model call results which have .boxes for detection models
|
||||
if hasattr(result_obj, 'boxes') and result_obj.boxes is not None:
|
||||
logger.info(f"[PIPELINE RAW] Found {len(result_obj.boxes)} raw detections from {getattr(self.pipeline_config, 'model_id', 'unknown')}")
|
||||
|
||||
|
|
|
@ -81,8 +81,28 @@ class YOLOWrapper:
|
|||
from ultralytics import YOLO
|
||||
|
||||
logger.info(f"Loading YOLO model from {self.model_path}")
|
||||
|
||||
# Load model normally first
|
||||
self.model = YOLO(str(self.model_path))
|
||||
|
||||
# Determine if this is a classification model based on filename or model structure
|
||||
# Classification models typically have 'cls' in filename
|
||||
is_classification = 'cls' in str(self.model_path).lower()
|
||||
|
||||
# For classification models, create a separate instance with task parameter
|
||||
if is_classification:
|
||||
try:
|
||||
# Reload with classification task (like ML engineer's approach)
|
||||
self.model = YOLO(str(self.model_path), task="classify")
|
||||
logger.info(f"Loaded classification model {self.model_id} with task='classify'")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load with task='classify', using default: {e}")
|
||||
# Fall back to regular loading
|
||||
self.model = YOLO(str(self.model_path))
|
||||
logger.info(f"Loaded model {self.model_id} with default task")
|
||||
else:
|
||||
logger.info(f"Loaded detection model {self.model_id}")
|
||||
|
||||
# Move model to device
|
||||
if self.device == 'cuda' and torch.cuda.is_available():
|
||||
self.model.to('cuda')
|
||||
|
@ -141,7 +161,7 @@ class YOLOWrapper:
|
|||
import time
|
||||
start_time = time.time()
|
||||
|
||||
# Run inference
|
||||
# Run inference using direct model call (like ML engineer's approach)
|
||||
results = self.model(
|
||||
image,
|
||||
conf=confidence_threshold,
|
||||
|
@ -291,11 +311,11 @@ class YOLOWrapper:
|
|||
raise RuntimeError(f"Model {self.model_id} not loaded")
|
||||
|
||||
try:
|
||||
# Run inference
|
||||
results = self.model(image, verbose=False)
|
||||
# Run inference using predict method for classification (like ML engineer's approach)
|
||||
results = self.model.predict(source=image, verbose=False)
|
||||
|
||||
# For classification models, extract probabilities
|
||||
if hasattr(results[0], 'probs'):
|
||||
if results and len(results) > 0 and hasattr(results[0], 'probs') and results[0].probs is not None:
|
||||
probs = results[0].probs
|
||||
top_indices = probs.top5[:top_k]
|
||||
top_conf = probs.top5conf[:top_k].cpu().numpy()
|
||||
|
@ -307,7 +327,7 @@ class YOLOWrapper:
|
|||
|
||||
return predictions
|
||||
else:
|
||||
logger.warning(f"Model {self.model_id} does not support classification")
|
||||
logger.warning(f"Model {self.model_id} does not support classification or no probs found")
|
||||
return {}
|
||||
|
||||
except Exception as e:
|
||||
|
@ -350,6 +370,10 @@ class YOLOWrapper:
|
|||
"""Get the number of classes the model can detect"""
|
||||
return len(self._class_names)
|
||||
|
||||
def is_classification_model(self) -> bool:
|
||||
"""Check if this is a classification model"""
|
||||
return 'cls' in str(self.model_path).lower() or 'classify' in str(self.model_path).lower()
|
||||
|
||||
def clear_cache(self) -> None:
|
||||
"""Clear the model cache"""
|
||||
with self._cache_lock:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue