diff --git a/REFACTOR_PLAN.md b/REFACTOR_PLAN.md index 42bffda..47c40f3 100644 --- a/REFACTOR_PLAN.md +++ b/REFACTOR_PLAN.md @@ -238,32 +238,49 @@ core/ - ✅ **Production Ready**: Stable concurrent streaming from multiple camera sources - ✅ **Dependencies**: Added opencv-python, numpy, and requests to requirements.txt +### 3.4 Recent Streaming Enhancements (Post-Phase 3) +- ✅ **Format-Specific Optimization**: Tailored for 1280x720@6fps RTSP streams and 2560x1440 HTTP snapshots +- ✅ **H.264 Error Recovery**: Enhanced error handling for corrupted frames with automatic stream recovery +- ✅ **Frame Validation**: Implemented corruption detection using edge density analysis +- ✅ **Buffer Size Optimization**: Adjusted buffer limits to 3MB for RTSP frames (1280x720x3 bytes) +- ✅ **FFMPEG Integration**: Added environment variables to suppress verbose H.264 decoder errors +- ✅ **URL Preservation**: Maintained clean RTSP URLs without parameter injection +- ✅ **Type Detection**: Automatic stream type detection based on frame dimensions +- ✅ **Quality Settings**: Format-specific JPEG quality (90% for RTSP, 95% for HTTP) + ## ✅ Phase 4: Vehicle Tracking System - COMPLETED ### 4.1 Tracking Module (`core/tracking/`) -- ✅ **Create `tracker.py`** - Vehicle tracking implementation +- ✅ **Create `tracker.py`** - Vehicle tracking implementation (305 lines) - ✅ Implement continuous tracking with configurable model (front_rear_detection_v1.pt) - ✅ Add vehicle identification and persistence with TrackedVehicle dataclass - ✅ Implement tracking state management with thread-safe operations - ✅ Add bounding box tracking and motion analysis with position history + - ✅ Multi-class tracking support for complex detection scenarios -- ✅ **Create `validator.py`** - Stable car validation +- ✅ **Create `validator.py`** - Stable car validation (417 lines) - ✅ Implement stable car detection algorithm with multiple validation criteria - ✅ Add passing-by vs. fueling car differentiation using velocity and position analysis - ✅ Implement validation thresholds and timing with configurable parameters - ✅ Add confidence scoring for validation decisions with state history + - ✅ Advanced motion analysis with velocity smoothing and position variance -- ✅ **Create `integration.py`** - Tracking-pipeline integration +- ✅ **Create `integration.py`** - Tracking-pipeline integration (547 lines) - ✅ Connect tracking system with main pipeline through TrackingPipelineIntegration - ✅ Handle tracking state transitions and session management - ✅ Implement post-session tracking validation with cooldown periods - ✅ Add same-car validation after sessionId cleared with 30-second cooldown + - ✅ Car abandonment detection with automatic timeout monitoring + - ✅ Mock detection system for backend communication + - ✅ Async pipeline execution with proper error handling ### 4.2 Testing Phase 4 - ✅ Test continuous vehicle tracking functionality - ✅ Test stable car validation logic - ✅ Test integration with existing pipeline - ✅ Verify tracking performance and accuracy +- ✅ Test car abandonment detection with null detection messages +- ✅ Verify session management and progression stage handling ### 4.3 Phase 4 Results - ✅ **VehicleTracker**: Complete tracking implementation with YOLO tracking integration, position history, and stability calculations @@ -274,6 +291,10 @@ core/ - ✅ **Configurable Parameters**: All tracking parameters are configurable through pipeline.json - ✅ **Session Management**: Complete session lifecycle management with post-fueling validation - ✅ **Statistics and Monitoring**: Comprehensive statistics collection for tracking performance +- ✅ **Car Abandonment Detection**: Automatic detection when cars leave without fueling, sends `detection: null` to backend +- ✅ **Message Protocol**: Fixed JSON serialization to include `detection: null` for abandonment notifications +- ✅ **Streaming Optimization**: Enhanced RTSP/HTTP readers for 1280x720@6fps RTSP and 2560x1440 HTTP snapshots +- ✅ **Error Recovery**: Improved H.264 error handling and corrupted frame detection ## 📋 Phase 5: Detection Pipeline System