update webcam output
This commit is contained in:
		
							parent
							
								
									7911245ff9
								
							
						
					
					
						commit
						192b96d658
					
				
					 3 changed files with 115 additions and 30 deletions
				
			
		| 
						 | 
				
			
			@ -87,36 +87,65 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		|||
    for drawing. Otherwise, returns only the detection.
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
        detection = None
 | 
			
		||||
        best_box = None
 | 
			
		||||
        max_conf = -1
 | 
			
		||||
 | 
			
		||||
        for r in results:
 | 
			
		||||
            for box in r.boxes:
 | 
			
		||||
                box_cpu = box.cpu()
 | 
			
		||||
                conf = float(box_cpu.conf[0])
 | 
			
		||||
                if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                    max_conf = conf
 | 
			
		||||
        # Check model type and use appropriate method
 | 
			
		||||
        model_task = getattr(node["model"], "task", None)
 | 
			
		||||
        
 | 
			
		||||
        if model_task == "classify":
 | 
			
		||||
            # Classification models need to use predict() instead of track()
 | 
			
		||||
            logging.debug(f"Running classification model: {node.get('modelId')}")
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            
 | 
			
		||||
            # Process classification results
 | 
			
		||||
            for r in results:
 | 
			
		||||
                probs = r.probs
 | 
			
		||||
                if probs is not None and len(probs) > 0:
 | 
			
		||||
                    # Get the most confident class
 | 
			
		||||
                    class_id = int(probs.top1)
 | 
			
		||||
                    conf = float(probs.top1conf)
 | 
			
		||||
                    detection = {
 | 
			
		||||
                        "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                        "class": node["model"].names[class_id],
 | 
			
		||||
                        "confidence": conf,
 | 
			
		||||
                        "id": box.id.item()
 | 
			
		||||
                        "id": None  # Classification doesn't have tracking IDs
 | 
			
		||||
                    }
 | 
			
		||||
                    best_box = box_cpu
 | 
			
		||||
            
 | 
			
		||||
            # Classification doesn't produce bounding boxes
 | 
			
		||||
            bbox = None
 | 
			
		||||
            
 | 
			
		||||
        else:
 | 
			
		||||
            # Detection/segmentation models use tracking
 | 
			
		||||
            logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
 | 
			
		||||
            results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            max_conf = -1
 | 
			
		||||
 | 
			
		||||
        bbox = None
 | 
			
		||||
        # Modified bounding box calculation: always compute bbox if best_box exists
 | 
			
		||||
        if detection and best_box is not None:
 | 
			
		||||
            coords = best_box.xyxy[0]
 | 
			
		||||
            x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
            h, w = frame.shape[:2]
 | 
			
		||||
            x1, y1 = max(0, x1), max(0, y1)
 | 
			
		||||
            x2, y2 = min(w, x2), min(h, y2)
 | 
			
		||||
            if x2 > x1 and y2 > y1:
 | 
			
		||||
                bbox = (x1, y1, x2, y2)
 | 
			
		||||
                if node.get("crop", False):
 | 
			
		||||
                    frame = frame[y1:y2, x1:x2]
 | 
			
		||||
            for r in results:
 | 
			
		||||
                for box in r.boxes:
 | 
			
		||||
                    box_cpu = box.cpu()
 | 
			
		||||
                    conf = float(box_cpu.conf[0])
 | 
			
		||||
                    if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                        max_conf = conf
 | 
			
		||||
                        detection = {
 | 
			
		||||
                            "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                            "confidence": conf,
 | 
			
		||||
                            "id": box.id.item()
 | 
			
		||||
                        }
 | 
			
		||||
                        best_box = box_cpu
 | 
			
		||||
 | 
			
		||||
            bbox = None
 | 
			
		||||
            # Calculate bbox if best_box exists
 | 
			
		||||
            if detection and best_box is not None:
 | 
			
		||||
                coords = best_box.xyxy[0]
 | 
			
		||||
                x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
                h, w = frame.shape[:2]
 | 
			
		||||
                x1, y1 = max(0, x1), max(0, y1)
 | 
			
		||||
                x2, y2 = min(w, x2), min(h, y2)
 | 
			
		||||
                if x2 > x1 and y2 > y1:
 | 
			
		||||
                    bbox = (x1, y1, x2, y2)
 | 
			
		||||
                    if node.get("crop", False):
 | 
			
		||||
                        frame = frame[y1:y2, x1:x2]
 | 
			
		||||
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue