update webcam output
This commit is contained in:
parent
7911245ff9
commit
192b96d658
3 changed files with 115 additions and 30 deletions
|
@ -87,36 +87,65 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
|||
for drawing. Otherwise, returns only the detection.
|
||||
"""
|
||||
try:
|
||||
results = node["model"].track(frame, stream=False, persist=True)
|
||||
detection = None
|
||||
best_box = None
|
||||
max_conf = -1
|
||||
|
||||
for r in results:
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
# Check model type and use appropriate method
|
||||
model_task = getattr(node["model"], "task", None)
|
||||
|
||||
if model_task == "classify":
|
||||
# Classification models need to use predict() instead of track()
|
||||
logging.debug(f"Running classification model: {node.get('modelId')}")
|
||||
results = node["model"].predict(frame, stream=False)
|
||||
detection = None
|
||||
best_box = None
|
||||
|
||||
# Process classification results
|
||||
for r in results:
|
||||
probs = r.probs
|
||||
if probs is not None and len(probs) > 0:
|
||||
# Get the most confident class
|
||||
class_id = int(probs.top1)
|
||||
conf = float(probs.top1conf)
|
||||
detection = {
|
||||
"class": node["model"].names[int(box_cpu.cls[0])],
|
||||
"class": node["model"].names[class_id],
|
||||
"confidence": conf,
|
||||
"id": box.id.item()
|
||||
"id": None # Classification doesn't have tracking IDs
|
||||
}
|
||||
best_box = box_cpu
|
||||
|
||||
# Classification doesn't produce bounding boxes
|
||||
bbox = None
|
||||
|
||||
else:
|
||||
# Detection/segmentation models use tracking
|
||||
logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
|
||||
results = node["model"].track(frame, stream=False, persist=True)
|
||||
detection = None
|
||||
best_box = None
|
||||
max_conf = -1
|
||||
|
||||
bbox = None
|
||||
# Modified bounding box calculation: always compute bbox if best_box exists
|
||||
if detection and best_box is not None:
|
||||
coords = best_box.xyxy[0]
|
||||
x1, y1, x2, y2 = map(int, coords)
|
||||
h, w = frame.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
if x2 > x1 and y2 > y1:
|
||||
bbox = (x1, y1, x2, y2)
|
||||
if node.get("crop", False):
|
||||
frame = frame[y1:y2, x1:x2]
|
||||
for r in results:
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
detection = {
|
||||
"class": node["model"].names[int(box_cpu.cls[0])],
|
||||
"confidence": conf,
|
||||
"id": box.id.item()
|
||||
}
|
||||
best_box = box_cpu
|
||||
|
||||
bbox = None
|
||||
# Calculate bbox if best_box exists
|
||||
if detection and best_box is not None:
|
||||
coords = best_box.xyxy[0]
|
||||
x1, y1, x2, y2 = map(int, coords)
|
||||
h, w = frame.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
if x2 > x1 and y2 > y1:
|
||||
bbox = (x1, y1, x2, y2)
|
||||
if node.get("crop", False):
|
||||
frame = frame[y1:y2, x1:x2]
|
||||
|
||||
if detection is not None:
|
||||
for branch in node["branches"]:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue